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Abstract—The pseudospectral time domain (PSTD) method is
popular as a wave equation solver, one of its advantages being
that it permits the use of coarse grids, as long as the spatial
sampling is greater than two points-per-wavelength. The k-space
PSTD method improves on this by incorporating an additional
factor to remove the numerical dispersion which arises from the
discretisation of the time derivatives. However, the effect of the
temporal discretisation of time-varying sources has not previously
been considered, although it can lead to substantial errors in the
predicted field unless the timestep is sufficiently small to ensure
the highest frequency is sampled at many points-per-period. Here,
a correction factor is derived which eliminates this source of
error, resulting in a k-space PSTD method that retains the spatial
sampling advantage of conventional PSTD schemes but is also
accurate as long as the temporal sampling is greater than two
points-per-period and the CFL number is < 1.

Index Terms—acoustic simulation, pseudospectral time do-
main, k-space, sources

I. INTRODUCTION

The k-space pseudospectral time domain (PSTD) method
[1]–[4] is a time-stepping scheme for full-wave acoustic
simulations. It is widely used, for example in the k-Wave
implementation [5], because of its computational efficiency.
Spatial gradients are computed using a spectral method, which
introduces no approximation errors as long as the computa-
tional grid-spacing is less than half the shortest wavelength
(Nyquist), thereby minimizing the computational memory re-
quired for simulations. Temporal gradients are computed using
forward differences, but the numerical dispersion that would
result from this approximation is eliminated through the use
of a correction factor applied in the wavenumber domain or
k-space. When solving initial value problems in homogeneous
media, this method can calculate the acoustic field exactly at
any future time, ie. there are no restrictions on the size of the
timestep that can be taken. This comes as no surprise when
one learns that the correction factor is derived directly from
the free-space Green’s function.

For problems involving time-varying sources, however,
there remains a potential source of error. While a correction
factor which mitigates for the temporal discretisation of the
time derivatives is incorporated in the scheme, no such factor
is included to account for the temporal discretisation of the
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source terms. Of course, the method is nevertheless conver-
gent: for smaller and smaller timesteps, ie. higher and higher
sampling rates of the source function, the solution approaches
ever more closely the true solution. However, the requirement
to take small timesteps in order to model a time-varying
source accurately feels out-of-place in the context of a k-space
PSTD method that only requires spatial sampling be better
than Nyquist. In this paper, a k-space source correction factor
is derived from a Green’s function solution. This correction
removes the error due to the temporal sampling of the source
function, resulting in a scheme which also only requires the
temporal sampling be better than Nyquist.

II. k-SPACE PSEUDOSPECTRAL TIME DOMAIN MODEL:
FIRST-ORDER SYSTEM

The wave equation for the acoustic pressure p in a homo-
geneous medium with sound speed c0 and density ρ0 is

(∇2 − c−20 ∂tt)p = ρ0∇ · F− ∂tM, (1)

where F = (Fx, Fy) is a vector force source term and
represents the input of body forces per unit mass in units of
N.kg−1 or m.s−2 and M is a mass source term and represents
the time rate of the input of mass per unit volume in units of
kg.m−3s−1. (The 2D case will be described in this paper for
conciseness but the extension to 3D is straightforward.) This
can be written as a system of first-order equations:

∂tu = −∇p/ρ0 + F, ∂tρ = −ρ0∇ · u +M, p = c20ρ,

where u = (ux, uy) and ρ are the acoustic particle velocity
and density. Writing the time derivatives as finite differences
suggests the following time-stepping scheme:
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where the superscript n indicates the value at the nth timestep,
ie. at time t = n∆t. In the k-space PSTD method, the numer-
ical dispersion that would arise from the finite differences is
corrected exactly by a factor [2]:

κ = sinc(c0k∆t/2), (6)



where k = |k| is the wavenumber, the magnitude of the
wavevector. Because the correction factor κ needs to be
applied in k-space, it is convenient to add it to the gradient
calculation, giving:
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and similar expressions for the gradients in the y direction.
Here F indicates a Fourier transform, and kx and ky are the
components of the wavevector k. Equations (2)-(8) form a
convergent numerical scheme, meaning that for short enough
timesteps it will converge to the solution of (1). Furthermore,
when solving the initial value problem (∇2 − c−20 ∂tt)p = 0
with initial conditions for p and ∂tp, the use of κ means that
this model will give the exact solution for any size timestep.
However, for a time-varying source this is not generally true,
as the temporal discretisation of the source has not been taken
explicitly into account. This acoustic model will therefore be
referred to as the uncorrected scheme.

This paper shows that this scheme can be improved for
time-varying sources by finding a correction term which,
when applied to the source terms in Eqs. (2)-(4), ensures
the exactness of the solutions. Such a correction is limited
in principle to timesteps smaller than half the period of
the highest frequency in the source, in the same way the
grid spacing must be less than half the shortest wavelength
(although in practice 3 points-per-wavelength are typically
required and the Courant-Friedrichs-Lewy number (CFL) must
be < 1). In general, time-varying sources will be broadband,
but because any signal can be written as a sum of sinusoids,
it is necessary only to derive the correction factor for a single
frequency, and the case of a broadband source will come from
it. The approach taken here will therefore be to compare the
uncorrected scheme to a k-space PSTD model derived from an
exact solution of Eq. (1) for single frequency sources. First,
though, to facilitate this comparison, the uncorrected scheme
will be rewritten in second-order form.

III. k-SPACE PSTD MODEL: SECOND-ORDER FORM

To determine whether correction factors are required for the
source terms in the uncorrected scheme given in Eqs. (2)-(4),
the first-order scheme that they represent will be rearranged
into a second-order scheme so that it can be compared with
the exact scheme to be derived below. Combining Eqs. (4),
(5) and (7) gives, in k-space:
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where ·̂ indicates a variable in k-space, eg. p̂(k) = F{p(x)}.
Writing a similar expression for the pressure at the previous

timestep p̂n, and subtracting p̂n from p̂n+1, gives
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Substituting in the k-space versions of Eqs. (2) and (3) gives

p̂n+1 − 2p̂n + p̂n−1 = ∆tc20ρ0×(
− ikxκ

(
û
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n− 1

2
y

))
+ ∆tc20(M̂n+

1
2 − M̂n− 1

2 ). (11)

Cancelling terms leaves
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The first line of this rearrangement of the uncorrected scheme
is a k-space pseudospectral model of the wave equation in the
absences of sources, the second line includes velocity sources,
and the third the mass sources (written in the form of an exact
finite difference [7]).

IV. k-SPACE PSTD MODEL: EXACT CW SOURCE TERMS

In this section, a PSTD scheme will be derived without
approximation from an exact solution to Eq. (1) in the case
of single frequency sources. This will then be compared to
Eq. (12) to determine if any correction factors are required in
the latter. In the continuous wave case in which the sources
emit sound waves of a single frequency, ω0 rads.s−1, the two
source types can be written in separable form with complex
spatially-varying amplitudes:

M(x, t) = A(x)eiω0t, (13)

F(x, t) = (Bx(x), By(x))eiω0t. (14)

The solution to Eq. (1), assuming zero initial conditions and
free-space boundary conditions, can be written as [6]

p(x, t) =
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′)dkdx′, (15)

where k = (kx, ky) is the wavevector, the sources

S(x′) = iωA− ρ0∇ · (Bx, By), (16)

and the convolution of the Green’s function and time factor
gives [6]

I(k, t) =
c0k(eiω0t − cos(c0kt))− iω0 sin(c0kt)

(c0k)3 − c0kω2
0

. (17)



In k-space, the pressure can be written

p̂(k, t) = c20(iωÂ(k)− ρ0(ikxB̂x(k) + ikyB̂y(k)))I(k, t).

The aim is to derive a second-order PSTD model, so, to that
end, and using the notation p̂n+1 = p̂(k, t+∆t), etc. we write:

p̂n+1 − 2p̂n + p̂n−1 =
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Some rearranging gives
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Substituting this back into Eq. (18) and rearranging gives
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where κ is given in Eq. (6) and
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No approximations have been made in deriving Eq. (20),
which is therefore a second-order k-space PSTD model which
is exact for homogeneous media and single-frequency sources.

V. BROADBAND SOURCE TERM CORRECTION FACTOR

The two second-order models given in Eqs. (12) and (20)
can now be compared to see whether the former requires
source corrections. In summary, the source terms in the
uncorrected scheme are
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and for the exact scheme are

mass source = c20Ciω0M̂, (24)

force source = −c20ρ0C(ikxF̂x + ikyF̂y). (25)

Comparing these source terms shows they differ by a factor
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As the factor C was derived for the single frequency case, σ
can be expressed in two other forms by taking the limits

k → ω0/c0, σ → cos(ω0∆t/2), (27)
ω0 → c0k, σ → cos(c0k∆t/2). (28)

These expressions are equivalent in the continuous setting, but
will have slightly different effects in the numerical case due
to the regular (Cartesian) sampling of k-space. Also, which is
more useful in practice will depend on whether the source
is single-frequency or broadband. Eq. (27) gives a simple
scalar amplitude scaling factor for the source but relies on
knowledge of the source frequency, whereas Eq. (28) can be

applied to broadband sources without needing to specify the
frequency but requires two additional spatial FFTs per time
step. All the analysis up to this point has assumed a single
frequency source, but Eq. (28) makes no reference to the
source frequency so can be applied in the broadband case,
when the temporal parts of Eqs. (13) and (14) are not at a
single frequency but are a Fourier sum of many frequency
components. Including the broadband correction factor, Eq.
(28), in the first order equations gives the following scheme,
which will be referred to as the source-corrected scheme:
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VI. NUMERICAL EXAMPLE

A numerical example illustrating the impact of the source
correction is shown in Fig. 1. This was simulated using the
function kspaceFirstOrder3D from the open-source k-
Wave toolbox. This implementation of the k-space PSTD
method was modified to run with and without the source
correction. (This feature will be included in the next release
of k-Wave.) The source geometry was defined as a circular
piston with a 5 mm radius using the approach described in
[8]. The source was assigned as a mass source and driven
simultaneously at 0.5 MHz and 1 MHz with a pressure of
1 MPa. The grid spacing was set at 3 points-per-wavelength
and the timestep chosen to give 4 points-per-period at 1 MHz
(resulting in a CFL of 0.75). The source correction, Eq. (28),
was applied by taking an FFT of the source matrix at each time
step, applying the source correction, and then taking an inverse
FFT before adding it to the matrix of pressure values, as in the
source-corrected scheme above. For reference, the analytical
solution for the axial pressure was calculated using Eq. 5-
7.3 in [9]. As seen in Fig. 1(a), when no source correction
is applied, there is a large error in the pressure amplitude.
It is instructive to note that in the limit that the number
of points-per-wavelength and points-per-period approach 2,
this error grows without bound. (This can be seen by noting
that the correction factor, σ, which exactly counteracts this
error, shrinks to zero in the same limit.) Fig. 1(b) shows
that this error decreases with increasing temporal sampling
(decreasing CFL) although at the cost of increased compute
time. However, in contrast, when the source correction is used,
the error is as small at 4 points-per-period as at 50, and, as Fig.
1(a) shows, the axial response is very close to the analytical
solution. Any residual error is due to the perfectly matched
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Fig. 1. Numerical example showing the effect of the source correction, (28),
on the on-axis pressure field from a 5mm radius circular piston source driven
simultaneously at 0.5 MHz and 1 MHz. (a) The magnitude of the on-axis
pressure. The numerical solutions were calculated using k-Wave, with and
without the source correction, using a CFL number of 0.75 (PPW = 3, PPP
= 4). The solid line shows the analytical solution. (b) The maximum value
(L∞ norm) of the error as a function of the points-per-period at the highest
frequency (temporal sampling rate).

layer absorbing boundary conditions - not described in the
equations above [2], [3] - and the error in the discretisation of
the source geometry. The error is larger at 3 points-per-period
because in this simulation that corresponds to reaching a CFL
number of 1. Fig. 1(b) shows the error when using the source
correction in Eq. (27) as well as for the source correction in
Eq. (28). The former was applied frequency-by-frequency to
the source function before running the simulation, the latter
(which was used in Fig. 1(a)) was applied every timestep
during the simulation, resulting in an additional 2 spatial FFTs
per timestep. There is very little difference between the error
in the two cases, as expected.

VII. CONCLUSION

A k-space pseudospectral time domain scheme for solving
the wave equation was derived. In conventional k-space PSTD
schemes, the spatial part of the source terms can be described
without error so long as the spatial sampling rate is better
than Nyquist. The same condition does not usually apply to
the temporal part of the source terms, however, which typically
must be sampled much faster than Nyquist to obtain accept-
able accuracy. In the scheme introduced here, the temporal
sampling of the source terms too need only satisfy Nyquist
(more than two points-per-period at the highest frequency).
This natural extension of the k-space PSTD scheme to time-
varying sources allows much larger timesteps to be taken
without compromising accuracy.
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