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Abstract

Background. Patients’ encounters with healthcare services must undergo clin-
ical coding. These codes are typically derived from free-text notes. Manual
clinical coding is expensive, time-consuming and prone to error. Automated
clinical coding systems have great potential to save resources, and realtime
availability of codes would improve oversight of patient care and accelerate re-
search. Automated coding is made challenging by the idiosyncrasies of clinical
text, the large number of disease codes and their unbalanced distribution.

Methods. We explore methods for representing clinical text and the labels in
hierarchical clinical coding ontologies. Text is represented as term frequency-
inverse document frequency counts and then as word embeddings, which we
use as input to recurrent neural networks. Labels are represented atomically,
and then by learning representations of each node in a coding ontology and
composing a representation for each label from its respective node path. We
consider different strategies for initialisation of the node representations. We
evaluate our methods using the publicly-available Medical Information Mart for
Intensive Care III dataset: we extract the history of presenting illness section
from each discharge summary in the dataset, then predicting the International
Classification of Diseases, ninth revision, Clinical Modification codes associated
with these.

Results. Composing the label representations from the clinical-coding-ontology
nodes increased weighted F1 for prediction of the 17561 disease labels to 0.264-
0.281 from 0.232-0.249 for atomic representations. Recurrent neural network
text representation improved weighted F1 for prediction of the 19 disease-
category labels to 0.682-0.701 from 0.662-0.682 using term frequency-inverse
document frequency. However, term frequency-inverse document frequency out-
performed recurrent neural networks for prediction of the 17561 disease labels.
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Conclusions. This study demonstrates that hierarchically-structured medical
knowledge can be incorporated into statistical models, and produces improved
performance during automated clinical coding. This performance improvement
results primarily from improved representation of rarer diseases. We also show
that recurrent neural networks improve representation of medical text in some
settings. Learning good representations of the very rare diseases in clinical
coding ontologies from data alone remains challenging, and alternative means of
representing these diseases will form a major focus of future work on automated
clinical coding.
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representation learning, knowledge representation, natural language
processing, machine learning
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1. Introduction

Encounters with patients in general practice, hospitals and other health-
care services are recorded in myriad ways. Many of the resultant data are
highly-structured. However, the narrative of how a patient came to be in con-
tact with healthcare services and of what happened thereafter is almost always
recorded as free text. Free text is highly expressive and efficient, and it is thus
enduringly popular with the busy healthcare professionals who record patient
information [1].

A tension exists between the needs of healthcare professionals using data
from individual patients at the point of care, and of those seeking insight into
patient populations as a whole for purposes of research, quality improvement
and administration. These latter purposes favour structured data which are
straightforwardly amenable to statistical analysis. Clinical coding addresses
the tension by assigning standardised codes to patient encounters, after having
interpreted the data associated with them. All of the popular coding ontologies
have a hierarchical structure.

Clinical coding is currently performed manually, and hospitals typically em-
ploy a large number of full-time staff for this purpose. Manual clinical coding is
time-consuming, with many hospital trusts in the UK only aiming to complete
clinical coding several weeks after patient discharge [2]. Even if the efficiency of
manual coding increased significantly, there is no realistic prospect that it could
be used to assign clinical codes in close to realtime. There is also a wealth of
evidence to suggest that manual coding is prone to error [2, 3, 4, 5, 6].

A system which performs accurate, automated clinical coding would have
great potential to save resources, against the backdrop of a National Health
Service (NHS) facing unprecedented financial pressure [7]. Were the predicted
clinical codes available in near-realtime, this could facilitate greater analytics
capability and improve oversight of patient care. Near-realtime availability of
codes would be a huge advantage to recruiters for clinical research trials search-
ing for specific subgroups of patients, and would accelerate the cycles of audit
and quality improvement projects. Studies of healthcare-related predictive mod-
els demonstrated improved model performance where patient notes were used as
model input in addition to physiological variables [8, 9]. Clinical codes might be
expected to similarly improve the decision support models which are currently
used in clinical practice.

The idiosyncrasies of medical language are a barrier to automated clinical
coding. Free-text clinical notes are formatted ad hoc to suit their author’s
current aims and are rife with obscure vocabulary, non-standard syntax and
ambiguous abbreviations. They are typically typed hurriedly and, thus, contain
many spelling and grammatical errors. Many possible synonyms exist for clin-
ical concepts, and these are often used interchangeably. Negation is used very
frequently, and negating expressions are often placed distantly from the negated
concept [10]. In many cases, the main clinical concept under discussion is felt
to be obviously implied, but it is not mentioned explicitly. In addition, clini-
cal notes convey the subjective perspective of a healthcare professional — who

3



is themselves delivering care within an institution with its own peculiarities of
medical practice — rather than the objective reality of a patient’s condition [11].

Another long-standing barrier to automated coding has been the scarcity
of hospitals using electronic health records (EHRs), which both prohibits auto-
mated coding at institutions still using paper records and limits the amount of
training data available, even at hospitals that use EHRs. UK Government pol-
icy mandates that the NHS will be ‘paper free at the point of care’ by 2020 [12],
so it is hoped that this barrier will rapidly be removed.

A more persistent challenge is the label-space problem: popular disease on-
tologies contain tens of thousands of labels, and their distribution is highly
imbalanced in most datasets, with many absent labels for rare diseases. Some
previous studies of automated clinical coding models adopt toy ontologies, con-
sisting of the k most-frequent labels, and discard training examples with other
labels. This approach would be unacceptable in real healthcare environments,
where many rare diseases are potentially reversible but have serious sequelae
when neglected. More promising approaches to the label-space problem exploit
the structure of the underlying disease ontology and use this to learn better
representations of individual labels.

In this study, we build and evaluate systems for automated clinical coding
which mitigate the above challenges. In doing so, we explore methods for repre-
senting both clinical text and the labels in hierarchical clinical coding ontologies.

1.1. Related work

Several rule-based systems which mimic the approach of human clinical
coders have been proposed [13, 14]. However, these are labour-intensive to de-
velop and maintain, typically grow to become highly complex and unpredictable,
and perform poorly on unconstrained corpora [15].

Other studies manually engineer features of clinical documents and use
these, paired with their respective labels, as input to supervised classification
models. Classifiers including naive Bayes, boosting, k-nearest-neighbours, sup-
port vector machines (SVMs) and Bayesian ridge regression have been consid-
ered [16, 17, 18, 19]. Generic features such as bag of words (BoW) counts [20] and
term frequency-inverse document frequency (TF-IDF) weights [21, 22] are com-
monly used. Other features are healthcare-specific, including similarity scores
between the input document and labels in a disease ontology or the metadata
associated with those labels [23, 24, 25]. It is relatively straightforward to derive
features using external medical knowledge and include these in the document
representation, but it is more difficult to ensure that the model will learn to use
these feature in the manner intended. It is also challenging to manually specify
a compact feature set that captures the richness of the document text.

An alternative to manual feature engineering is representation learning di-
rectly from data. Recurrent neural networks (RNNs) are intuitively appealing
for learning representations of sequential data. In particular, the long short-
term memory (LSTM) and gated recurrent unit (GRU) variants improve repre-
sentation of long sequences by avoiding the vanishing gradients observed with
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earlier RNNs [26, 27]. GRUs are particularly attractive, as they produce sim-
ilar performance to LSTMs whilst using a simpler design with fewer trainable
parameters [28]. LSTMs and GRUs have been used to represent sequential
healthcare data, including multivariate time series [29], text documents [30]
and serial encounters with healthcare services [31, 32, 33].

In clinical coding, the structure of relevant knowledge is explicitly specified
by the hierarchical relationships in disease ontologies. Several studies adopt
model architectures which reflect this structure. One approach trains a binary
SVM for each node in an ontology, with each classifier learning only from train-
ing examples classed as positive by its parent classifier [34, 35, 36, 37, 38]. A
framework has been described for feedforward neural network training which is
regularised so as to incorporate tree-based priors derived from disease ontolo-
gies [39]. Another approach represented each leaf in a disease ontology as a
learnt convex combination of the leaf embedding and its ancestor nodes’ em-
beddings. Subsequent analysis revealed that larger weights were assigned to
nodes lower in the hierarchy for common diseases and to higher nodes for rarer
diseases [32].
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2. Methods

This study focuses on clinical coding tasks which equate to single-label multi-
class classification of text documents. Each label corresponds to a path through
an ontology structured as a directed singly-connected graph, i.e. a tree. The
different models considered differ mainly in the way they represent the docu-
ments and the labels. Here, we present a general approach that should extend
to a variety of clinical text data and ontologies in a straightforward fashion.

2.1. Document representation

We aim to represent each document as a feature vector that summarises the
document’s content. We denote the study vocabulary as v = {w1, w2, . . . , wn},
which is used to convert the sequence of tokens in a document to a vector of
token indexes d. A variety of methods were considered for deriving a good
document representation from d.

TF-IDF representation. A document may be represented as TF-IDF weights,
where the jth weight is obtained as

tf(d)j =

|d|∑
k=1

I(vj = dk) (1)

df(v)j =

D∑
k=1

I(vj ∈ dk) (2)

idf(v)j =log

(
1 + D

1 + df(v)j
+ 1

)
(3)

tfidf(d)j =tf(d)j × idf(v)j (4)

where D is the number of documents in the collection and I is the indicator
function, such that I(q) is 1 when q is true and is 0 otherwise. The addition of 1
in Equation 3 prevents zero weights for tokens which occur in every document.

Mean-embedding representation. Alternatively, each token in the study vocabu-
lary may be assigned a vector embedding. This yields embeddings Ew ∈ R|v|×E,
where E is the dimensionality of each embedding. The embeddings are used to
transform a document into a matrix X ∈ R|d|×E. A simple vector representa-
tion of this document may then obtained by calculating the mean of the word
embeddings which comprise it. A document representation as the mean word
embedding is henceforth denoted as x̄, where its jth element is obtained as

x̄j =
1

|d|

|d|∑
t=1

Xtj (5)
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Figure 1: Example disease ontology, indicating the sets of nodes indexed by l1, l2 and l3.

GRU representation. A separate representation of the document may be ob-
tained by feeding its word embeddings sequentially into a GRU, and making
use of the outputs. The GRU output ot at timestep t, given an input Xt: and
the previous output ot−1, is obtained as

zt = σ
(
W z[Xt:,ot−1] + bz

)
(6)

rt = σ
(
W r[Xt:,ot−1] + br

)
(7)

õt = tanh
(
W o[Xt:, rt � ot−1] + bo

)
(8)

ot = zt � ot−1 + (1− zt)� õt (9)

where [, ] indicates vector concatenation, � indicates pointwise multiplication
and 1 is a vector where every element equals 1.

A bidirectional GRU design was adopted to compensate for small backprop-
agated gradients from the long input sequences. The input sequence was fed the
sequence through two GRUs, once in unmodified and once in reversed form, and
the outputs were concatenated at each timestep. Also for reasons of gradient
preservation, the mean of the concatenated GRU outputs was used in prefer-
ence to the final concatenated output. A document representation as the mean

output of a bidirectional GRU is henceforth denoted as
←−→
GRU(X).

2.2. Label representation

We aim to represent each label as a feature vector that captures the label’s
meaning. Let lk index the set of final nodes in all possible paths of length
k through a tree-structured ontology, beginning at the root node. l0 indexes
just the root node and is ignored. Figure 1 demonstrates this in an example
ontology. A variety of representations were considered for the labels in each lk.

Atomic representation. Each label can be represented atomically, i.e. with no
information was shared between label representations. Given a document rep-
resentation h, the probability distribution over the labels is obtained as

p(lk | h) = softmax(W kh+ bk) (10)
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That is, each label is represented as a row of a learnt weight matrix W k and a
corresponding element in a learnt bias vector bk.

Where ln indexes the terminal labels in an ontology, predictions for the
higher levels of labels can be obtained using the separate-model strategy, wherein
we learn a separate W k and bk for each {lk : 0 < k < n}. Alternatively,
predictions for the higher levels of labels can be obtained using the truncated-
terminal strategy, wherein we learn only Wn and bn, predict p(ln | h) then
truncate it as per the ontology’s tree structure. For example, the prediction for
the ith label in the penultimate level of labels is obtained as

p(ln−1i | h) =
∑

lnj ∈children(l
n−1
i )

p(lnj | h) (11)

Mean-embedding representation. As an alternative to atomic representation,
each node in the ontology may be assigned a vector embedding. This yields
embeddings En ∈ RN×F, where N is the number of nodes in the ontology and F
is the dimensionality of each embedding. A representation of each label is then
composed from the nodes traversed in the path corresponding to that label.
The embeddings are used to transform the indices n of the traversed nodes into
a matrix Z ∈ R|n|×F. This strategy has the advantage of sharing information
between representations of labels with common ancestor nodes. Analagously to
Equation 5, a simple representation z̄ of a label is obtained as the mean of the
node embeddings that comprise its path.

GRU representation. Similarly to the methods described in Section 2.1, a sep-

arate representation
−−−→
GRU(Z) is obtained by feeding a label’s node embeddings

sequentially into a GRU. As these sequences are much shorter than in the case of
text documents, the final output from a unidirectional GRU is used as the label
representation. The architecture of the models which represent the documents

as x̄ or
←−→
GRU(X), and the labels as z̄ or

−−−→
GRU(Z), is summarised in Figure 2.

The probability distribution over the labels is calculated as shown in Equation

10, but with W k being composed row-wise using z̄ or
−−−→
GRU(Z) for each label,

rather than being learnt directly.
Various techniques were considered for initialisation of En. In the random

strategy, each embedding was drawn from N (0, I). The pretrained strategy
augments the random strategy by substituted pretrained embeddings for ter-
minal nodes in the ontology. The composed initialisation strategy began with
embeddings for the terminal nodes derived using either the random or pretrained
strategies. The embeddings for the nodes in the layer above were each calculated
as the sum of the embeddings for their child nodes. The summation was carried
out for the higher layers in the ontology in sequence, until an embedding was
derived for each node. Finally, all node embeddings were scaled to zero mean
and unit variance across all embedding dimensions.

2.3. Training and evaluation
The parameters θ for each model are learnt so as to minimise cross-entropy

loss. Having obtained p(lk | h) for a training sample as shown in Equation 10,
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“febrile”        “with”   “productive”     “cough” 

Word-to-embedding mapper

w1              w2              w3              w4 

Node-to-embedding mapper

n1                     n2                      n3

Mean embedding / GRU

Respiratory
diseases

Pneumonia
and influenza

Pneumococcal
pneumonia

Mean embedding / GRU

Document representation Label representation

p(pneumococcal pnuemonia | document)

Figure 2: Overview of the architecture for models which represent the documents as x̄ or
←−→
GRU(X), and the labels as z̄ or

−−−→
GRU(Z). We show how a probability estimate for a disease

label is obtained given an input document.

cross-entropy loss for that sample is calculated as

L(θ) = −log
(
p(lk∗ | h)

)
(12)

where ∗ indexes the true label in lk. After training, p(lk | h) is calculated for
each sample in a held-out test dataset. The indexes of the maximum calculated
probability for each sample are concatenated to form the test label predictions
ŷ. Point estimates of model performance were obtained by calculating precision,
recall and f1 scores using ŷ and the true label indexes y. The scores were also
calculated on 10000 bootstrap samples from ŷ and y, and the results were used
to obtain 95% confidence intervals for the point estimates.

Several averaging methods were considered for extending the scores to mul-
ticlass classification [40]. Models are evaluated using weighted-average scores in
this study, following the logic that common diagnoses should usually be consid-
ered in preference to rare ones, in order that fewer patients are misdiagnosed.
Where tk indexes the subset of labels in lk which occur at least once in y or ŷ,
and f(yi, ŷi) indicates the score of interest (precision, recall or f1) calculated
for the ith label, the weighted average is obtained as

weighted(f,y, ŷ) =
1

|y|
∑
i∈tk
|yi|f(yi, ŷi) (13)

Accuracy score and micro-averaged scores are identical to weighted recall in
the multiclass setting, so need not be reported separately. Macro-averaging is
avoided, as it is problematic where insufficient data exist to learn good represen-
tations of some labels, e.g. rare diseases. The classifier that maximises macro f1
score in these circumstances would simply predict the rare labels frequently [41].
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3. Dataset

The Medical Information Mart for Intensive Care III (MIMIC-III) dataset
contains deidentified numeric and free-text data from patient admissions to the
Beth Israel Deaconess Medical Center in Boston, Massachusetts, between 2001
and 2012 [42]. This study considers the 55172 free-text discharge summaries pro-
vided in the dataset, and their associated primary International Classification
of Diseases, ninth revision, Clinical Modification (ICD-9-CM) codes. MIMIC-
III is publicly available, and the Institutional Review Boards at Massachusetts
Institute of Technology and the Beth Israel Deaconess Medical Center approved
the use of the data for research.

3.1. Ontology

ICD-9-CM is a disease ontology used from 1979 until 2015 to code patient
encounters throughout the USA [43]. Each admission in MIMIC-III is assigned
multiple ICD-9-CM codes by human clinical coders, one of which is identified
as the primary reason for admission.

ICD-9-CM contains four levels of hierarchy, excluding the root node. The
first (chapter) level divides disease into 19 categories, most of which correspond
to body systems. These are further subdivided into 150 categories at the second
(sub-chapter) level by affected anatomical structures or types of pathology. The
third (major) level consists of 1234 diseases or narrow disease categories, e.g.
‘viral pneumonia’. Some paths through the ICD-9-CM hierarchy are 3 nodes in
length, ending at the majors level, but the majority include one of the 16327
nodes from the fourth level. These fourth-level nodes provide greater detail,
e.g. ‘pneumonia due to parainfluenza virus’. In this study, the 17561 final
nodes in all the possible (3- and 4-node) paths through ICD-9-CM are referred
to collectively as the terminal labels.

3.2. Data adaptation

Very commonly in clinical practice, a patient’s initial clinical presentation
is ambiguous. There is accompanying uncertainty regarding their underlying
diagnosis, and treatment is often initiated for a range of possible diagnoses then
refined on the basis of further information over the following days. Healthcare
professionals’ documentation early in the clinical encounter reflects this uncer-
tainty; the underlying diagnosis may be underspecified or not explicitly men-
tioned altogether. Realtime clinical coding using this text therefore requires a
code prediction rather than a code extraction model. We adapt the MIMIC-III
discharge summaries to favour such a model, by omitting the explicit lists of
diagnoses they contain and instead considering only the history of presenting ill-
ness (HoPI) section. This section describes the patient’s predominant symptoms
and significant findings on physical examination at presentation to hospital, the
results of initial investigations and the initial treatment offered. We are unaware
of any studies that have adapted the MIMIC-III dataset in this way, and so are
unable to present any relevant previous results for comparison purposes.
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Pt was in USOH, awaiting R THR, collapsed while celebrating a
funeral mass, was down for 1 min prior to EMS arrival, found to be
pulseless, atrial activity noted on stips [sic] but only occasional wide
qrs complexes, could not transcut pace, got atropine and calcium
gluc, went to [**First Name4 (NamePattern1) 46**] [**Last Name
(NamePattern1) **], was intubated for protection, K 6.6, HCO3 13,
and Cr 2.7. Got kayexylate [sic], bicarb gtt, lasix, and extubated.
ECG w/RBBB, LAD, LAFB, and sig PR delay so sent here for
pacer. R IJ pacer wire screwed in but still temporary. Transferred
to [**Hospital1 18**] for permanent pacer and further managment
[sic].

. . . Diseases of the circulatory system (390-459)

. . . Other forms of heart disease (420-429)

. . . Conduction disorders (426)

Complete atrioventricular block (426.0) . . .

. . .

. . .

. . .

Figure 3: Example HoPI document and corresponding path through ICD-9-CM.

Figure 3 shows an example HoPI document and its associated ICD-9-CM
code. Many of the idiosyncrasies of clinical text discussed in Section 1 are ev-
ident. In particular, non-standard abbreviations (‘transcut’, ‘gluc’, ‘sig’) and
slang terms (‘was down’, ‘got’, ‘screwed in’) are used, and there are several
spelling errors. The correct terminal label could be confidently predicted by a
human coder based on the results of the ‘stips’ [sic], i.e. the initial electrocardio-
gram, but is not explicitly stated. For other HoPI documents, it would be very
challenging or impossible to accurately predict the terminal ICD-9-CM label,
even for an specialist doctor. For example, a patient may present to hospital
with non-specific signs of sepsis, with the responsible pathogen only later identi-
fied by the hospital’s microbiology laboratory. However, it would be much more
feasible to accurately predict labels at the chapter (first), sub-chapter (second)
or major (third) levels of ICD-9-CM in such cases.

3.3. Preprocessing

Access to MIMIC-III, version 1.4 was gained with permission of its curators,
after completion of the prerequisite data-protection training. All available dis-
charge summaries (55177 records) were isolated from the free-text notes table
of the database, excluding any records marked as containing errors or without
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Figure 4: Number of tokens in each HoPI document, after data preprocessing.

any associated ICD-9-CM codes (5 records, 0.0%). The remaining records were
merged with the primary ICD-9-CM codes for the corresponding admissions.
The records were split randomly into training (38588 records, 69.9%), valida-
tion (5536 records, 10.0%) and testing (11048 records, 20.0%) folds. Where
multiple discharge summaries existed for a single admission, the splitting pro-
cess ensured they were allocated to the same fold.

Each discharge summary was tokenised using the Stanford Tokenizer [45].
Text in MIMIC-III is supplied with potential patient identifiers substituted with
special sequences, examples of which are visible in the example HoPI document
shown in Figure 3. These special sequences were identified and replaced by the
first token in the sequence, e.g. ‘[**Hospital1 18**]’ was replaced by ‘Hospital1’.

The formatting of the MIMIC-III discharge summaries is standardised, al-
lowing the HoPI sections to be extracted by means of rule-based pattern match-
ing, e.g. the majority of HoPI sections begin with ‘History of Present Illness’
and end with three new lines. The pattern-matching rules were iteratively re-
fined by inspection of random samples from the identified HoPI sections and
the discharge summaries where no HoPI section had been identified. Discharge
summaries identified as not containing a HoPI section or as containing an empty
HoPI secion (2641 records, 4.9%) were dropped. On manual inspection, the ma-
jority of these records contained addenda to other discharge summaries rather
than being the sole discharge summary associated with a patient admission.
HoPI documents more than 500 tokens in length (1143 records, 2.2%) were
truncated at 500 tokens. Figure 4 shows the distribution of token sequence
lengths after truncation.

Each token present at least once in the training HoPI documents was ex-
tracted (92468 tokens), and the number of occurrences of each was counted.
Tokens which occurred ≥ 5 times (19503 tokens) were retained, and comprised
the study vocabulary. Each token in the study vocabulary was assigned a unique
integer ID, with a further unique integer ID being assigned for out-of-vocabulary
tokens, yielding the vocabulary index v. Each HoPI document was converted
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Figure 5: Number of times each ICD-9-CM node is traversed in the path to the terminal
node for each document in the dataset. Plots a, b, c and d show nodes at the chapter (first),
sub-chapter (second), major (third) and terminal (fourth) levels respectively.

to a 1-dimensional array of integers using this index.
Each node in the ICD-9-CM hierarchy was assigned a unique ID. Labels

at the chapter (level 1), sub-chapter (level 2), major (level 3) and terminal
levels of ICD-9-CM were each mapped to the sequence of IDs corresponding
their ancestral node ordering. The distribution of node usage in the dataset
is shown for each level of the ICD-9-CM hierarchy in Figure 5. The classes
are imbalanced at all four levels of hierarchy, and become progressively more
imbalanced at the deeper levels. At the deepest (terminal) level, only 2675
(15.2%) of 17561 available labels are used at least once, and the most-frequent
label is used for 3499 (6.7%) records.
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4. Experiments and results

We trained models to predict the primary ICD-9-CM code assigned to each
HoPI document in the MIMIC-III dataset. We made four separate predictions
for each document, each considering labels at a different level in the ICD-9-CM
hierarchy. Higher-level labels in ICD-9-CM (i.e. those above the terminal level)
were predicted using both the separate-model and truncated-terminal strategies.
After training, we evaluated the performance of each model on the held-out
testing fold.

4.1. Baseline models

The tfidf(d)-atomic models represented the HoPI documents as TF-IDF
weights, and used these as input to a multinomial logistic regression classifier.
This corresponds to an atomic representation of the labels. As each document
representation is large — the same dimensionality as the study vocabulary —
in these models, only the subset which occurred at least once in the training
data were represented. Optimisation occurred via the stochastic average gra-
dient method, using a maximum of 1500 iterations [46]. These models were
implemented using scikit-learn 0.18.1 [47].

We used l2 regularisation to avoid overfitting. For the chapter (level 1),
sub-chapter (level 2) and major (level 3) models, 50 candidate values for the l2
coefficient were evaluated, logarithmically spaced between 10−2 and 102. Due
to the length of training times (several days) for the terminal label-prediction
model, a 32-value subset of these candidates was evaluated. The l2 coefficients
which maximised weighted recall scores on the validation fold were used in the
final models.

4.2. Neural models

These models represented the HoPI documents using word embeddings, as

either x̄ or
←−→
GRU(X). The x̄-atomic and

←−→
GRU(X)-atomic models both used

atomic representations of the ICD-9-CM labels. The
←−→
GRU(X)-z̄ model used

z̄ for label representation. The
←−→
GRU(X)-

−−−→
GRU(Z) model used

−−−→
GRU(Z) for

label representation with a 100-hidden-unit GRU. The node embeddings were
initialised using the random strategy in the main experiments.

Each token in the study vocabulary was assigned a 200-dimensional pre-
trained embedding, where available. The pretrained embeddings were derived
in a previous study, using a skip-gram model trained on a large text cor-
pus which combines English Wikipedia and the PubMed and PubMed Central
databases [48, 49]. We hypothesise that these embeddings capture the meaning
of their tokens in a variety of technical domains, and in the biomedical domain
in particular. Tokens without a pretrained embedding were assigned vectors
drawn from independent zero-mean Gaussian distributions. Token embeddings
were fixed during model training.

In the x̄-atomic and
←−→
GRU(X)-atomic models, representations were learnt

for all labels regardless of whether they occurred in the training data. Given
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the large number of ICD-9-CM nodes not present in the dataset, it was felt to be
unlikely that the node embeddings could be learnt satisfactorily during model
training. The node embeddings were therefore fixed during training, except in
models using z̄ to represent each label, as these representations would otherwise
have no learnt component.

The random, random-composed, pretrained and pretrained-composed ini-
tialisation strategies were compared in a separate experiment, also using the←−→
GRU(X)-

−−−→
GRU(Z) model. The pretrained embeddings for the terminal nodes

were derived in a previous study, using a dataset of ICD-9-CM codes from the
health insurance claims of 4 million people. The authors partitioned the longi-
tudinal data for each persion by time interval, randomly shuffled codes within
partitions, then derived code embeddings by using each partition as an input
‘sentence’ to a skip-gram model [50]. Terminal nodes without a pretrained em-
bedding were assigned vectors drawn from a standard Gaussian distribution.

The GRU weights used Glorot uniform initialisation [51]. The GRU biases
were initialised as 1. 0 was used as the initial GRU output. The forward and
backward GRUs used for document representation both contained 50 hidden

units, meaning that
←−→
GRU(X) ∈ R100. To match this dimensionality, x̄ was

calculated using Êw ∈ R|v|×100, which was obtained from the pretrained word
embeddings Ew ∈ R|v|×200 as

Êw = tanh(EwWw + bw) (14)

where + denotes broadcasted addition, and Ww and bw are learnt jointly with
the other model parameters. Previous clinical coding studies use an equivalent
strategy for dimensionality reduction [31].

In models using z̄ to represent each label, node embeddings En ∈ RN×100

were used in order to match the dimensionality of z̄ and
←−→
GRU(X). In models

using
−−−→
GRU(Z) to represent each label, node embeddings En ∈ RN×300 were

used as dictated by the pretrained embedding size, with dimensionality reduc-

tion accomplished by the
−−−→
GRU itself.

Each model was trained over multiple epochs using the Adam method [52].
Optimizer parameters were set as suggested in [52], with the exception of the
learning rate which was increased to 0.003 based on validation fold results.
At the end each epoch, cross-entropy loss was calculated on the validation
fold. Where validation loss was lower than in all previous epochs, the model
weights were saved. If lowest validation loss failed to improve for four consec-
utive epochs, training was halted. The neural models were implemented using
TensorFlow 1.2.0 [53].

Given the distribution of HoPI document lengths, and that recurrent neural
networks require all sequences within each mini-batch to be the same length,
training times were substantially decreased by a bucketing approach. Doc-
uments were sorted in length order, then bucket boundaries were calculated
such that all but the final bucket (containing the longest documents) contained
approximately 4000 documents. Within each bucket, shorter documents were
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zero-padded to the length of the longest document. At the start of each train-
ing epoch, each bucket was populated with its documents in shuffled order, and
documents were fed to the model from a single random bucket per training step
in mini-batches of 128. Where fewer than 128 documents remained in a bucket,
these were discarded for the remainder of the epoch. A mini batch size of 128
was used as this produced optimal performance in a previous similar study [44].
To ensure consistent results during model selection and evaluation, the entire
validation and test folds were fed to the model as single batches.

At training time, 30% dropout was applied to the word embeddings, and
to the node embeddings where they were used. As proposed previously [54],
a random dropout mask was generated for each input sequence and applied
consistently at each timestep. We used l2 regularisation to avoid overfitting the

x̄-atomic and
←−→
GRU(X)-atomic models. 9 candidate values for the l2 coefficient

(0, and 8 values logarithmically spaced between 10−7 and 100) were evaluated
for each model. The l2 coefficients which minimised cross-entropy loss on the
validation fold were used in the final models.

4.3. Results

Results for prediction of the chapter (level 1), sub-chapter (level 2) and major
(level 3) labels using the separate-model strategy are shown in Tables 1, 3 and 5

. Results for prediction of the terminal labels are shown in Table 7.
←−→
GRU(X)-

atomic outperformed tfidf(d)-atomic when predicting the chapter (level 1) la-

bels. Conversely, tfidf(d)-atomic outperformed
←−→
GRU(X)-atomic when predict-

ing the terminal labels. The x̄-atomic models were not competitive. Relative to←−→
GRU(X)-atomic,

←−→
GRU(X)-

−−−→
GRU(Z) and

←−→
GRU(X)-z̄ performed similarly when

predicting the labels higher in the ICD-9-CM hierarchy, but were superior when
predicting the terminal labels. Results for two additional baseline classifiers are
included for comparison purposes. These predict the most-frequent label, and
randomly from a uniform distribution over all labels, respectively.

Results for prediction of the chapter (level 1), sub-chapter (level 2) and ma-
jor (level 3) labels using the truncated-terminal strategy are shown in Tables

2, 4 and 6. At all 3 levels, tfidf(d)-atomic and
←−→
GRU(X)-atomic performed sig-

nificantly worse than with the separate-model strategy. In contrast,
←−→
GRU(X)-−−−→

GRU(Z) and
←−→
GRU(X)-z̄ performed similarly to the separate-model strategy.

Results when using different node initialisation strategies for
←−→
GRU(X)-

−−−→
GRU(Z)

are shown in Tables 8, 9, 10 and 11 for the chapter (level 1), sub-chapter (level
2), major (level 3) and terminal labels, respectively. These results all use the
separate-model strategy. All initialisations produced roughly equivalent perfor-
mance when predicting the chapter (level 1), sub-chapter (level 2) and major
(level 3) labels. Random and pretrained initialisations were exactly equivalent
when predicting the chapter (level 1) and sub-chapter (level 2) labels, as pre-
trained embeddings were not used at these levels in either strategy. Random
initialisation outperformed pretrained-composed initialisation when predicting
the terminal labels.
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Model F1 (95% CI) Precision (95% CI) Recall (95% CI)

Random 0.081 (0.075 - 0.087) 0.189 (0.174 - 0.204) 0.060 (0.056 - 0.065)
Most-frequent 0.176 (0.168 - 0.184) 0.118 (0.112 - 0.125) 0.344 (0.335 - 0.353)
tfidf(d)-atomic 0.672 (0.662 - 0.682) 0.673 (0.660 - 0.682) 0.694 (0.685 - 0.702)
x̄-atomic 0.620 (0.610 - 0.630) 0.620 (0.609 - 0.631) 0.646 (0.637 - 0.655)←−→
GRU(X)-atomic 0.691 (0.682 - 0.700) 0.686 (0.677 - 0.696) 0.702 (0.694 - 0.711)←−→
GRU(X)-z̄ 0.691 (0.682 - 0.701) 0.692 (0.682 - 0.702) 0.705 (0.696 - 0.713)←−→
GRU(X)-

−−−→
GRU(Z) 0.688 (0.679 - 0.697) 0.684 (0.674 - 0.695) 0.701 (0.692 - 0.710)

Table 1: Main results for chapter (level 1) label prediction, using the separate-model strategy
and reporting weighted-average scores across labels.

Model F1 (95% CI) Precision (95% CI) Recall (95% CI)

Random 0.118 (0.111 - 0.124) 0.186 (0.174 - 0.198) 0.111 (0.105 - 0.117)
Most-frequent 0.176 (0.168 - 0.184) 0.118 (0.112 - 0.125) 0.344 (0.335 - 0.353)
tfidf(d)-atomic 0.638 (0.627 - 0.647) 0.664 (0.653 - 0.674) 0.650 (0.640 - 0.658)
x̄-atomic 0.611 (0.601 - 0.620) 0.632 (0.621 - 0.643) 0.617 (0.608 - 0.627)←−→
GRU(X)-atomic 0.664 (0.655 - 0.673) 0.665 (0.656 - 0.676) 0.675 (0.666 - 0.684)←−→
GRU(X)-z̄ 0.689 (0.680 - 0.698) 0.696 (0.686 - 0.706) 0.696 (0.687 - 0.705)←−→
GRU(X)-

−−−→
GRU(Z) 0.686 (0.677 - 0.695) 0.688 (0.679 - 0.698) 0.692 (0.683 - 0.700)

Table 2: Main results for chapter (level 1) label prediction, using the truncated-terminal
strategy and reporting weighted-average scores across labels.

Model F1 (95% CI) Precision (95% CI) Recall (95% CI)

Random 0.013 (0.011 - 0.016) 0.051 (0.039 - 0.064) 0.009 (0.008 - 0.011)
Most-frequent 0.032 (0.029 - 0.035) 0.018 (0.016 - 0.020) 0.134 (0.127 - 0.141)
tfidf(d)-atomic 0.537 (0.527 - 0.547) 0.536 (0.525 - 0.548) 0.562 (0.552 - 0.571)
x̄-atomic 0.447 (0.437 - 0.457) 0.455 (0.442 - 0.468) 0.490 (0.481 - 0.499)←−→
GRU(X)-atomic 0.549 (0.539 - 0.559) 0.550 (0.537 - 0.563) 0.573 (0.564 - 0.582)←−→
GRU(X)-z̄ 0.540 (0.530 - 0.550) 0.549 (0.536 - 0.561) 0.569 (0.559 - 0.578)←−→
GRU(X)-

−−−→
GRU(Z) 0.544 (0.533 - 0.553) 0.549 (0.538 - 0.561) 0.564 (0.554 - 0.573)

Table 3: Main results for sub-chapter (level 2) label prediction, using the separate-model
strategy and reporting weighted-average scores across labels.

Model F1 (95% CI) Precision (95% CI) Recall (95% CI)

Random 0.023 (0.020 - 0.027) 0.061 (0.049 - 0.073) 0.021 (0.018 - 0.023)
Most-frequent 0.032 (0.029 - 0.035) 0.018 (0.016 - 0.020) 0.134 (0.127 - 0.141)
tfidf(d)-atomic 0.490 (0.479 - 0.500) 0.518 (0.505 - 0.530) 0.519 (0.510 - 0.529)
x̄-atomic 0.425 (0.415 - 0.435) 0.445 (0.433 - 0.458) 0.462 (0.452 - 0.471)←−→
GRU(X)-atomic 0.500 (0.489 - 0.510) 0.507 (0.489 - 0.518) 0.528 (0.518 - 0.537)←−→
GRU(X)-z̄ 0.543 (0.532 - 0.552) 0.559 (0.542 - 0.570) 0.565 (0.556 - 0.575)←−→
GRU(X)-

−−−→
GRU(Z) 0.538 (0.528 - 0.548) 0.542 (0.532 - 0.554) 0.554 (0.544 - 0.563)

Table 4: Main results for sub-chapter (level 2) label prediction, using the truncated-terminal
strategy and reporting weighted-average scores across labels.
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Model F1 (95% CI) Precision (95% CI) Recall (95% CI)

Random 0.002 (0.001 - 0.003) 0.018 (0.006 - 0.037) 0.001 (0.001 - 0.002)
Most-frequent 0.009 (0.008 - 0.011) 0.005 (0.004 - 0.006) 0.071 (0.066 - 0.076)
tfidf(d)-atomic 0.409 (0.399 - 0.419) 0.410 (0.398 - 0.422) 0.454 (0.445 - 0.464)
x̄-atomic 0.322 (0.313 - 0.331) 0.326 (0.314 - 0.340) 0.371 (0.362 - 0.381)←−→
GRU(X)-atomic 0.408 (0.398 - 0.418) 0.394 (0.384 - 0.406) 0.449 (0.440 - 0.459)←−→
GRU(X)-z̄ 0.419 (0.410 - 0.429) 0.416 (0.404 - 0.427) 0.461 (0.451 - 0.470)←−→
GRU(X)-

−−−→
GRU(Z) 0.419 (0.409 - 0.429) 0.412 (0.402 - 0.425) 0.455 (0.445 - 0.464)

Table 5: Main results for major (level 3) label prediction, using the separate-model strategy
and reporting weighted-average scores across labels.

Model F1 (95% CI) Precision (95% CI) Recall (95% CI)

Random 0.006 (0.005 - 0.008) 0.023 (0.015 - 0.033) 0.005 (0.004 - 0.006)
Most-frequent 0.009 (0.008 - 0.011) 0.005 (0.004 - 0.006) 0.071 (0.066 - 0.076)
tfidf(d)-atomic 0.378 (0.368 - 0.387) 0.391 (0.376 - 0.402) 0.424 (0.414 - 0.433)
x̄-atomic 0.302 (0.293 - 0.311) 0.307 (0.296 - 0.319) 0.352 (0.343 - 0.361)←−→
GRU(X)-atomic 0.369 (0.360 - 0.379) 0.363 (0.349 - 0.374) 0.410 (0.401 - 0.419)←−→
GRU(X)-z̄ 0.416 (0.406 - 0.426) 0.421 (0.404 - 0.431) 0.454 (0.445 - 0.464)←−→
GRU(X)-

−−−→
GRU(Z) 0.411 (0.402 - 0.421) 0.405 (0.396 - 0.418) 0.442 (0.432 - 0.451)

Table 6: Main results for major (level 3) label prediction, using the truncated-terminal strategy
and reporting weighted-average scores across labels.

Model F1 (95% CI) Precision (95% CI) Recall (95% CI)

Random 0.001 (0.000 - 0.001) 0.012 (0.000 - 0.036) 0.000 (0.000 - 0.001)
Most-frequent 0.009 (0.008 - 0.010) 0.005 (0.004 - 0.005) 0.069 (0.064 - 0.074)
tfidf(d)-atomic 0.262 (0.253 - 0.270) 0.252 (0.239 - 0.261) 0.324 (0.315 - 0.333)
x̄-atomic 0.190 (0.182 - 0.198) 0.181 (0.172 - 0.192) 0.251 (0.242 - 0.259)←−→
GRU(X)-atomic 0.240 (0.232 - 0.249) 0.222 (0.215 - 0.233) 0.295 (0.287 - 0.304)←−→
GRU(X)-z̄ 0.272 (0.264 - 0.281) 0.252 (0.243 - 0.262) 0.331 (0.323 - 0.340)←−→
GRU(X)-

−−−→
GRU(Z) 0.271 (0.263 - 0.280) 0.252 (0.244 - 0.263) 0.320 (0.311 - 0.329)

Table 7: Main results for terminal label prediction, reporting weighted-average scores across
labels.

Initialisation F1 (95% CI) Precision (95% CI) Recall (95% CI)

random 0.688 (0.679 - 0.697) 0.684 (0.674 - 0.695) 0.701 (0.692 - 0.710)
random-composed 0.696 (0.687 - 0.705) 0.693 (0.684 - 0.703) 0.707 (0.699 - 0.716)
pretrained 0.688 (0.679 - 0.697) 0.684 (0.674 - 0.695) 0.701 (0.692 - 0.710)
pretrained-composed 0.687 (0.677 - 0.696) 0.684 (0.674 - 0.694) 0.703 (0.694 - 0.711)

Table 8: Results for chapter (level 1) label prediction, using different node embedding ini-

tialisations for the
←−→
GRU(X)-

−−−→
GRU(Z) model and reporting weighted-average scores across

labels.
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Initialisation F1 (95% CI) Precision (95% CI) Recall (95% CI)

random 0.544 (0.533 - 0.553) 0.549 (0.538 - 0.561) 0.564 (0.554 - 0.573)
random-composed 0.546 (0.536 - 0.556) 0.546 (0.536 - 0.558) 0.567 (0.558 - 0.577)
pretrained 0.544 (0.533 - 0.553) 0.549 (0.538 - 0.561) 0.564 (0.554 - 0.573)
pretrained-composed 0.548 (0.538 - 0.558) 0.550 (0.538 - 0.561) 0.571 (0.562 - 0.580)

Table 9: Results for sub-chapter (level 2) label prediction, using different node embedding

initialisations for the
←−→
GRU(X)-

−−−→
GRU(Z) model and reporting weighted-average scores across

labels.

Initialisation F1 (95% CI) Precision (95% CI) Recall (95% CI)

random 0.419 (0.409 - 0.429) 0.412 (0.402 - 0.425) 0.455 (0.445 - 0.464)
random-composed 0.418 (0.408 - 0.427) 0.412 (0.403 - 0.425) 0.453 (0.443 - 0.462)
pretrained 0.420 (0.411 - 0.430) 0.416 (0.403 - 0.426) 0.456 (0.446 - 0.465)
pretrained-composed 0.415 (0.406 - 0.425) 0.409 (0.399 - 0.422) 0.452 (0.442 - 0.461)

Table 10: Results for major (level 3) label prediction, using different node embedding ini-

tialisations for the
←−→
GRU(X)-

−−−→
GRU(Z) model and reporting weighted-average scores across

labels.

Initialisation F1 (95% CI) Precision (95% CI) Recall (95% CI)

random 0.271 (0.263 - 0.280) 0.252 (0.244 - 0.263) 0.320 (0.311 - 0.329)
random-composed 0.265 (0.257 - 0.274) 0.246 (0.239 - 0.257) 0.319 (0.310 - 0.328)
pretrained 0.267 (0.258 - 0.276) 0.251 (0.241 - 0.262) 0.326 (0.317 - 0.335)
pretrained-composed 0.252 (0.244 - 0.262) 0.234 (0.224 - 0.243) 0.315 (0.306 - 0.324)

Table 11: Results for terminal label prediction, using different node embedding initialisations

for the
←−→
GRU(X)-

−−−→
GRU(Z) model and reporting weighted-average scores across labels.
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5. Discussion

This study demonstrate superior performance of models using a node-path,
rather than an atomic, representation of the terminal labels. This validates
the hypothesis that exploiting hierarchically-structured medical knowledge —
in this case, the ICD-9-CM tree — to learn shared representations of ancestral
nodes produces better representations of diagnoses. We explore the reasons
for this in Section 5.3. No single document representation method produced
superior performance in all models.

5.1. Probabilistic predictions

Figure 6 shows the probability assigned to the most-probable terminal label

for each test document, as predicted by the
←−→
GRU(X)-z̄ model. The empirical

distribution of the probabilities is continuous and smooth. Labels predicted with
high confidence are likely to be correct, and labels predicted with low confidence
are likely to be incorrect. These properties correspond with human intuitions
regarding probability, and demonstrate that the probabilities predicted by the←−→
GRU(X)-z̄ model are useful in addition to its label predictions. For example,
were the model used in a clinical coding recommender system, a threshold on
the probabilities could be set to determine when codes are suggested to the end
user.

We inspected test records (10 records, 0.09%) where the terminal
←−→
GRU(X)-

z̄ model made its most-confident incorrect predictions. In 2 records, the ‘true’
label was obviously erroneous and the model had predicted the correct label.
For example, the model predicted the label ‘single liveborn, born in hospital,
delivered without mention of caesarean section’ for the HoPI containing the text

Baby. . . born. . . on the day of admission after the mother presented
there in preterm labour, which rapidly progressed to spontaneous
vaginal delivery.

The erroneous ‘true’ label was ‘single liveborn, born before admission to hospi-
tal’. This suggests that the model has potential applications as a error checker
for the work of human coders.

In 4 records, the model predicted a label which was plausible, but which
was not designated as the primary label by the human coders contributing to
MIMIC-III. For example, from a HoPI describing a patient with an intracerebral
haemorrhage, the model predicted the label ‘intracerebral haemorrhage’ rather
than the true label ‘unspecified intracranial haemorrhage’. This suggests that
some of the apparent errors made by our model are in fact due to arbitrary
labelling decisions in the setting of a degenerate ontology.

In 2 further records, the model predicted a plausible label for the HoPI
document which was contradicted by the unabridged discharge summary. For
example, the model predicted the label ‘mitral valve disorders’ for the HoPI
document containing the text
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Figure 6: Histogram of the largest predicted probability max
(
p(lterminal | h)

)
by the terminal

←−→
GRU(X)-z̄ model for each test record. Separate strata are shown for correct and incorrect
predictions.

. . . known mitral valve prolapse diagnosed. . . ten years ago. . . patient
came to preadmission testing. . . for elective mitral valve

The true label was ‘mitral valve insufficiency and aortic valve insufficiency’. This
suggests that some of the errors made by our models resulted from our dataset
adaptation process, which produced some HoPI documents which underspecify
their label.

We also inspected test records (10 records, 0.09%) where the terminal
←−→
GRU(X)-

z̄ model made its least-confident predictions. 8 records had completely uninfor-
mative HoPI documents, containing no clinical information. A low-confidence
prediction is appropriate in this context. The 2 remaining records were made
very challenging by containing important-but-rare tokens, which were treated
as out-of-vocabulary.

5.2. Document representation

The tfidf(d)-atomic models provided a competitive baseline. Manual in-
spection of predictions from these models suggests that TF-IDF succeeds by
explicitly representing keywords which are associated with a specific diagno-
sis. However, prediction errors also resulted from this keyword approach. For
example, the terminal tfidf(d)-atomic model predicts the label ‘Human immun-
odeficiency virus’ for the document containing the text

. . . past medical history significant for HIV and AIDS defining ill-
nesses including PCP in the past. . . [presented to hospital with] ab-
dominal pain and found to have elevated amylase and lipase. . .

The true label, ‘Acute pancreatitis’, which describes the reason for the pa-
tient’s current presentation to hospital, was correctly predicted by the terminal←−→
GRU(X)-atomic model.
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Representing the HoPI documents as x̄ precludes representation of keywords,
as it is unlikely that information about individual words is well preserved in
the mean word embedding of a long document. x̄ also retains some of the
disadvantages of TF-IDF, in that it fails to represent word order. It is notable

that
←−→
GRU(X) did not outperform TF-IDF in all models, especially given the

recent dominance of neural models in fields such as machine translation. This is
likely to result from the relatively-small size of our dataset, which constrains size
of parameters such as number of hidden units, limiting expressive power. Our
choice of word embeddings may have contrained the performance of the neural
models: the documents in English Wikipedia, PubMed and PubMed Central
are stylistically divergent from the text notes in MIMIC-III, and embeddings
derived from the former may require further training before application to the
latter. The long text sequences in this dataset also make neural representation
challenging; the problem of vanishing gradients necessitated using the mean
GRU output as the text representation, which is likely to smooth over some of
the discriminative features of individual outputs.

5.3. Label representation

The performance of the
←−→
GRU(X)-z̄ and

←−→
GRU(X)-

−−−→
GRU(Z) models on the

higher levels of labels in ICD-9-CM does not significantly degrade with the
truncated-terminal strategy. This suggests that these models often learn to
predict the correct ancestral node path even where they predict the incorrect
terminal label — a task which is never explicitly optimised for in the truncated-
terminal strategy. In contrast, the performance of the tfidf(d)-atomic and←−→
GRU(X)-atomic models on the higher levels of labels in ICD-9-CM does signifi-
cantly degrade with the truncated-terminal strategy. These results suggest that
our strategy for enforcing an implicit representation of the ICD-9-CM hierarchy

in our models (by of representing the labels as z̄ or
−−−→
GRU(Z)) is successful.

Figure 7 demonstrates how test-fold accuracy of the terminal
←−→
GRU(X)-

atomic and
←−→
GRU(X)-z̄ models depends on the rarity of labels during training.

Unsurprisingly, both models perform better on labels encountered frequently
during training than those encountered rarely. However, the majority of the

relative improvement in accuracy of the
←−→
GRU(X)-z̄ model versus the

←−→
GRU(X)-

atomic model is evident when testing is limited to rarer labels. This supports the

hypothesis that the shared nodal embeddings in z̄ and
−−−→
GRU(Z) allows better

representation of rare labels in particular. In intuitive terms: when a model
is shown a patient with a rare disease (e.g. pneumonia caused by an unusual
pathogen) it performs better if it can access more-general existing knowledge
(e.g. about respiratory diseases, and respiratory infections in particular) to
help make the diagnosis. Conversely, when a model is shown a patient with
a common disease it already has sufficient specific knowledge to make a good
diagnosis, so using more-general knowledge is less helpful.

The similar performance of the z̄ and the
−−−→
GRU(Z) label representations

is surprising, given that the
←−→
GRU(X) document representation easily outper-
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Figure 7: Plot a shows accuracy of the terminal
←−→
GRU(X)-atomic and

←−→
GRU(X)-z̄ models on

the test fold. Plot b shows relative accuracy of these same models, i.e. accuracy
(←−→
GRU(X)-

z̄
)
−accuracy

(←−→
GRU(X)-atomic

)
. At the left of the plots, only labels which occur rarely during

model training are used to calculate the accuracy scores. At the extreme right of the plots,
all labels in the test fold are used to calculate the accuracy scores.
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formed x̄. One possible explanation is that multiplying z̄ with a document
representation results in the mean of the per-node scores for that document.−−−→
GRU(Z) transforms its constituent node embeddings more than z̄ and so is
unlikely to preserve per-node scoring. This also suggests that, in contrast to
the tokens in a document, nodes in a path through ICD-9-CM may be com-

mutative. The combined GRUs in the
←−→
GRU(X)-

−−−→
GRU(Z) models are highly

expressive, and optimising with respect to their multiplied output may not pro-

duce stable training. Yet another, simpler explanation is that the
←−→
GRU(X)-z̄

model learnt a better node embedding matrix during training than the fixed
node embeddings provided to the other models.

5.4. Node embedding initialisation

Pretrained nodes embeddings failed to improve model performance in this
study. This may be due to the method used to train the embeddings. Whilst
temporal co-occurrence is an intuitively appealing basis for learning relation-
ships between codes in different ontologies, it is less relevant in a studies such
as ours, which use only a single ontology with a strong pre-existing structure.
Co-occurrence is certainly not a reliable indicator of similarity between dis-
eases. For example, essential hypertension and type 2 diabetes mellitus co-occur
frequently but have distinct pathophysiologies. Contrary to our results, other
studies have demonstrated that relationships learnt from co-occurrence between
codes improve performance of models which incorporate knowledge of ontology
structure [39].

5.5. Limitations of this study

A 2014 audit of 8990 patient episodes across 10 NHS trusts found a mean
error of 8.8% in manual coding of the primary diagnosis [2]. Our best results
for terminal label prediction — the equivalent task — show performance well
below this. However, it should be noted that our abridgement of each discharge
summary as described in Section 3.2 makes terminal label prediction much more
challenging, so comparison with the performance of human clinical coders on
easier datasets is not straightforward. Our modification of the discharge sum-
maries produced a new dataset, favouring code prediction rather than extrac-
tion. A corollary of working with this new dataset is that no previous results
exist for us to compare ourselves to. In addition, only a sample of the extracted
HoPI documents have been manually inspected, and the remaining records are
likely to contain some noise, e.g. very short sequences of tokens, or documents
which are irrelevant to their assigned ICD-9-CM code.

This study criticises manual clinical coding for being prone to error, but then
adopts a supervised learning approach using manually-assigned clinical codes
as the training data. It is expected that, where these errors occur randomly,
they will be ‘smoothed over’ when our models are trained on a large dataset.
Where errors occur systematically, they are likely to be reflected in the trained
models. However, systemic errors are usually confined to individual institutions,
and we hope that training on large datasets sourced from multiple institutions
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will ameliorate this problem. Some models in this study were trained using
scikit-learn 0.18.1, whilst others were trained using TensorFlow 1.2.0, which
necessitated the use of different optimisers, training schedules and objectives
during hyperparameter tuning. Unified training and tuning pipelines, using
TensorFlow 1.2.0 only, would make comparison of model performance more
straightforward.

5.6. Future work

A document representation which retains the specificity of TF-IDF and the
generalisability of word embeddings is likely to improve performance. A simple
way to achieve this is concatenation of the two representations. Given the de-
graded performance of the atomic models using the truncated-terminal strategy,
as compared to the separate-model strategy, improved terminal label prediction
may be achieved by a hierarchical ensemble of atomic models. However, our
strategy for implicit representation of the ICD-9-CM hierarchy obviates the
need for this. It would be instructive to train our existing model architectures
on a novel dataset and compare performance to that reported here. The pos-
sibility of knowledge transfer between datasets has been demonstrated in other
clinical coding studies [31], and merits further exploration.

We aim to release our modification of the MIMIC-III dataset to the wider re-
search community, in order to encourage progress on tasks which predict clinical
codes from clinical text. Further curation of the modified dataset is necessary
prior to release, and section 5.1 demonstrates that high- and low-confidence
predictions by our models could be used to partially automate this process, by
identifying noise in the labels and HoPI documents.

Purely data-driven approaches to clinical coding, and more broadly to clin-
ical diagnosis, are hindered by the large number of rare diseases. ‘One-shot’
learning techniques are likely to improve performance in rare disease classifi-
cation, but are unlikely to capture exhaustive representations of diseases with
protean manifestations, or diseases which present differently in different patient
populations. A large body of existing knowledge is contained within medi-
cal education and research literature. Furthermore, the extent of the knowl-
edge about a particular disease need not correspond to that disease’s incidence.
For instance, a single-gene disease may be rare in humans, yet extremely well-
characterised by study of genetic model organisms in the laboratory [55].

Incorporating existing knowledge from scientific papers and textbooks offers
a potential solution to the problem of rare diseases. This motivates development
of novel natural language processing techniques to automate knowledge extrac-
tion from these. Defining an objective function that captures the essence of this
knowledge-extraction task is challenging. Another important focus for future
work is integration of prior knowledge into models in a manner that properly
accounts for the strength of evidence this knowledge provides, which depends
on the study methodologies used.
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5.7. Conclusion

This study demonstrates that hierarchically-structured medical knowledge
can be incorporated into statistical models, and produces improved performance
during automated clinical coding. This performance improvement results pri-
marily from improved representation of rarer diseases. We also show that recur-
rent neural networks improve representation of medical text in some settings.
Learning good representations of the very rare diseases in clinical coding ontolo-
gies from data alone remains challenging, and alternative means of representing
these diseases will form a major focus of future work on automated clinical
coding.
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Summary table

What was already known about this topic

• Manual clinical coding is expensive, time-consuming and prone to error

• Automated clinical coding has great potential to save resources, improve
oversight of patient care and accelerate research

• Automated coding is made challenging by rare diseases and the idiosyn-
crasies of clinical text

What this study added to our knowledge

• Hierarchically-structured medical knowledge can be incorporated into sta-
tistical models

• Hierarchical representation of diseases improves automated clinical coding,
primarily by improving representation of rare diseases

• Recurrent neural networks improve clinical text representation in some
settings
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