
Simulating Airline Behavior: An Application for the1

Australian Domestic Market2

3

November 15, 20184

Khan Doyme1 (corresponding author)5

Email: k.doyme@ucl.ac.uk6

7

8

Lynnette Dray1
9

Email: L.dray@ucl.ac.uk10

11

12

Aidan O’Sullivan1
13

Email: aidan.osullivan@ucl.ac.uk14

15

16

Andreas Schäfer117
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Abstract1

2

In this paper we demonstrate the ability of a model, which simulates competition between air-3

lines in a domestic aviation market, to accurately reproduce real world behaviour. The Australian4

market was chosen as a test case as it is a geographically isolated region with significant demand5

and complexity, including one of the busiest routes in the world, where connecting international6

passengers do not significantly skew the market. The model is based on an n-player noncooperative7

game, where each airline represents a player within the game. The primary assumption is that each8

airline attempts to maximise profits by adjusting the decision variables of airfares, flight frequency9

and choice of aircraft on routes within its network. The approach works iteratively, allowing each10

airline to respond to the decisions made by other airlines during each successive optimisation. The11

model is said to reach convergence when there is no significant change in any airline’s profit from12

one iteration to the next. Once this occurs, the predictions of each airline’s decision variables can13

be compared to real data. The model gives highly detailed predictions of airline specific airfares,14

flight frequencies on segments, passenger flows and airline market share, which strongly correlate15

with observed values.16

17

18

Keywords: modelling aviation market, airline competition, airline behaviour, market optimiza-19

tion.20
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Introduction1

2

The demand for air passenger travel is forecast to grow strongly over the next twenty years,3

with global revenue passenger-km (RPK) predicted to increase year on year at a rate of 4.4-4.7%4

[1, 2]. This will result in a doubling of RPK within 15 years. Whilst there are positive outcomes5

associated with this, such as enhanced economic growth and social connectivity [3], the growth6

in aviation also generates challenges. For example, it will place significant pressure on existing7

infrastructure, particularly airports, to meet this demand. According to the Boeing Global Airport8

Congestion Study, 15 major airports in the world operated at levels greater than 95% of capacity9

in 2013, a number that is expected to increase to 48 airports by 2023 [4]. As a result, airport10

capacity expansion programs currently exceed half a trillion USD [5] and are large in scale and11

often controversial. The climate impacts of aviation are another significant concern which needs12

to be addressed, as the sector already produces around 2.5% of all energy-related CO2 emissions13

[6]. To mitigate climate impacts, new disruptive technologies (such as hybrid-electric and electric14

aircraft [7]) and policy measures (such as carbon taxes and offsetting schemes [8, 9]) are being15

developed. In order to fully understand the impacts of decisions made to address the challenges16

described above, we require a model capable of reproducing the observed market characteristics.17

Such a model could inform decision makers about the impacts of different scenarios: for example,18

how the expansion of capacity at one airport might have knock on impacts for other airports.19

Airlines are key decision makers in this system and the competition between them is a significant20

determinant of airfares and itinerary frequency, which in turn affects demand. For this reason21

several studies have modelled aviation markets by attempting to capture airline competition and22

behaviour, using a number of approaches discussed below.23

In one of the first airline competition studies, with profit as the objective function, Hansen24

solved a model with flight frequency as the decision variable for a network of 52 U.S. airports25

and 28 airlines [10]. There have been many other frequency competition studies since. Wei and26

Hansen have examined how airlines make decisions on aircraft size, as well as service frequency,27

within a competitive environment [11]. Evans used frequency competition models to analyse flight28

routing network structure [12], and the implications of capacity constraints on the US market29

[13]. Whilst investigating airport capacity and congestion, Vaze and Barnhart found reasonable30

agreement between observed frequencies and the equilibrium predictions from their frequency31

competition model [14]. However, common to all the studies mentioned, these models cannot32

determine the effects of competition on airfares.33

Others have extended competition models to include both frequency and airfare as decision34

variables, including single-stage approaches as well as two-stage frequency-fare models. Dobson35

and Lederer studied the competitive choice of flight schedules and route prices by airlines operat-36

ing in a single hub system. Utilizing a sub-game perfect Nash equilibrium for a two-stage game,37

with simplifications including single aircraft size and identical hub networks for competitors, they38

found equilibria in a five-node network [15]. Adler developed a model framework to identify the39

most profitable hub-spoke networks, with the aim of classifying airports most likely to remain40

major hubs in Western Europe [16]. Brueckner has compared the properties of single-stage and41

two-stage frequency-fare games [17], and solved a simplified model of a single-stage game with42

frequency, seats and airfares as decision variables [18]. Adler, Pels and Nash created a frequency,43

seats and fares model with a view to performing cost-benefit analysis of different transport in-44

vestment options [19], whilst Hansen and Liu set up a frequency-fare competition model in order45
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to understand the effect of using different market share functions [20]. However, none of these1

studies were validated against a real market.2

The objective of this paper is to incorporate air passenger demand and choice modelling within3

a frequency-airfare competition model, and to validate this model’s output against data from the4

Australian market. To do so, we will compare predicted passenger numbers, flight frequency and5

airfares—for each segment of the market—against observed values. The approach used will be an6

extension of the frequency competition framework previously developed by Evans [12, 13].7

8

Model Approach9

10

The passenger aviation industry is modelled as an n-player, noncooperative, game. Each airline11

represents a player within the game. The primary assumption is that each airline attempts to12

maximise profits by adjusting the decision variables of airfares, flight frequency and choice of13

aircraft on routes within its network. We attempt to find the equilibrium points of this model,14

which can be compared to observed data.15

The annual profit, PA, of an airline, A, is defined by a revenue term, two cost terms, and an16

ancillary revenue term:17

PA =
∑
i∈ITNA

farei.paxi −
∑

j∈SEGA

∑
a∈CRFTj

opcosta,j.freqa,j

−
∑

j∈SEGA

∑
a∈CRFTj

paxcosta,j.paxa,j + arevA.paxA.
(1)

The revenue term consists of the product of the number of passengers per annum, paxi, that travel18

on itinerary i multiplied by the average airfare charged for itinerary i, summed over the set of19

itineraries, ITNA, offered by airline A. The first cost term represents flight-specific operating20

costs, defined by the product of the operating cost, opcosta,j , over a flight on segment j using21

aircraft type a and the number of flights per annum, freqa,j , on segment j using aircraft type22

a, summed over all segments, SEGA, operated by airline A. The second cost term reflects the23

passenger related operating costs, given by the product of the additional cost of carrying a single24

passenger, paxcosta,j , on segment j using aircraft a, multiplied by the number of passengers per25

annum, paxa,j , carried on segment j using aircraft a. The last term corresponds to an additional26

income stream through ancillary revenue per passenger, arevA, that airlines generate from related27

commercial activity (frequent flyer programs, advertising etc.), multiplied by the total number of28

passengers per annum, paxA, carried by airline A. Itineraries can consist of one segment (a direct29

itinerary), or multiple segments (an indirect itinerary). Equation 1 defines the objective function30

that each airline attempts to maximise.31

The specific decision variables for each airline are the itinerary fares (farei), the number of32

passengers on each itinerary (paxi), and the flight frequency by aircraft type on each network33

segment (freqa,j). The airlines are not free to choose any values for the decision variables; the34

model must have restrictions that reflect real limits on their operations. To capture this, we impose35

constraints.36

The first constraint ensures that the number of passengers on any given airline segment is less37

than or equal to the number of available seats:38
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paxa,j ≤
∑

a∈CRFTj

seatsa.freqa,j ∀j ∈ SEGA, (2)

where seatsa is the number of commercial seats on aircraft type a.1

The passengers on a segment must be related to the passengers on the itineraries which use a2

given segment. This is captured by the following identity:3

∑
a∈CRFTj

paxa,j =
∑

i∈ITNj,A

paxi ∀j ∈ SEGA, (3)

where ITNj,A is the set of itineraries, offered by airline A, that use j as one of their segments.4

The number of flights that an airline can operate is limited by their fleet of available aircraft.5

For each airline, A, and aircraft type, a, we have the constraint:6

∑
j∈SEGA

freqa,j.(timej + grounda) ≤ (365× 24).f leeta,A (4)

where timej is the flight time (in hours) of segment j, grounda is the average number of hours7

aircraft a spends on the ground per flight cycle, and fleeta,A is the number of aircraft of type a8

available to airline A.9

The number of flights into and out of an airport must be restricted by the airport capacity. This10

is accounted for by using the inequality:11

∑
j∈SEGp

∑
a∈CRFTj

freqa,j ≤ maxp ∀p ∈ APT, (5)

where APT is the set of all airports, SEGp is the set of all airline segments in the network that have12

airport p as an origin or destination, and maxp is the maximum number of aircraft movements13

per year at airport p. This is the first inequality that includes decision variables (segment flight14

frequencies) from multiple airlines. Through this inequality, the behaviour of one airline can now15

alter and constrain the decisions made by another.16

The next constraint restricts the number of passengers on any given itinerary to be less than the17

itinerary’s market share of overall passenger demand between the origin and destination:18

paxi ≤ MSi.Di ∀i ∈ ITNA, (6)

where MSi is the market share of itinerary i, and Di is the annual passenger demand between the19

origin and destination of itinerary i.20

The form of the passenger demand function, Di, for air travel between an itinerary’s origin, oi,21

and destination, di, is22

Di = eη(PoiPdi)
α(IoiIdi)

β ¯fare
γ
oi,di

¯time
δ
oi,di

driveεoi,die
(ζ.specialoi,di ) (7)
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where Poi is the population within the greater metropolitan area of the origin oi of itinerary i, Pdi1

is the population within the greater metropolitan area of the destination di of itinerary i, Ioi and Idi2

are the household incomes per capita for the origin and destination areas respectively, ¯fareoi,di is3

the average fare paid by passengers on itineraries between the origin and destination, ¯timeoi,di is4

the average flight time, driveoi,di is the journey time by car from origin to destination, specialoi,di5

is a binary variable indicating whether both origin and destination cities are special (capital cities,6

major business or tourist destinations etc.) and η is a constant. This is an example of a gravity7

model, which is often used in air transport studies to model passenger demand [21, 22, 23]. The8

coefficients, α-η, are determined using linear regression.9

The market share of an itinerary, MSi, is predicted using a multinomial logit (MNL) model.10

Between any two metropolitan areas, passengers have a choice of which airport to depart from and11

arrive at, which airline to fly with, and which route (direct, indirect etc) to take. The market share12

function allocates passengers to each itinerary option based on the utility it provides. This method13

has been applied extensively within aviation research in order to model passenger decisions and14

choice [24, 25, 26, 27]. The market share for each itinerary, i, is15

MSi =
eUi∑

j∈ITNoidi

eUj
, (8)

where ITNoidi is the set of all itineraries with origin, oi and destination, di. The utility, Ui, is16

Ui = θ.farei + κ.timei + λ.ln(freqi) + µ.nsegi + ffxA,i, (9)

where farei is the airfare of itinerary, i; timei is the journey time from origin to destination17

airport of itinerary i; freqi is frequency of itinerary i; nsegi is the number of segments the make18

up itinerary i; ffxAi
is a constant whose value is dependent only on the airline, Ai, operating the19

itinerary i. The coefficients, θ-µ, and fixed effect constants, ffxA, are found by taking the logarithm20

of the ratios of itinerary market share and using OLS regression on the resultant linear equation21

[10, 27].22

The frequency of an itinerary, freqi, used in equation 9, is yet to be defined. It will depend on23

the flight frequency between each of the itinerary’s segments:24

freqi = min{freqj; j ∈ SEGi,Ai
} ∀i ∈ ITNA, (10)

where SEGi,A is the set of segments that constitute itinerary i of airline Ai, and freqj is the total25

flight frequency on segment j (freqj =
∑

a freqa,j).26

Given the non-linear objective function (equation 1) and constraints (in particular equation27

6), determining the globally optimum equilibrium for large networks and multiple competitors is28

challenging. Even the existence of such an equilibrium is not guaranteed, as the market share29

function can mean an airline’s strategy set is non-convex [28]. We circumvent these difficulties by30

linearising the objective function and constraints with respect to the decision variables, and then31

searching for an increase in the profit near some starting point. For example, given some initial state32
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of the airline’s decision variable’s, {farei,0, paxi,0, freqa,j,0|i ∈ ITNA, j ∈ SEGA, a ∈ CRFTA},1

the linearised form of the profit function about this point is:2

PA ≈
∑
i∈ITNA

farei,0.paxi +
∑
i∈ITNA

farei.paxi,0 −
∑
i∈ITNA

farei,0.paxi,0

−
∑

j∈SEGA

∑
a∈CRFTj

opcosta,j.freqa,j −
∑

j∈SEGA

∑
a∈CRFTj

paxcosta,j.paxa,j

+arevA.paxA.

(11)

The constraints are similarly linearised. The linearised form of the equations are only applica-3

ble in the neighbourhood of the initial starting point of the decision variables. We therefore add4

constraints which restrict the amount that the decision variables can be changed:5

farei,0 −∆fare ≤farei ≤ farei,0 + ∆fare,

paxi,0 −∆pax ≤paxi ≤ paxi,0 + ∆pax,

freqj,0 −∆freq ≤freqj ≤ freqj,0 + ∆freq, ∀i, j.
(12)

The constants ∆freq, ∆pax and ∆fare are chosen to be small enough such that the linear approx-6

imation captures the correct behaviour of the non-linear model for the entire range of allowed7

values.8

Each airline is now given the opportunity to maximise its profit function, equation 11, by chang-9

ing their decision variables within the constraints of equations 2, 3, 4, 5, 6, 10 and 12. Due to the10

linearised objective function and constraints, this is straightforward to solve using a linear program-11

ming algorithm, such as IBM CPLEX. After this is performed, each airline will have a new set of12

values for their decision variables, {farei,1, paxi,1, freqa,j,1|i ∈ ITNA, j ∈ SEGA, a ∈ CRFTA}.13

There is no guarantee that these new values truly maximise each airline’s profit, because the extent14

to which the decision variables could be changed was capped in equation 12. However, the values15

for the decision variables can be used as a new starting point, and the process iterated. A ‘quasi-16

equilibrium’[10] is reached when, from iteration to iteration, the profit for each airline ceases to17

change significantly. When this occurs, the resulting revenue per passenger, flight frequencies and18

passenger numbers for each segment in an airline’s network are obtained as the model’s predic-19

tions.20

21

Data22

23

Information on itinerary passenger numbers, airfare, frequency of service and journey time24

for the 2014 Australia market was obtained from the Sabre Market Intelligence dataset [29]. An25

example of the data, for one itinerary, is given in table 1. We consider only direct and one-stop26

itineraries, as this simplifies the model. Passengers traveling on itineraries with more than one stop27

represent less than 1% of the Australia market.28

Airport landing charges, passenger fees and en-route charges were obtained from the RDC29

database [30]. These feed into the passenger cost, paxcosta,j , and flight operating cost, opcosta,j .30

Airport passenger numbers were calculated from the Sabre data. Movement capacity was inferred31
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Table 1: Example of itinerary data obtained from Sabre and used within the model, for a direct
Qantas itinerary from Melbourne International to Sydney airport.

Airline Origin Connecting Destination Avg. airfare Passengers Frequency Journey time
Airport Airport Airport (USD) p.a. of Service p.a. (minutes)

QF MEL - SYD $183.56 1632758 10734 90

from the number, type and layout of runways. Each airport is assigned to a metropolitan area,1

indicated by an area code, and it is possible for multiple airports to be within the same metropolitan2

area. An example of the data for each airport is given in table 2.3

Table 2: Example of airport data used within the model, specifically of Melbourne International
airport.

IATA Met. Latitude Longitude Departing Max. Movements Pax. charge Landing Charge (USD) for aircraft
Code Area Code Passengers per Hour (USD) of size class 0;1;2;3;4;5;6;7;8
MEL 67 -37.66 144.83 16870988 53 16.05 133.66;210.26;384.47;476.23;618.48;

1780.78;2013.06;2709.88;3697.05

Household income and population statistics for each metropolitan area associated with an air-4

port were obtained from the Australian Bureau of Statistics [31]. Together with the metropolitan5

area’s special status, this forms the data required for each airport’s location in Australia. Only6

Sydney and Melbourne have special status. The metropolitan area of Melbourne is given as an7

example in table 3. Data on the drive time between airports was collected from the Google Maps8

API [32].9

Table 3: Example of data on the metropolitan areas to which airports are allocated.

Metropolitan Area Name Area Code Population Household Income per Capita (USD) Special Status
Melbourne 67 4665904 31100 True

Using the information on population and income statistics, itinerary data and drive time it was10

possible to estimate the coefficients of the demand model (equation 7) for the Australia market.11

The same data, together with itinerary frequency and number of segments, was used to estimate the12

coefficients of the market share model (equations 8 and 9). Results are given in table 4. However,13

the coefficient for airfares, θ, within the market share function is determined to be insignificant.14

This implies that airfare is correlated with the other market share parameters, and its effects difficult15

to determine via linear regression. The coefficient was instead obtained by selecting the value16

which reduced the error between the overall model’s predicted airfares and the observed data.17

Using this approach, a value of θ = −0.01 was found to most accurately reproduce airfares.18

There are four main airline brands that operate in the Australian domestic market: Qantas (QF),19

Virgin Australia (VA), Jetstar (JQ) and Tigerair Australia (TT). Determining their behaviour is the20

focus and scope of this work. The fleet of aircraft available to each airline was determined using the21
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Table 4: The coefficients of the passenger demand (equation 7) and market share models (equation
8), determined using linear regression. Demand: R2 = 0.82, no. of observations = 436. Market
share: R2 = 0.85, no. of observations= 508.

Coefficient Estimate p-value
α 0.54 0
β 0.96 1.1× 10−5

γ -0.49 3.6× 10−3

δ -2.92 0
ε 1.82 0
ζ 0.87 2.7× 10−4

η -18.01 6.4× 10−6

θ -0.00015 0.87
κ -0.00885 4.6× 10−13

λ 0.841 0
µ -1.672 7.9× 10−11

ffxQantas -0.2912 2.0× 10−6

ffxVirgin -0.2975 1.29× 10−11

ffxJetstar -0.5365 2.4× 10−12

ffxTigerair -0.3676 9.2× 10−3

FlightGlobal fleet database [33] and the Australian Civil Aviation Safety Authority aircraft register1

[34]. Based primarily on seat numbers, each aircraft was assigned to one of nine size classes. A2

stereotypical aircraft within each class, together with the seat numbers of that class size, is given3

in table 5. The number of aircraft within each airline’s fleet is also given in table 5.4

Table 5: Examples of a typical aircraft for each size class within the model, together with seat
range for the size class. The number aircraft within each airline’s fleet is also given.

Qantas Jetstar Virgin Tigerair
Size Class Typical Example Aircraft Number of Seats no. in fleet no. in fleet no. in fleet no. in fleet

Class0 Bombardier DASH Q300 30–75 28 0 14 0
Class1 Embraer E190 76–112 17 0 14 0
Class2 Airbus A319 113–144 0 0 2 0
Class3 Airbus A320 145–164 0 0 0 0
Class4 Boeing 737-800 165–210 76 53 75 18
Class5 Boeing 787 211–255 1 19 0 0
Class6 Airbus A330 256–294 28 0 6 0
Class7 Boeing 777 295–403 10 0 5 0
Class8 Airbus A380 404–550 12 0 0 0

Operating costs on each segment, and for each size class, were calculated using the properties5

of a typical aircraft within each class. For the non-fuel components, such as staff salaries and6

maintenance, a model previously developed with U.S. form 41 data was used [35]. Fuel burn for7

each size class, on each route, was derived using Piano-X software [36] and used to calculate fuel8

costs. Together with airport fees and en-route costs, this provides all inputs needed to determine9
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opcosta,j and paxcosta,j for each segment and aircraft type.1

Ancilliary revenue per passenger, arevA, was estimated by obtaining the total ancilliary rev-2

enue from company reports [37, 38] and dividing this by the total number of passengers per annum.3

It is found to be approximately $40 (USD) per passenger in the Australia market, for both Qantas4

and Virgin groups, and is derived primarily from frequent flyer membership schemes.5

6

Validation and Results7

8

The model was validated against the 2014 Australian domestic market. Australia was chosen9

as it is relatively isolated geographically, and interference from the international aviation market10

is therefore minimal. It has a large domestic market, with around 40 million passengers per year11

served by the four main airline brands. Figure 1 displays the Australian aviation network. Each12

line represents a segment, with the thickness of the line proportional to the number of passengers13

carried on that segment per year. The model contains all metropolitan areas served by an airport14

with more than 5000 departures per year (14 per day). All airports and segments considered within15

the model are shown in figure 1. This captures 95% of the Australian domestic market by RPK.16

ADL

AVV

BNE

CBR

CNS

DRW

HBA
LST

MEBMEL

MKY

NTL

OOL

PER

ROK

SYD

TSV

 

Figure 1: A representation of the Australian domestic aviation network. Each line is a segment
operated by one (or more) of the major airlines. The thickness of each line is proportional to
annual passenger traffic.

We compared predicted and actual segment flight frequency, airfares, and passenger numbers—17

on each network segment and for each airline—for the year 2014. Results for these comparisons,18

together with the coefficient of determination (R2), can be found in Figures 2, 3 and 4 respectively.19

The predicted and observed flight frequencies at the individual segment level show strong20

agreement, with R2 = 0.75. The total number of flights predicted by the model was 381,000,21
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Figure 2: The actual vs. predicted annual flight
frequency, for every airline’s segments within
the Australia market in 2014.
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Figure 3: The actual vs. predicted average air-
fares, for every airline’s segments within the
Australia market in 2014.
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Figure 4: The actual vs. predicted annual pas-
senger numbers, for every airline’s segments
within the Australia market in 2014.

which is remarkably close to the actual number of 379,000. With the number of flights driving1

the total carbon emissions, the ability to accurately reproduce this characteristic is a significant2

feature of the model. At the city level, looking at annual departures (see table 6), 10 of the 153

locations have predicted flight departure numbers within 25% of the recorded value. For the four4

largest areas by population (Melbourne, Sydney, Brisbane and Perth) the model has an error of5

less than 10%. This demonstrates the model’s ability to predict the capacity requirements of large6

airports, and determine where constraints are likely to be encountered. Additionally, these outputs7

allow for the local air quality impacts of future growth in the market to be assessed. Whilst the8

percentage error in predicted departures appears to increase for airports with fewer flights, this is9

a consequence of absolute error in the model remaining relatively constant with respect to overall10

airport traffic. It suggests the model could be useful especially for large airport, market-wide and11

macro policy simulation, but not as reliable for specific micro-level operational decisions.12

The average airfare given by the model, over the whole network, is $191 (USD). This compares13

well with the average airfare of $185 (USD), calculated directly from the Sabre dataset. The mean14
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Table 6: Model predictions for the annual number of departing flights from each location within
the Australia market.

Dep. flights Dep. flights
Location model estimate actual number Percentage Error
Sydney 86336 83576 3%

Melbourne 85096 81723 4%
Brisbane 67745 62111 9%

Perth 16944 17020 0.5%
Adelaide 29053 24436 19%
Cairns 12518 16836 26%
Bilinga 14322 17934 20%

Canberra 20738 20152 3%
Darwin 8215 6749 22%

Townsville 8837 12215 28%
Hobart 10831 8192 32%
Mackay 5011 9507 47%

Launceston 5895 5733 3%
Newcastle 4432 5525 20%

Rockhampton 4704 6969 32%

absolute percentage error for the airfare predictions is 30%. These results suggest the model is1

accurately capturing operating cost and airfare competition effects; alongside demand, they are the2

primary determinants of airfares on a route.3

The model estimates total passenger numbers of 50 million per year across the whole network,4

compared to the actual figure of 41 million. Considering that the model has fares that are slightly5

high on average, which should result in an under-prediction, this suggests that the demand model6

is over-predicting passenger flows. This can be corrected by adjusting the coefficient η within the7

demand model. Nevertheless, with a coefficient of determination of 0.71 for the model, passenger8

predictions across the network are highly correlated with the actual observed passenger flows.9

As the model has the resolution to give predictions by airline, it is possible to work out market10

share. For example, on the route between Melbourne and Sydney, by far the busiest in the market,11

the model predicts market share by flight frequency as follows: Qantas-39%,Virgin-32%,Jetstar-12

19%,Tigerair-10%. This can be compared to market share obtained from real data: Qantas-40%,13

Virgin-34%, Jetstar-16%, Tigerair-10%. This agreement between model and reality extends to the14

whole market in general. Over the entire aviation network, the model predicts the percentage of all15

flights by airline as: Qantas-41%, Virgin-35%, Jetstar-17%, Tigerair-7%. The Sabre data gives the16

actual market share as: Qantas-40%, Virgin-33%, Jetstar-21%, Tigerair-6%.17

18

Conclusions19

20

A model which simulates competition between airlines has been described in detail and vali-21

dated using data from the domestic Australian market in 2014. The performance of the model has22

been assessed by its ability to accurately reproduce passenger flows, airfares and flight frequency23

on all segments of each airline’s network. In our comparison and validation we found strong cor-24

relation between modelled and observed data, and obtain R2 values above 0.7 for all key variables.25

This is impressive, given the complexity of the model, as other models have a lower R2 when pre-26
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dicting passenger flows alone [39]. At the city level, there is good agreement between observed and1

estimated aircraft departures. This is particularly true for the larger city airports, where predicted2

departure numbers have an error of less than 10%. Predictions of the airline’s average airfare and3

market share are also consistent with the data.4

The validation of the model is an important step in demonstrating it’s potential use as a simula-5

tion tool for addressing the problems faced by the aviation industry discussed in the introduction.6

For example, the ability to accurately determine the total flight departures at a city level allows air-7

port capacity requirements to be forecast, and potential constraints identified as the market grows.8

This gives the ability to make emissions predictions based on the model outputs, not just at the9

overall market level but at a city and airport level, allowing for local air quality and noise impact10

assessments of individual airports and how these could change under proposed expansion projects.11

Alongside airport capacity, the landing charges and passenger fees that are input into the model12

can be adjusted, and the resulting changes to the system will be predicted. The model therefore13

has the potential to be an informative and useful planning tool for airport authorities.14

Airlines are key stakeholders in the aviation system, and the competition between them has15

a significant impact in determining the market. However they are also subject to regulation and16

oversight. Mechanisms exist to encourage behaviour that governments wish to incentivise. For17

example, the EU’s Carbon Offsetting and Reduction Scheme for International Aviation (CORSIA)18

attempts to influence airlines to reduce their emissions. The design of such schemes is challenging19

as airlines operate with tight margins, and there are numerous examples throughout history of20

airlines going bust. Clearly a balance must be struck between incentivising desired outcomes and21

excessive penalisation of specific airlines. The model’s ability to accurately predict airfares and22

route market share at the airline level demonstrates its capability as a powerful tool for assessing23

the impact of such measures on individual airlines and passengers. There is also the opportunity to24

simulate the impact of mergers or new entrants on a market and how this could affect airfares and25

market share.26

Finally, the model also determines which aircraft type is utilised on which route. This gives27

it the ability to simulate the impacts of new technologies (such as next generation aircraft, and28

even hybrid-electric aircraft) as they become available. In turn, we can predict which routes will29

adopt the technology first, together with the impact on airlines, passenger demand, airfares and30

emissions.31

Whilst this paper has focused on the Australian domestic market, and demonstrated the validity32

of the model in reproducing real world behaviour, future work will involve expanding the coverage33

to incorporate larger and more complex regions such as North America and Europe.34
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This work was funded through a grant from the Engineering and Physical Sciences Research1

Council (ref:EP/M027031/1). Their support is gratefully acknowledged.2



Doyme, Dray, O’Sullivan, Schäfer 15
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