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Abstract ─ The Bayesian compressive sensing algorithm 

is utilized together with the method of moments to  

fast analyze the monostatic electromagnetic scattering 

problem. Different from the traditional compressive 

sensing based fast monostatic scattering analysis method 

which cannot determine the required measurement times, 

the proposed method adopts the Bayesian framework  

to recover the underlying signal. Error bars of the signal 

can be obtained in the recovery procedure, which 

provides a means to adaptively determine the number of 

compressive-sensing measurements. Numerical results 

are given to demonstrate the accuracy and effectiveness 

of proposed method. 

 

Index Terms ─ Bayesian compressive sensing, method 

of moments, monostatic, scattering. 

 

I. INTRODUCTION 
Electromagnetic scattering simulation has been 

widely applied to the area of non-cooperative radar target 

identification and radar imaging to get the echo signal  

of radar target without measurement. Among various 

electromagnetic scattering analysis methods, the method 

of moments (MoM) has drawn great interests in the  

past several decades [1-3]. The MoM is particularly 

advantageous for the analysis of exterior open-region 

scattering problems duo to its inherent capability for 

simulating unbounded domains. 

When utilizing MoM to acquire echo signals from  

a large amount of aspect angles, one has to run the 

simulation code equal times with the number of aspect 

angles to obtain all the echo signals. For instance, to 

obtain the inverse synthetic aperture radar (ISAR) image 

of the B2 model as shown in Fig. 1, one has to get the 

wideband scattered field data from 720 aspect angles of 

the model. Actually, it takes much time to analyze the 

electrically large objects only once, let alone many times. 

So there is an urgent demand to accelerate the simulation 

process of monostatic scattering. 

 

 
 

Fig. 1. Inverse synthetic aperture radar (ISAR) image of 

the B2 model based on the wideband scattered field data 

from 720 aspect angles of the target.  

 

Two kinds of effort have been done to achieve this 

goal. One is to speed up the single simulation by using 

fast algorithms to accelerate the method of moments. 

The existing fast algorithms can mainly be classified into 

three categories: fast multipole method (FMM) [4-6], 

FFT-based methods [7-9], and low rank matrix based 

methods [10-12]. The alternative way is to reduce the 

total number of simulations using algorithms like 

asymptotic waveform evaluation (AWE) [13, 14], model-

based parameter estimation (MBPE) [15], excitation 

matrix compression methods [16, 17], etc. But these 

algorithms show some shortcomings. For AWE and 

MBPE, a multi-point expansion or interpolation is 

needed for wide-angle problems. The major technical 

challenge is to adaptively choose the expansion points or 

interpolation points. The excitation matrix compression 

methods compress the excitation matrix and remove 

redundancies in the initial excitation assembly. The 

considered full right-hand-side (RHS) matrix has to be 

stored explicitly. Moreover, a SVD-based compression 

is restricted to comparatively small matrices due to the 

high computational complexity. 

Cross-range (m)

R
e
la

ti
v

e
 r

a
n

g
e
 (

m
)

-1.5 -1 -0.5 0 0.5 1 1.5

-1.5

-1

-0.5

0

0.5

1

1.5

ACES JOURNAL, Vol. 31, No.11, November 2016

Submitted On: June 30, 2016 
Accepted On: September 11, 2016 1054-4887 © ACES 

1279



Compressive sensing (CS) is a rapidly emerging 

signal processing technique and has already been applied 

to electromagnetics [18-20]. A CS based method is 

proposed in [20] for fast analysis of wide-angle 

monostatic scattering problems, which falls into the 

second category fast algorithm described above. This 

method uses CS to construct a new set of right-hand-side 

vectors for MoM, where the number of constructed right-

hand-side vectors is much less than the original ones. But 

it is found that orthogonal matching pursuit (OMP) 

algorithm [21] is adopted to solve the CS optimization 

problem and the number of measurement cannot be 

determined adaptively, just like that the number of 

expansion or interpolation points is unknown in [13-15]. 

This sets up a limit for the practical applications of this 

technique. 

Recently, more and more researchers focus on the 

study of Bayesian compressive sensing (BCS) method 

[22-25], which adopts the Bayesian framework to 

recover the underlying signals. Error bars of the signal 

can be obtained in the recovery procedure, leading to an 

effective strategy for adaptively determining the number 

of compressive-sensing measurements. The BCS method 

is used for coherent fusion of multi-band radar data from 

multiple spatially collocated radars in [24]. In [25], the 

BCS method is applied for estimation of the directions 

of arrival (DoAs) of narrow-band signals impinging on a 

linear antenna array. In this paper, we utilize the BCS for 

fast monostatic scattering calculation. Numerical results 

show the proposed method can determine the number  

of compressive-sensing measurements in an adaptive 

manner. 

The rest of this paper is organized as follows. 

Section II describes the detailed theory and formulation 

of the proposed Bayesian compressive sensing based  

fast monostatic scattering analysis method. Section III 

demonstrates the accuracy and effectiveness of the 

proposed method through several numerical results. 

Section IV presents our conclusions. 
 

II. THEORY AND FORMULATION 

A. Review of MoM for electromagnetic scattering 

problems 

For the analysis of electromagnetic scattering from 

perfect electrical conductor (PEC), the Maxwell’s 

equations can be recast in the form of surface integral 

equations, including electric field integral equation 

(EFIE), magnetic field integral equation (MFIE) and 

combined field integral equations (CFIE). Take the 

following EFIE as an example: 
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Here, ( , )G r r  refers to the Green’s function in free  

space. r and r′ denote the observation and source point 

locations.  i
E r  is the incident excitation plane wave. 

  and   are the permittivity and permeability, 

respectively.   is the angular frequency. ( )sJ r  is the 

unknown surface current. t̂  refers to the tangential 

direction of the surface. 

Equation (1) can be discretized by using MoM with 

planar Rao-Wilton-Glisson (RWG) basis functions [26]. 

The linear system of equations after Galerkin’s testing is 

briefly outlined as follows: 
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Here, 
nI  represents the unknown current coefficients. 

Equation (2) can be written as: 

    = , ZI V  (5) 

where Z is the impedance matrix with its elements given 

in (3),  V  is the right-hand-side vector related to the 

(4),  I  is a vector containing the unknown current 

coefficients. Both the right-hand-side vector and the 

unknown current coefficients will change with the 

incident angle  . 

 

B. Basic principle of using CS for fast monostatic 

scattering analysis 

Suppose that multiple monostatic scattering problem 

with the incident angles 
1 2, , M    is analyzed, then 

the following M matrix equations need to be solved: 

    = ,i i ZI V 1,2, , .i M  (6) 

Use  In i  to represent the current coefficient of the  

n-th element in  iI  and 1,2, ,n N . Based on the 

CS theory, a measurement matrix = 1,2, , ;ijc i M 




1,2, ,j M  with its elements i.i.d. Gaussian can  

be constructed. The measurement value of 

      1 2n n n MI I I  ， ，，  can be written as: 
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It is worth mentioning that the number of measurement 

values M   is much less than M. Obviously, the m-th 

measurement can be expressed as: 
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The right hand side of (9) is a random superposition of 

M right-hand-side vectors related to different incident 

angles and the weights are the m-th row elements of  

 . So the M   measurement values of each current 

coefficient can be obtained by changing the subscript m 

in (9) from 1 to .M   In such a manner, the number of 

equations to be solved can be greatly reduced. 

According to the theory of CS [27], if the unknown 

vector       1 2n n n MI I I  ， ，，  is compressible in 

terms of a orthonormal basis  , i.e., 
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where   is a M M  matrix,  1 2, , , M     

has just a few of large coefficients and many small 

coefficients. Substitute (10) into (7),   can be obtained 

by solving the following matrix equation: 
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where    is a M M sensing matrix. M  is much 

smaller than M. Hence, (11) is an underdetermined 

equation which is a nondeterministic polynomial time 

(NP)-hard problem. A reconstruction algorithm is 

required to recover   from M   measurements. After 

  is solved, we can adopt (10) to obtain the original 

current coefficient vector. 

 

C. Bayesian compressive sensing method 

To solve (11), the reconstruction algorithm in [20] 

is the orthogonal matching pursuit (OMP) algorithm 

[21]. However, the OMP algorithm is a greedy algorithm 

and it frequently converges to local optimal. Moreover, 

the number of measurement cannot be predefined 

adaptively and one has to try several times to find the 

optimized values for the number of measurements.  

In the Bayesian compressive sensing method, the 

solution of the NP-hard problem in (11) can be rewritten 

into the following form: 

 , t ε  (12) 

where t  is the vector of measurement values,   is the 

expansion error and it is assumed to be zero-mean 

Gaussian distribution with variance 2 . Then the vector 

t obeys a multivariate Gaussian distribution, 
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A zero-mean Gaussian prior is defined over :  

 1

1

( ) ( 0, ),
M

i i

i

p N a 



a  (14) 

where  1 2, , ,
T

Ma a aa =  is a vector of M independent 

hyperparameters and 
ia  is the precision (reciprocal of 

variance) of a Gaussian distribution. 

For the fixed values of hyperparameters controlling 

the prior, the posterior probability density of the weights 

can be obtained: 

 2( ; , ) ( , ),p N t a Σ    (15) 

where its mean and covariance are: 

 
2 ,T  ΣΦ t  (16) 

 
2 1( ) ,T   Σ A Φ Φ  (17) 

with  1 2= , , , Mdiag a a a . 

According to (13) and (14), the marginal 

distribution of t  can be computed as: 
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In the sparse Bayesian learning method, the 

maximization of 
2( , )p t a  is termed as type-II maximum 

likelihood method. The hyperparameters a and 2   are 

estimated through computing the derivatives of (18) with 

respect to a and 2  : 
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where 1i i iia    , 
ii  is the i th diagonal element of 

the covariance in (17). 

The formulas (16) and (17) coupled with (20) and 

(21) lead to an iterative learning process, which updates 

the corresponding quantity until a convergence criterion 

is satisfied. Many elements of a tend to infinity during 

the iteration with the consequence that   contains very 

few non-zero elements. After the convergence of the 

iterative learning process,   is used to approximate .  

Since the diagonal elements of the covariance 

matrix Σ  correspond to the variance of each element in 

,  they provide error bars on the accuracy of .  When 

the number of measurement is sufficiently large, the 

variance of each element in   should be small. If  

the diagonal elements of the covariance matrix Σ  is 

, 1,2, , ,iiΣ i M  the number of measurement times 

M   is enough when, 

 11 22 ,MMΣ Σ Σ

M


  
  (22) 

where   is a small value and 
310   in this paper. If 

(22) is not satisfied, more measurement will be added. In 

such a manner, the proposed method can adaptively 

determine the number of measurement. 

 

III. NUMERICAL RESULTS 
The effectiveness and accuracy of the proposed 

method are demonstrated through several numerical 

results. All results are generated on a personal PC with 

2.83 GHz CPU and 8 GHz RAM. The flexible general 

minimal residual (FGMRES) algorithm is adopted to 

solve the matrix equation and the iteration process is 

terminated when the 2-norm residual error is reduced by 

10-3. Multilevel fast multipole method (MLFMM) is 

utilized to accelerate the matrix vector product process. 

 

A. Almond 

The NASA almond model is analyzed as the first 

example as shown in Fig. 2 [28]. It is discretized with 

3290 triangular patches with 4935 unknowns. The tip of 

the almond points to the x-axis. The elevation angle of 

the incident wave is fixed to be 90°, while the aspect 

angle ranges from 0° to 63° with a 1° increment. Since 

the basis matrix   has an important effect on the 

measurement number, we compare three different bases 

in this example including Hermite basis, discrete cosine 

transformation (DCT) basis and Haar wavelet basis.  

All these basis are adopted to analyze the monostatic 

scattering problem and their results are compared with 

the result of MLFMM. The real parts of current 

coefficients at a randomly chosen edge under different 

incident angles are shown in Fig. 3. It can be observed 

that the results obtained by Hermite and DCT basis  

agree well with that of MLFMM. The result obtained by 

using Haar basis is comparable to that of MLFMM.  

The numbers in the brackets means the corresponding 

measurement times. Note that the measurement number 

corresponds to the number of MoM solutions. Obviously, 

the measurement times after adopting Hermite basis 

achieve its minimum. So the basis function is fixed to be 

the Hermite basis in the following two examples. Figure 

4 demonstrates the current magnitude distributions 

obtained by MLFMM and the proposed method with 

different basis. Good agreement can be achieved. 

 

 
 

Fig. 2. Almond model. 
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Fig. 3. Real parts of current coefficients at a randomly 

chosen edge under different incident angles obtained by 

using three kinds of basis. The numbers in the brackets 

represent the number of measurement. 

 

 
 

Fig. 4. The current magnitude distributions obtained by 

MLFMM and the proposed method with different basis 

when the aspect angle is 0°: (a) MLFMM, (b) Hermite, 

(c) DCT, and (d) Haar. 

 

B. Missile model 

A PEC missile model as shown in Fig. 5 is analyzed 

as the second example. The model is created based on 
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the picture of Tomahawk missile in Wikipedia [29].  

The maximum size in the x, y and z directions are 1.4 m,  

0.62 m and 0.25 m. It is discretized into 6792 unknowns 

at 1.5 GHz. The warhead is towards the positive direction 

of x-axis. The elevation angle of the incident wave is 

fixed to be 90° while the aspect angle ranges from 0° to 

180° with 0.5° increment. Both the proposed method 

(BCS) and the method in [20] (CS_OMP) are adopted to 

analyze the monostatic scattering problem and their 

results are compared with that of MLFMM as shown in 

Fig. 6. Table 1 lists the measurement number and CPU 

time for different methods. The number of measurement 

of the proposed method is determined to be 63 adaptively, 

and the result match well with that of MLFMM. Since 

the CS_OMP method cannot determine the number of 

measurement, we try several different measurement 

number and select the smallest one giving the similar 

level of accuracy with the proposed method. The 

measurement number determined in such a manner for 

CS_OMP method is 71. Although the measurement time 

of the proposed method is less than the CS_OMP 

method, their CPU time is similar since the computational 

cost of BCS algorithm is larger than OMP algorithm. 

 

 
 

Fig. 5. Missile model. 
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Fig. 6. Monostatic RCS of the missile model obtained by 

MLFMM, CS_OMP and BCS. 

 

Table 1: Measurement number and CPU time of three 

kinds of methods for the missile model 

Method Measurement Number CPU Time (s) 

MLFMM 360 5527 

CS_OMP 71 1272 

BCS 63 1295 

 

C. Aircraft model 

A scaled aircraft model shown in Fig. 7 is analyzed 

as the third example. The model is created based on  

the picture of F15 fighter plane in Wikipedia [30].  

The maximum size in the x, y and z directions are 1.9 m,  

1.2 m and 0.4 m. It is discretized into 6741 unknowns at 

600 MHz. The nose of the aircraft is towards the positive 

direction of x-axis. The elevation angle of the incident 

wave is fixed to be 90° while the aspect angle ranges 

from 0° to 360° with 1° increment. Figure 8 demonstrates 

the monostatic RCS computed by the MLFMM, 

CS_OMP and BCS method. Table 2 lists the measurement 

number and CPU time for different methods. Similar 

conclusions can be drawn with the second numerical 

example. 

 

 
 
Fig. 7. Aircraft model. 
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Fig. 8. Monostatic RCS of the aircraft model obtained by 

MLFMM, CS_OMP and BCS. 

 

Table 2: Measurement number and CPU time of three 

kinds of methods for the aircraft model 

Method Measurement Number CPU Time (s) 

MLFMM 360 15817 

CS_OMP 80 3534 

BCS 69 3505 

 

IV. CONCLUSION 
The Bayesian compressive sensing method is 

applied to the fast monostatic scattering analysis. 

Compared with the traditional CS based method, the 

proposed method adopts the Bayesian framework and 

can adaptively determine the number of compressive-

sensing measurements. Moreover, the proposed method 
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needs less measurements than OMP method with the 

similar level of accuracy. 
 

ACKNOWLEDGMENT 
This work is supported by the Fundamental 

Research Funds for the Central Universities JB160218, 

XJS16048 and the NSFC 61301069. 
 

REFERENCES 
[1] R. F. Harrington, Field Computation by Moment 

Methods. Oxford University Press, 1996. 

[2] J. J. Bai, G. Zhang, L. X. Wang, and T. H. Wang, 

“Uncertainty analysis in EMC simulation based on 

improved method of moments,” Appl. Comput. 

Electromagn. Soc. J., vol. 31, no. 1, pp. 66-71, 

2016. 

[3] G. Apaydin and L. Sevgi, “A novel wedge 

diffraction modeling using method of moments 

(MoM),” Appl. Comput. Electromagn. Soc. J., vol. 

30, no. 10, pp. 1053-1058, 2015. 

[4] J. M. Song, C. C. Lu, and W. C. Chew, “Multilevel 

fast multipole algorithm for electromagnetic 

scattering by large complex objects,” IEEE Trans. 

Antennas Propagat., vol. 45, no. 10, pp. 1488-

1493, 1997.  

[5] J. Song and W. C. Chew. “The fast Illinois solver 

code: Requirements and scaling properties,” IEEE 

Comput. Sci. Eng., vol. 5, no. 3, pp. 19-23, 1998. 

[6] J. Song and W. C. Chew., “Multilevel fast-

multipole algorithm for solving combined field 

integral equations of electromagnetic scattering,” 

Microw. Opt. Technol. Lett., vol. 10, no. 1, pp. 14-

19, 1995. 

[7] E. Bleszynski, M. Bleszynski, and T. Jaroszewicz, 

“AIM: Adaptive integral method for solving large-

scale electromagnetic scattering and radiation 

problems,” Radio Science, vol. 31, no. 5, pp. 1225-

1251, 1996. 

[8] J. R. Phillips and J. K. White, “A precorrected-FFT 

method for electrostatic analysis of complicated 3-

D structures,” IEEE Trans. Comput.-Aided Des. 

Integr. Circuits Syst., vol. 16, no. 10, pp. 1059-

1072, 1997. 

[9] S. M. Seo and J. F. Lee, “A fast IE-FFT algorithm 

for solving PEC scattering problems,” IEEE Trans. 

Magn., vol. 41, no. 5, pp. 1476-1479, 2005.  

[10] W. Chai and D. Jiao, “An-matrix-based integral-

equation solver of reduced complexity and 

controlled accuracy for solving electrodynamic 

problems,” IEEE Trans. Antennas Propagat., vol. 

57, no. 10, pp. 3147-3159, 2009. 

[11] K. Zhao, M. N. Vouvakis, and J. F. Lee, “The 

adaptive cross approximation algorithm for 

accelerated method of moments computations of 

EMC problems,” IEEE Trans. Electromagn. 

Compat., vol. 47, no. 4, pp. 763-773, 2005. 

[12] J. M. Rius, J. Parron, A. Heldring, J. M. Tamayo, 

and E. Ubeda, “Fast iterative solution of integral 

equations with method of moments and matrix 

decomposition algorithm-singular value decomp-

osition,” IEEE Trans. Antennas Propagat., vol. 56, 

no. 8, pp. 2314-2324, 2008. 

[13] Y. E. Erdemli, J. Gong, C. J. Reddy, and J. L. 

Volakis, “Fast RCS pattern fill using AWE 

technique,” IEEE Trans. Antennas Propagat., vol. 

46, no. 11, pp. 1752-1753, 1998. 

[14] M. S. Chen, X. L. Wu, and W. Sha, “Asymptotic 

waveform evaluation technique based on fast 

lifting wavelet transform,” Appl. Comput. Electro-

magn. Soc. J., vol. 21, no. 1, pp. 99-104, 2006. 

[15] E. K. Miller, “Model-based parameter estimation 

in electromagnetic III: Applications to EM integral 

equations,” IEEE Antennas Propag. Mag., vol. 40, 

no. 3, pp. 49-66, 1998. 

[16] Z. Peng, M. Stephanson, and J. F. Lee, “Fast 

computation of angular responses of large-  

scale three-dimensional electromagnetic wave 

scattering,” IEEE Trans. Antennas Propag., vol. 

58, no. 9, pp. 3004-3012, 2010. 

[17] A. Schröder, H.-D. Brüns, and C. Schuster, “A 

hybrid approach for rapid computation of two-

dimensional monostatic radar cross section 

problems with the multilevel fast multipole 

algorithm,” IEEE Trans. Antennas Propag., vol. 

60, no. 12, pp. 6058-6061, 2012. 

[18] A. Massa, P. Rocca, and G. Oliveri, “Compressive 

sensing in electromagnetics - A review,” IEEE 

Antennas Propag. Mag., vol. 57, no. 1, pp. 224-

238, 2015. 

[19] A. F. Morabito, A. R. Laganà, G. Sorbello, and T. 

Isernia, “Mask-constrained power synthesis of 

maximally sparse linear arrays through a 

compressive-sensing-driven strategy,” Journal of 

Electromagnetic Waves and Applications, vol. 29, 

no. 10, pp. 1384-1396, 2015. 

[20] M. S. Chen, F. L. Liu, H. M. Du, and X. L. Wu, 

“Compressive sensing for fast analysis of wide-

angle monostatic scattering problems,” IEEE 

Antennas Wirel. Propag. Lett., vol. 10, pp. 1243-

1246, 2011. 

[21] J. A. Tropp and A. Gilbert, “Signal recovery from 

partial information by orthogonal matching 

pursuit,” IEEE Trans. Inf. Theory, vol. 53, no. 12, 

pp. 4655-4667, 2007. 

[22] S. H. Ji, Y. Xue, and L. Carin, “Bayesian 

compressive sensing,” IEEE Trans. Signal Process., 

vol. 56, no. 6, pp. 2346-2356, 2008. 

[23] D. Baron, S. Sarvotham, and R. G. Baraniuk, 

“Bayesian compressive sensing via belief 

propagation,” IEEE Trans. Signal Process., vol. 

58, no. 1, pp. 269-280, 2010. 

[24] H. H. Zhang and R. S. Chen, “Coherent processing  

ACES JOURNAL, Vol. 31, No.11, November 20161284



and superresolution technique of multi-band radar 

data based on fast sparse Bayesian learning 

algorithm,” IEEE Trans. Antennas Propag., vol. 

62, no. 12, pp. 6217-6227, 2014. 

[25] M. Carlin, P. Rocca, G. Oliveri, F. Viani, and A. 

Massa, “Directions-of-arrival estimation through 

Bayesian compressive sensing strategies,” IEEE 

Trans. Antennas Propag., vol. 61, no. 7, pp. 3828-

3838, 2013. 

[26] S. M. Rao, D. R. Wilton, and A. W. Glisson, 

“Electromagnetic scattering by surfaces of 

arbitrary shape,” IEEE Trans. Antennas Propagat, 

vol. 30, no. 3, pp. 409-418, 1982. 

[27] E. J. Candes and M. B. Wakin, “An introduction to 

compressive sampling,” IEEE Signal Process. 

Mag., vol. 25, no. 2, pp. 21-30, 2008. 

[28] A. C. Woo, H. T. G. Wang, M. J. Schuh, and M. L. 

Sanders, “Benchmark radar targets for the 

validation of computational electromagnetics 

programs,” IEEE Trans. Antennas Propagat, vol. 

35, no.1, pp. 84-89, 1993. 

[29] https://en.wikipedia.org/wiki/Tomahawk_(missile) 

[30] https://en.wikipedia.org/wiki/McDonnell_Douglas

_F-15_Eagle 

 

 

 

 

Huan Huan Zhang received the 

Ph.D. degree in Electromagnetic 

Fields and Microwave Technology 

from Nanjing University of Science 

and Technology in 2015. He was a 

Postdoctoral Research Fellow with 

the Center of Electromagnetics and 

Optics, the University of Hong 

Kong, Hong Kong, from 2015 to 2016. He is currently a 

Lecturer with The School of Electronic Engineering, 

Xidian University, Xi'an, China. 

Zhang serves as the Reviewer of the IEEE 

Transactions on Antenna and Propagation, Commun-

ications in Computational Physics, IET Radar, Sonar & 

Navigation, etc. His current research interests include 

computational electromagnetics, IC signal integrity, 

EMC/EMI and radar signal processing. 

 

Xun Wang Zhao received the B.S. 

and Ph.D. degrees from Xidian 

University, Xi’an, China, in 2004, 

and 2008, respectively. He joined 

Xidian University as a Faculty 

Member in 2008. As principal 

Investigator, he is doing or has 

completed some projects including 

project of NSFC. 

 

Zhong Chao Lin received the B.S. 

degree from Xidian University, 

Xi’an, China, in 2011, and is 

currently working toward the Ph.D. 

degree at the School of Electronic 

and Engineering, Xidian University, 

Xi’an, China. His current research 

interests is computational electro-

magnetic. 

 

Wei E. I. Sha has co-authored two 

books respectively on wavelet theory 

and finite-difference time-domain 

method. He has published 72 peer-

reviewed journal papers included in 

Web of Science Core Collection. He 

also contributed four book chapters 

at Springer, CRC Press and InTech 

Publishers and 13 invited talks at international 

conferences. Sha is an IEEE Member and an OSA 

Member. He has served as the Onsite Award Committee, 

Technical Program Committee or Session Chair of 

several international conferences including ICCEM 

2017/2016, PIERS 2016, IMWS-AMP 2015, EICT 

2015, ICSPS 2011, etc. He has been serving as the 

Invited Referees of IEEE, OSA, AIP, APS and Nature 

Publishing Group journals. He also served as the Book 

Proposal Reviewers for CRC Press and Bentham Science 

publishers. 

He received the Second Prize and First Prize  

of National Postgraduates Mathematical Contest in 

Modeling, respectively in 2006 and 2007. He was 

awarded Chinese Youth Science and Technology 

Innovation Prize in 2007. He and his collaborators 

received Research Output Prize at the University of 

Hong Kong in 2013. In 2014, he was awarded 

Outstanding Reviewer of Journal of Computational 

Physics. In 2015, he was awarded Second Prize of 

Natural Science from Anhui Province Government, 

China. Sha also received three Best Student Paper Prizes 

and one Young Scientist Award with his students. 

He engages in theoretical and computational 

research in electromagnetics and optics, focusing on  

the multiphysics and interdisciplinary research. The 

research topics are inspired by applications in several 

areas including solar energy, microwave/optical comm-

unication, sensing/detection, and quantum information. 

His research involves fundamental and applied aspects 

in plasmonics, emerging photovoltaics, metasurfaces, 

quantum electrodynamics, and computational electro-

magnetics. 

ZHANG, ZHAO, LIN, SHA: FAST MONOSTATIC SCATTERING ANALYSIS BASED ON BAYESIAN COMPRESSIVE SENSING 1285


	ALL OF THEM WITH HEADERS & NUMBERS and front.pdf
	06_ACES_Journal_20150819_SL_AZE header.pdf
	I. INTRODUCTION
	II. TRIANGULAR CLOAKS DESIGNING PROCEDURE
	III. HOMOGENEOUS CLOCK OF ARBITRARY SHAPE
	IV. CONCLUSION
	REFERENCES





