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Chromosome 8q24 is a susceptibility locus for multiple cancers, including prostate cancer.

Here we combine genetic data across the 8q24 susceptibility region from 71,535 prostate

cancer cases and 52,935 controls of European ancestry to define the overall contribution of

germline variation at 8q24 to prostate cancer risk. We identify 12 independent risk signals for

prostate cancer (p < 4.28 × 10−15), including three risk variants that have yet to be reported.

From a polygenic risk score (PRS) model, derived to assess the cumulative effect of risk

variants at 8q24, men in the top 1% of the PRS have a 4-fold (95%CI= 3.62–4.40) greater

risk compared to the population average. These 12 variants account for ~25% of what can be

currently explained of the familial risk of prostate cancer by known genetic risk factors. These

findings highlight the overwhelming contribution of germline variation at 8q24 on prostate

cancer risk which has implications for population risk stratification.
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Prostate cancer (PCa) is the most common cancer among
men in the US, with 161,360 new cases and 26,730 related
deaths estimated in 20171. Familial and epidemiological

studies have provided evidence of substantial heritability of PCa2,
and ~170 common risk loci have been identified through
genome-wide association studies (GWAS)3. The susceptibility
region on chromosome 8q24 has been shown to be a major
contributor to PCa risk, with multiple variants clustered in five
linkage disequilibrium (LD) blocks spanning ~600Mb that are
independently associated with risk4. Many of these association
signals reported at 8q24 have been replicated across racial/ethnic
populations5,6, pointing to common shared functional variants
within 8q24. However, rare ancestry-specific variants have also
been detected, which confer larger relative risks of PCa (odds
ratios [ORs] >2.0) than common risk variants in the region and
signify allelic heterogeneity in the contribution of germline var-
iation at 8q24 to PCa risk across populations7.

In the current study, we perform a comprehensive investiga-
tion of genetic variation across the 1.4 Mb cancer susceptibility
region at 8q24 (127.6–129.0 Mb) in relation to PCa risk. We
combine genotyped and imputed data from two large GWAS
consortia (PRACTICAL/ELLIPSE OncoArray and iCOGS)
including >124,000 individuals of European ancestry to search for
novel risk variants, as well as to determine the overall contribu-
tion of genetic variation at 8q24 to PCa heritability. Our findings
underscore the sizable impact of genetic variation in the 8q24
region in explaining inter-individual differences in PCa risk, with
potential clinical utility for genetic risk prediction.

Results
Marginal and conditional association analysis. Genotype data
from the Illumina OncoArray and iCOGS array and imputation
to 1000 Genomes Project (1KGP) were generated among 71,535
PCa cases and 52,935 controls of European ancestry from 86 case-
control studies (see Methods). Of the 5600 genotyped and
imputed variants at 8q24 (127.6–129.0 Mb) with minor allele
frequency (MAF) > 0.1% retained for analysis (see Methods),
1268 (23%) were associated with PCa risk at p < 5×10−8 while
2772 (49%) were marginally associated at p < 0.05. These 5600
markers capture, at r2 > 0.8, 90% and 97% of all variants at 8q24

(127.6–129.0 Mb) with MAF ≥ 1% and ≥5%, respectively (based
on 1KGP Phase 3 EUR panel). In a forward and backward
stepwise selection model on variants marginally associated with
PCa risk (p < 0.05, n= 2772; see Methods), we identified 12
variants with conditional p-values from the Wald test between
2.93 × 10−137 and 4.28 × 10−15 (Table 1). None of the other
variants were statistically significant at p < 5 × 10−8 after adjust-
ment for the 12 independent hits (Fig. 1). The 8q24 region is
shown in Supplementary Fig. 1. Of these 12 stepwise signals, three
had alleles with extreme risk allele frequencies (RAFs) that con-
veyed large effects (rs77541621, RAF= 2%, OR= 1.85, 95%CI=
1.76–1.94; rs183373024, RAF= 1%, OR= 2.67, 95%CI=
2.43–2.93; rs190257175, RAF= 99%, OR= 1.60, 95%CI=
1.42–1.80). The remaining variants had RAFs between 0.11 and
0.92 and conditional ORs that were more modest and ranged
from 1.10 to 1.37 (Table 1). For 8 of the 12 variants, the allele
found to be positively associated with PCa risk was the pre-
dominant allele (i.e., >50% in frequency). For two variants,
rs78511380 and rs190257175, the marginal associations were not
genome-wide significant and substantially weaker than those in
the conditional model. For rs78511380, the marginal OR was
slightly protective (OR= 0.97; p= 0.027), but reversed direction
and was highly statistically significant when conditioning on the
other 11 variants (OR= 1.19; p= 3.5 × 10−18; Table 1).

Haplotype analysis. The haplotype analysis showed an additive
effect of the 12 independent risk variants consistent with that
predicted in the single variant test; co-occurrence of the 8q24 risk
alleles on the same haplotype does not further increase the risk of
PCa (Supplementary Table 1). The unique haplotype carrying the
reference allele for rs190257175 (GCTTAT, 0.5% frequency) is
also the sole haplotype associated with a reduced risk of PCa,
suggesting that having the C allele confers a protective effect. The
reference allele for rs78511380 (A, 8% frequency) occurs on a
haplotype in block 2 together with the risk alleles for
rs190257175, rs72725879 and rs5013678 (haplotype GTTTAA,
8%) which obscures the positive association with the T allele of
rs78511380. Thus, the marginal protective effect associated with
the risk allele for rs78511380 reflects an increased risk associated
with the occurrence on a risk haplotype with other risk alleles
(Supplementary Table 1).

Table 1 Marginal and conditional estimates for genetic markers at 8q24 independently associated with prostate cancer risk

Variant IDa Positionb Allelec RAFd LD clustere Conditional associationf Marginal association

OR (95%CI)g p-value OR (95%CI)h p-value

rs1914295 127910317 T/C 0.68 block 1 1.10 (1.08–1.12) 7.30 × 10−25 1.09 (1.07–1.11) 3.07 × 10−21

rs1487240 128021752 A/G 0.74 block 1 1.20 (1.17–1.22) 2.77 × 10−66 1.16 (1.14–1.18) 2.97 × 10−54

rs77541621 128077146 A/G 0.02 block 2 1.85 (1.76–1.94) 2.93 × 10−137 1.83 (1.74–1.92) 4.33 × 10−137

rs190257175 128103466 T/C 0.99 block 2 1.60 (1.42–1.80) 4.28 × 10−15 1.36 (1.22–1.53) 6.90 × 10−8

rs72725879 128103969 T/C 0.18 block 2 1.31 (1.28–1.35) 1.26 × 10−83 1.17 (1.14–1.19) 3.96 × 10−48

rs5013678 128103979 T/C 0.78 block 2 1.10 (1.08–1.13) 1.58 × 10−19 1.20 (1.17–1.22) 4.44 × 10−68

rs183373024 128104117 G/A 0.01 block 2 2.67 (2.43–2.93) 4.89 × 10−95 3.20 (2.92–3.50) 6.60 × 10−138

rs78511380 128114146 T/A 0.92 block 2 1.19 (1.14–1.23) 3.48 × 10−18 0.97 (0.94–1.00) 0.027
rs17464492 128342866 A/G 0.72 block 3 1.16 (1.14–1.18) 3.01 × 10−52 1.17 (1.15–1.19) 9.05 × 10−61

rs6983267 128413305 G/T 0.51 block 4 1.18 (1.16–1.20) 5.68 × 10−84 1.23 (1.21–1.25) 3.15 × 10−135

rs7812894 128520479 A/T 0.11 block 5 1.37 (1.33–1.40) 1.55 × 10−122 1.45 (1.41–1.49) 1.20 × 10−181

rs12549761 128540776 C/G 0.87 block 5 1.21 (1.18–1.24) 1.61 × 10−45 1.28 (1.25–1.31) 1.38 × 10−78

aVariants that remained genome-wide significantly associated with PCa risk (p < 10−8) in the final stepwise model
bChromosome position based on human genome build 37
cRisk allele/reference allele
dRisk allele frequency
eLD clusters were inferred based on recombination hotspots using Haploview 4.229 and defined as previously reported by Al Olama et al.4
fEach variant was incorporated in the stepwise model based on the strength of marginal association from the meta-analysis of OncoArray and iCOGS data
gPer-allele odds ratio and 95% confidence interval adjusted for country, 7(OncoArray)/8(iCOGS) principal components and all other variants in the table
hPer-allele odds ratio and 95% confidence interval adjusted for country and 7(OncoArray)/8(iCOGS) principal components
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Correlation with known risk loci. The 12 risk variants spanned
across the five LD blocks previously reported to harbor risk
variants for PCa at 8q244, with block 2 harboring six signals,
blocks 1 and 5 two signals each, and blocks 3 and 4 only one
(Supplementary Fig. 2). Except for a weak correlation between

rs72725879 and rs78511380 in block 2 (r2= 0.28), the risk var-
iants were uncorrelated with each other (r2 ≤ 0.09; Supplementary
Data 1), which corroborates their independent association with
PCa risk. Eight of the variants (rs1487240, rs77541621,
rs72725879, rs5013678, rs183373024, rs17464492, rs6983267,
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rs7812894) have been previously reported either directly (Sup-
plementary Table 2) or are correlated (r2 ≥ 0.42) with known
markers of PCa risk from studies in populations of European,
African or Asian ancestry (Supplementary Data 1)4,7–10. The
marginal estimates for previously published PCa risk variants
at 8q24 in the current study are shown in Supplementary Table 2.
The variant rs1914295 in block 1 is only weakly correlated
with the previously reported risk variants rs12543663 and
rs10086908 (r2= 0.17 and 0.14, respectively), while rs7851380
is modestly correlated with the previously reported risk variant
rs1016343 (r2= 0.28). The remaining two variants, rs190257175
and rs12549761, are not correlated (r2 < 0.027) with any known
PCa risk marker.

Polygenic risk score and familial relative risk. To estimate the
cumulative effect of germline variation at 8q24 on PCa risk, a
polygenic risk score (PRS) was calculated for the 12 independent
risk alleles from the final model based on allele dosages weighted
by the per-allele conditionally adjusted ORs (see Methods).
Compared to the men at ‘average risk’ (i.e., the 25th–75th PRS
range among controls), men in the top 10% of the PRS

distribution had a 1.93-fold relative risk (95%CI= 1.86–2.01)
(Table 2), with the risk being 3.99-fold higher (95%CI=
3.62–4.40) for men in the top 1%. Risk estimates by PRS category
were not modified by family history (FamHist-yes: OR= 4.24,
95%CI= 2.85–6.31; FamHist-no: OR= 3.38, 95%CI=
2.88–3.97). To quantify the impact of germline variation at 8q24,
we also estimated the proportion of familial relative risk (FRR)
and heritability of PCa contributed by 8q24 and compared this to
the proportions explained by all known PCa risk variants
including 8q24 (see Methods). The 175 established PCa sus-
ceptibility loci identified to date3,11 are estimated to explain
37.08% (95%CI= 32.89–42.49) of the FRR of PCa, while the 12
independent signals at 8q24 alone capture 9.42% (95%CI=
8.22–10.88), which is 25.4% of the total FRR explained by known
genetic risk factors for PCa (Table 3). This is similar to the
proportion of heritability explained by 8q24 variants (22.2%)
compared to the total explained heritability by the known risk
variants (0.118). In comparison, the next highest contribution of
an individual susceptibility region to the FRR of PCa is the TERT
region at chromosome 5p15, where 5 independent signals con-
tributed 2.63% (95%CI= 2.34–3.00). No other individual GWAS

Fig. 1 LocusExplorer plots of the 12 variants at 8q24 significantly associated with PCa risk. ‘Marginal’ and ‘Conditional’ Manhattan plot panels show
marginal and conditional association results, respectively. Variant positions (x-axis) and −log10 p-values from the Wald test (y-axis) are shown, with the
red line indicating the threshold for genome-wide significant association with PCa risk (p≤ 5 × 10−8) and blue peaks local estimates of recombination rates.
The position of the 12 independent variants is labeled in each plot. Clusters of correlated variants for each independent signal are distinguished using
different colors and also depicted on the ‘LD r2 Hits’ track. Stronger shading indicates greater correlation with the lead variant, with variants not correlated
at r2≥ 0.2 with any lead variant uncolored. Pairwise correlations are based on the European ancestry (EUR) panel from the 1000 Genomes Project (1KGP)
Phase 3. The relative position of RefSeq genes and biological annotations are shown in the ‘Genes’ and ‘Biofeatures’ panels, respectively. Genes on the
positive strand are denoted in green and those on the negative strand in purple. Annotations displayed are: histone modifications in ENCODE tier 1 cell lines
(Histone track), the positions of any variants that were eQTLs with prostate tumor expression in TCGA prostate adenocarcinoma samples and the
respective genes for which expression is altered (eQTL track), chromatin state categorizations in the PrEC cell-line by ChromHMM (ChromHMM track),
the position of conserved element peaks (Conserved track) and the position of DNaseI hypersensitivity site peaks in ENCODE prostate cell-lines (DNaseI
track). The data displayed in this plot may be explored interactively through the LocusExplorer application (http://www.oncogenetics.icr.ac.uk/8q24/)

Table 2 Relative risk of PCa for polygenic risk score (PRS) groups

Risk category percentilea No. of individuals Risk estimates for PRS groups

Controls Cases OR (95% CI)b p-value

≤1% 530 339 0.52 (0.45–0.59) 2.11 × 10−20

1%–10% 4771 3636 0.62 (0.59–0.65) 6.26 × 10−90

10%–25% 7936 7359 0.75 (0.72–0.78) 3.62 × 10−54

25%–75% 26,464 32,743 1.00 (Ref)
75%–90% 7940 13,431 1.37 (1.32–1.41) 6.55 × 10−77

90%–99% 4766 11,451 1.93 (1.86–2.01) 4.13 × 10−249

>99% 528 2576 3.99 (3.62–4.40) 5.64 × 10−172

Note: PRS were calculated for variants from the final stepwise model with allele dosage from OncoArray and iCOGS weighted by the per-allele conditionally adjusted odds ratios from the meta-analysis
aRisk category groups were based on the percentile distribution of risk alleles in overall controls
bEstimated effect of each PRS group relative to the interquartile range (25–75%) in OncoArray and iCOGS datasets separately, and then meta-analyzed across the two studies; odds ratios were adjusted
for country and 7(OncoArray)/8(iCOGS) principal components

Table 3 Proportion of familial relative risk (FRR) and heritability (hg2) of PCa explained by known risk variants

Source No. of variants Proportion of FRR (95%CI) % of total FRR hg2 (SE) % of total hg2

8q24a 12 9.42 (8.22–10.88) 25.4 0.027 (0.011) 22.2
HOXB13b 1 1.91 (1.20–2.85) 5.2 0.004 (0.005) 3.0
All other variantsb,c 162 25.77 (22.94–29.36) 69.5 0.092 (0.010) 74.9
Total 175 37.08 (32.89–42.49) 100 0.118 (0.012) 100

aConditional estimates were derived by fitting a single model with all variants from OncoArray data
bRisk estimates and allele frequencies for regions with a single variant are from a meta-analysis of OncoArray, iCOGS and 6 additional GWAS3
cRisk variants included from fine-mapping of PCa susceptibility loci in European ancestry populations11
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locus has been established as explaining >2% of the FRR,
including the low frequency, non-synonymous, moderate pene-
trance HOXB13 variant (rs138213197) at chromosome 17q21
that is estimated to explain only 1.91% (95%CI= 1.20–2.85) of
the FRR11.

JAM analysis. We explored our data with a second fine-mapping
approach, JAM (Joint Analysis of Marginal summary statistics)12,
which uses GWAS summary statistics to identify credible sets of
variants that define the independent association signals in sus-
ceptibility regions (see Methods). The 95% credible set for the
JAM analysis confirmed all of the independent signals from
stepwise analysis except rs190257175, for which evidence for an
association was weak (variant-specific Bayes factor (BF) = 1.17).
There were 50 total variants included in the 95% credible set, and
174 after including variants in high LD (r2 > 0.9) with those in the
credible set (Supplementary Data 2).

Discussion
In this large study of germline genetic variation across the 8q24
region, we identified 12 independent association signals among
men of European ancestry, with three of the risk variants
(rs1914295, rs190257175, and rs12549761) being weakly corre-
lated (r2 ≤ 0.17) with known PCa risk markers. The combination
of these 12 independent signals at 8q24 capture approximately
one quarter of the total PCa FRR explained by known genetic risk
factors, which is substantially greater than any other known PCa
risk locus.

The 8q24 region is the major susceptibility region for PCa;
however, the underlying biological mechanism(s) through which
germline variation in this region influences PCa risk remains
uncertain. For each of the 12 risk variants at 8q24, the 95%
credible set defined noteworthy (i.e., putative functional) variants
based on summary statistics while accounting for LD. To inform
biological functionality, we overlaid epigenetic functional anno-
tation using publicly available datasets (see Methods) with the
location of the 12 independent signals (and corresponding 174
variants within their 95% credible sets; Supplementary Data 3).
Of the 12 independent lead variants, 6 are situated within putative
transcriptional enhancers in prostate cell-lines; either through
intersection with H3K27AC (rs72725879, rs5013678, rs78511380,
rs6983267 and rs7812894) or through a ChromHMM enhancer
annotation (rs17464492, rs6983267, rs7812894). Eight of the
12 stepwise hits (rs77541621, rs190257175, rs5013678,
rs183373024, rs78511380, rs17464492, rs6983267, rs7812894)
also intersect transcription factor binding site peaks from multi-
ple ChIP-seq datasets representing the AR, ERG, FOXA1,
GABPA, GATA2, HOXB13, and NKX3.1 transcription factors,
with all 8 intersecting a FOXA1 mark and half an AR binding site.
These variants may therefore exert their effect through regulation
of enhancer activity and long-range expression of genes impor-
tant for cancer tumorigenesis and/or progression13. The variant
rs6983267 has also been shown to act in an allele-specific manner
to regulate prostate enhancer activity and expression of the proto-
oncogene MYC in vitro and in vivo14,15. However, despite the
close proximity to the MYC locus, no direct association has
been detected between 8q24 risk alleles and MYC expression in
normal and tumor human prostate tissues16. The rare variant
with the largest effect on risk, rs183373024, shows high evidence
of functionality based on overlap with multiple DNaseI and
transcription factor binding site peaks (for AR, FOXA1,
HOXB13, and NKX3.1), which supports previous findings of an
allele-dependent effect of this variant on the disruption of a
FOXA1 binding motif17. Seven independent signals (rs1914295,
rs1487240, rs77541621, rs72725879, rs5013678, rs183373024,

rs78511380) and variants correlated at r2 > 0.9 with these signals
(Supplementary Data 2) are located within or near a number of
prostate cancer–associated long noncoding RNAs (lncRNAs),
including PRNCR1, PCAT1, and CCAT2, previously reported to
be upregulated in human PCa cells18 and tissues19,20. Based on
eQTL annotations in prostate adenocarcinoma cells, the inde-
pendent signal rs1914295 and three correlated variants (r2 > 0.9;
Supplementary Data 2) are associated with overexpression of
FAM84B, a gene previously associated with progression and poor
prognosis of PCa in animal studies21. Variants correlated at r2 >
0.9 with rs7812894 (n= 9; Supplemental Table 4) are eQTLs for
POU5F1B, a gene overexpressed in cancer cell lines and cancer
tissues22,23, although its role in PCa development is unknown.
Whilst we have successfully refined the 8q24 region and identified
a subset of variants with putative biological function within our
credible set, multi-ethnic comparisons may help refine the asso-
ciation signals even further and precisely identify the functional
alleles and biological mechanisms that modify PCa risk.

Whereas the individual associations of the 8q24 variants with
PCa risk are relatively modest (ORs < 2.0, except for
rs183373024), their cumulative effects are substantial, with risk
being 4-fold higher for men in the top 1% of the 8q24-only PRS.
The contribution to the overall FRR of PCa is substantially greater
for the 8q24 region (9.42%) than for any other known GWAS
locus, including the moderate penetrance non-synonymous var-
iant in HOXB13 (1.91%). The ability of these markers to explain
~25.4% of what can be currently explained by all known PCa risk
variants is a clear indication of the important contribution of
germline variation at 8q24 on PCa risk. Our study was pre-
dominantly powered to analyze variants with MAF > 1% as the
imputed variants with MAF= 0.1-1% were most likely to fail
quality control (QC); however, the high density of genotyped
markers and haplotypes at 8q24 in the OncoArray and iCOGS
studies provided a robust backbone for imputation and increased
the chances to impute lower MAF variants with high imputation
quality score. Understanding of the biology of these variants and
the underlying genetic basis of PCa could provide new insights
into the identification of reliable risk-prediction biomarkers for
PCa, as well as enable the development of effective strategies for
targeted screening and prevention.

Methods
Study subjects, genotyping, and quality control. We combined genotype data
from the PRACTICAL/ELLIPSE OncoArray and iCOGS consortia3,24, which
included 143,699 men of European ancestry from 86 case-control studies largely
based in either the US or Europe. In each study, cases primarily included men with
incident PCa while controls were men without a prior diagnosis of the disease.

Both of the OncoArray and iCOGS custom arrays were designed to provide
high coverage of common alleles (minor allele frequency [MAF] > 5%) across 8q24
(127.6–129.0 Mb) based on the 1000 Genomes Project (1KGP) Phase 3 for
OncoArray, and the European ancestry (EUR) panel from HapMap Phase 2 for
iCOGS. A total of 57,580 PCa cases and 37,927 controls of European ancestry were
genotyped with the Illumina OncoArray, and 24,198 PCa cases and 23,994 controls
of European ancestry were genotyped with the Illumina iCOGS array. For both
studies, sample exclusion criteria included duplicate samples, first-degree relatives,
samples with a call rate <95% or with extreme heterozygosity (p < 10−6), and
samples with an estimated proportion of European ancestry <0.83,24. In total,
genotype data for 53,449 PCa cases and 36,224 controls from OncoArray and
18,086 PCa cases and 16,711 controls from iCOGS were included in the analysis.
Genetic variants with call rates <0.95, deviation from Hardy-Weinberg equilibrium
(p < 10−7 in controls), and genotype discrepancy in >2% of duplicate samples were
excluded. Of the final 498,417 genotyped variants on the OncoArray and 201,598
on the iCOGS array that passed QC, 1581 and 1737 within the 8q24 region,
respectively, were retained for imputation.

All studies complied with all relevant ethical regulations and were approved by
the institutional review boards at each of the participating institutions. Informed
consent was obtained from all study participants. Additional details of each study
are provided in the Supplementary Note 1.

Imputation analysis. Imputation of both OncoArray and iCOGS genotype data
was performed using SHAPEIT25 and IMPUTEv226 to the October 2014 (Phase 3)
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release of the 1KGP reference panel. A total of 10,136 variants from OncoArray
and 10,360 variants from iCOGS with MAF > 0.1% were imputed across the risk
region at 8q24 (127.6-129.0 Mb). Variants with an imputation quality score >0.8
were retained for a total of 5600 overlapping variants between the two datasets.

Statistical analysis. Unconditional logistic regression was used to estimate
per-allele odds ratios (ORs) and 95% confidence intervals (CIs) for the association
between genetic variants (single nucleotide polymorphisms and insertion/
deletion polymorphisms) and PCa risk adjusting for country and principal
components (7 for OncoArray and 8 for iCOGS). Allele dosage effects were tested
through a 1-degree of freedom two-tailed Wald trend test. The marginal risk
estimates for the 5600 variants at 8q24 that passed QC were combined by a
fixed effect meta-analysis with inverse variance weighting using METAL27. A
modified forward and backward stepwise model selection with inclusion and
exclusion criteria of p ≤ 5 × 10−8 was performed on variants marginally associated
with PCa risk from the meta results (p < 0.05, n= 2772). At each step, the effect
estimates for the candidate variants from both studies (OncoArray and iCOGS)
were meta-analyzed and each variant was incorporated into the model based on the
strength of association. All remaining variants were included one-at-a-time into
the logistic regression model conditioning on those already incorporated in the
model. We applied a conservative threshold for independent associations, with
variants kept in the model if their meta p-value from the Wald test was genome-
wide significant at p ≤ 5 × 10−8 after adjustment for the other variants in the
model. Correlations between variants in the final model and previously published
PCa risk variants at 8q24 were estimated using the 1KGP Phase 3 EUR panel
(Supplementary Data 1).

Haplotype analysis. Haplotypes were estimated in the Oncoarray data only using
variants from the final stepwise model selection (n= 12) and the EM algorithm28

within LD block regions inferred based on recombination hotspots using
Haploview 4.2 (Broad Institute, Cambridge, MA, USA)29. Only haplotypes with
an estimated frequency ≥0.5% were tested.

Polygenic risk score and familial relative risk. An 8q24-only polygenic risk score
(PRS) was calculated for variants from the final model (n= 12) with allele dosage
from OncoArray and iCOGS weighted by the per-allele conditionally adjusted ORs
from the meta-analysis. Categorization of the PRS was based on the percentile
distribution in controls, and the risk for each category was estimated relative to the
interquartile range (25–75%) in OncoArray and iCOGS separately, and then meta-
analyzed across the two studies. We estimated the contribution of 8q24 variants to
the familial (first-degree) relative risk (FRR) of PCa (FRR= 2.5)30 under a mul-
tiplicative model, and compared this to the FRR explained by all known PCa risk
variants including 8q24 (Supplementary Data 4). We also estimated heritability of
PCa using the LMM approach as implemented in GCTA31. For regions which have
been fine-mapped using the OncoArray meta-analysis data, we used the updated
representative lead variants, otherwise the originally reported variant was included
provided that it had replicated at genome-wide significance in the meta-analysis;
this identified a total of 175 independently associated PCa variants for the FRR and
heritability calculations3,11. For these analyses, we used conditional estimates from
fitting a single model with all variants in the OncoArray dataset for regions with
multiple variants and the overall marginal meta-analysis results from Schumacher
et al.3 for regions with a single variant. To correct for potential bias in effect
estimation of newly discovered variants, we implemented a Bayesian version of the
weighted correction32, which incorporates the uncertainty in the effect estimate
into the final estimates of the bias-corrected ORs, 95%CIs and the corresponding
calculations of percent FRR explained.

JAM analysis. To confirm the stepwise results and identify candidate variants for
potential functional follow-up, we used a second fine-mapping approach, JAM
(Joint Analysis of Marginal summary statistics)12. JAM is a multivariate Bayesian
variable selection framework that uses GWAS summary statistics to identify the
most likely number of independent associations within a locus and define credible
sets of variants driving those associations. JAM was applied to summary statistics
from the meta-analysis results using LD estimated from imputed individual level
data from 20,000 cases and 20,000 controls randomly selected from the OncoArray
sub-study. LD pruning was performed using Priority Pruner (http://prioritypruner.
sourceforge.net/) on the 2772 marginally associated variants at r2= 0.9, resulting in
825 tag variants analyzed in four independent JAM runs with varying starting
seeds. Credible sets were determined as the tag variants that were selected in the
top models that summed to a specific cumulative posterior probability in all four of
the independent JAM runs, plus their designated high LD proxy variants from the
pruning step.

Functional annotation. Variants in the 95% credible set (n= 50) plus variants
correlated at r2 > 0.9 with those in the credible set (n= 174) were annotated for
putative evidence of biological functionality using publicly available datasets as
described by Dadaev et al.11. Briefly, variants were annotated for proximity to gene
(GENCODEv19), miRNA transcripts (miRBase release 20), evolutionary constraint
(according to GERP++, SiPhy and PhastCons algorithms), likelihood of

pathogenicity (CADDv1.3) and overlap with prospective regulatory elements in
prostate-specific datasets (DNaseI hypersensitivity sites, H3K27Ac, H3K27me3
and H3K4me3 histone modifications, and for AR, CTCF, ERG, FOXA1, GABPA,
GATA2, HOXB13, and NKX3.1 transcription factor binding sites) in a mixture
of LNCaP, PC-3, PrEC, RWPE1, and VCaP cell lines and human prostate tumor
tissues downloaded from the Cistrome Data Browser (http://cistrome.org/db/). The
chromatin state in which each variant resides was assessed using ChromHMM
annotations from two prostate cell lines (PrEC and PC3). Cis-gene regulation
was evaluated using 359 prostate adenoma cases from The Cancer Genome
Atlas (TCGA PRAD; https://gdc-portal.nci.nih.gov) that passed QC11. The eQTL
analysis was performed using FastQTL with 1000 permutations for each gene
within a 1Mb window. We then used the method by Nica et al.33 that integrates
eQTLs and GWAS results in order to reveal the subset of association signals that
are due to cis eQTLs. For each significant eQTL, we added the candidate variant to
the linear regression model to assess if the inclusion better explains the change
in expression of the gene. We retrieved the p-value of the model, assigning p-value
of 1 if the eQTL and variant are the same. Then we ranked the p-values in
descending order for each eQTL, and finally calculated the colocalization score
for each pair of eQTL and variants. In general, if an eQTL and candidate variant
represent the same signal, this will be reflected by the variant having a high p-value,
a low rank and consequently a high colocalization score.

Data availability
The authors declare that data supporting the findings of this study are available within
the paper [and in the supplementary information files]. However, some of the data used
to generate the results of this study are available from the first author and the PRAC-
TICAL Consortium upon request.
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