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Abstract— This study present an intervention combining an 
electroencephalography-based brain computer interface with a 
hybrid robotic system for the modulation of the cortical 
excitability (plasticity). Plasticity is intended to be elicited through 
the association of the voluntary motor-related cortical processes 
with the hybrid assistance during the execution of reaching 
movement. The cortical excitability was assessed before and after 
the intervention measuring the peak-to-peak amplitude of the 
Motor Evoked Potentials (MEPs) induced through transcranial 
magnetic stimulation pulses. Five healthy subjects participated in 
the experiments. Results showed an overall and distributed 
increase in the cortical excitability as a result of the proposed 
intervention. 
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I. INTRODUCTION 
Different novel rehabilitation therapies have been proposed 

over the past years to improve the current rehabilitation 
outcomes in subjects with a lesion on the central nervous system, 
like stroke or spinal cord injury. Robotic devices [1], functional 
electrical stimulation (FES) technologies [2], and the combined 
use of these solutions in so-called hybrid robotic systems [3] are 
of particular relevance due to their expected impact on the future 
of neurorehabilitation [4]. Although most studies presented in 
the literature regarding these technologies focused on evaluating 
the improvement of motor function in patients, little evidences 
have been provided regarding the potential impact of 
rehabilitation technologies for the improvements of neural 
connections (plasticity) between the brain and the peripheral 
muscles in the body. In this regard it is worth noting that after a 
neurological lesion, like stroke, facilitating neural plasticity 
plays an important role in the recovery of motor function [5]. 

Under this scope, in a series of studies, the use of Brain-
Computer Interfaces (BCI) as neuromodulation system has been 
proposed. In the rehabilitation field, a neuromodulation BCI can 
be defined as a system conceived for inducing neuroplasticity 
[6]. In this regard, there are several pieces of evidence showing 
that timed-association between voluntary motor-related cortical 
patterns and peripheral afferent feedback yields a well-adaptive 
plasticity [7].  

Between these studies, Mrachacz-Kersting et al. have 
demonstrated that applying a peripheral electrical stimulus over 
the peroneal nerve timed with the negative peak of the 

contingent negative variation results in an increased excitability 
of the cortical projections to the tibialis anterior muscle when 
assessed with Transcranial Magnetic Stimulation (TMS) in 
healthy subjects [8]. Remarkably, they have also demonstrated 
that this plasticity is correlated with motor functional 
improvements of the lower limb in stroke patients [9]. In this 
line, Xu et al. replaced the electrical stimulus with a robotic 
device providing mechanical support to execute the same ankle 
dorsi-flexion task in heathy subjects, and obtained similar results 
[10]. Despite these promising results, in these studies the 
number of muscles involved in the tasks was reduced (single 
muscle for one degree of freedom) and involved analytical tasks 
instead of functional ones. 

Likewise, some studies addressed the same approach (BCI + 
peripheral afferent feedback) to corroborate cortical plastic 
changes when executing grasping movement assisted by FES 
[11] and a robotic device [12]. Although the functional 
connotation of this task (grasping) is high (from the 
rehabilitation perspective), both studies failed to demonstrate an 
increased excitability of the cortical projections to the hand 
muscles when assessed with TMS. One possible explanation can 
be attributed to the low capability of the BCI system to provide 
a timed association (cortical with the peripheral). 

Therefore, there is still a gap to demonstrate the potential 
benefits of the combined use of neuromodulation BCI systems 
with assistive devices during the execution of functional tasks 
involving a multi-degree of freedom movement. In previous 
works, we presented a hybrid robotic system for rehabilitation 
of reaching movements in stroke patients [13]. This system is 
aimed to rehabilitate the arm motor impairment in stroke 
patients by executing unconstrained reaching movement in 3D 
space. In addition, an accurately and low latency EEG-based 
movement onset detection system was presented [14]. In this 
present study, the hybrid robotic system is combined with the 
low latency movement onset detection to verify whether the 
execution of functional reaching movement leads to a 
distributed plasticity (more than one muscle). Preliminary 
results of the combined system with healthy subjects are 
presented. 

II. METHODS 

A. Subjects 
Five healthy subjects (three males and two females, age: 26.8 

± 4.7 years) participated in this study. None of the subjects 



presented any history of sensory-motor disorder nor of 
physiological deficit.  

B. Hybrid robotic system 
The hybrid robotic system used in the experiments for this 

study was previously presented in [13], [15]. In brief, this system 
consists of three sub-blocks: the hybrid assistive block (a passive 
Exoskeleton and FES), the high-level control (HLC) block, and 
a visual feedback interface. 

The hybrid assistance combines passive mechanical 
assistance on the upper limb through the ArmeoSpring® 
exoskeleton (Hocoma, Switzerland) and functional 
electrostimulation provided by the IntFES stimulator 
(Technalia, Spain). The exoskeleton supports the arm weight 
against gravity and allows carrying out 3D reaching movements 
in an unconstrained space. The electrical stimuli are delivered to 
the anterior deltoid (AD) and triceps (TR) muscles using 
biphasic electrical pulses. 

The HLC block generates subject- and joint-specific 
reference trajectories and, by modulating the FES intensity, it 
provides the required support to perform the movements. This 
block was implemented in a PC104 architecture running the xPC 
Target operation system (Mathwork Inc) for real-time operation. 
The arm’s reference trajectory was generated using a 
mathematical expression called minimum jerk [16], which 
assumes that the arm is moved smoothly from one point to 
another using a bell-shaped velocity profile. The feedback error 
learning (FEL) control algorithm was implemented to modulate 
the pulse width of the electrical signal applied over the arm’s 
muscles (see [13], [15] for further details).  

A cue-based visual feedback interface was developed to 
guide the users during the intervention (see Fig. 1). In addition, 
this interface provides information regarding the arm position 
(shoulder and elbow) and the task’s performance. A state 
machine, depicted in Fig. 2, was implemented to manage the 
intervention’s events and present the appropriate messages and 
icons to the users. This state machine relies on five main states: 
‘Wait’, ‘Relax’, ‘CountDown’, ‘Movement’ and ‘EndTrial’. 
During the ‘CountDown’ state, three different rectangles are 
displayed in the interface (see Fig. 1). These rectangles are 
incrementally filled up using a traffic light paradigm (red, 
yellow and green colors), lasting 1.5 seconds each. Thus, a 
period of 4.5 seconds is used for movement preparation. When 
the last rectangle is entirely filled (green color), all rectangles 
are turned in green, indicating the movement state. At this 
moment, the reference trajectory (denoted by the blue cross) 
start moving toward the target position (the red squared). The 
arm position is represented by the green circle, where the x- and 
y-axis indicate the movements of the elbow and shoulder joints, 
respectively. The system also reported information regarding the 
quality of the movement by lighting four different face’s color 
after the movement execution according to the measured 
performance (‘EndTrial state’). The green face indicated a good 
performance (≥ 90 %), yellow a moderate performance (≥ 75 
%), orange a bad performance (≥ 50 %) and red a poor 
performance (≤ 50 %). The visual feedback interface was coded 
using Matlab. 

C. EEG-Based BCI 
In order to tightly couple the subjects’ intentions to move, a 

low-latency EEG-based BCI was used to control the onset of the 

assistance in each task performed. The BCI was implemented 
using real-time Simulink (The Mathworks Inc) on a dedicated 
computer. EEG signals were recorded from 28 positions (AFz, 
F3-F4, FC3-FC4, C5-C6, CP3-CP4, P3-P4 and Oz according to 
the international 10-20 system) using active Ag/AgCl electrodes 
(Acticap, Brain Products GmbH, Germany). The reference was 
set to the voltage of the earlobe contralateral to the affected arm 
and Oz was used as ground. Additionally, electromyography 
(EMG) signals were recorded using two bipolar electrodes 
placed at AD and TR muscles. EEG and EMG signals were 
amplified using the gUSBamp (g.Tecgmbh, Austria) and were 
sampled at 256 Hz. 

 
Fig. 1. Representation of the visual feedback interface. 

 

Fig. 2. Implemented state machine, representing the visual cue during the 
intervention. 

The BCI system used to trigger the assistance based on the 
participant’s movement intentions recorded from the EEG 
signals was the one presented in [14], [17]. The EMG signals 
from the AD and TR muscles were used to identify the 
movement onset and group the EEG signal into epochs (one for 
each movement). The acquired EMG signals were processed 
offline using a band-pass filter (35 ≥ f ≤ 120 Hz) and a signal 
rectifier. A single threshold detector was implemented to detect 
onsets of muscle contractions using a threshold of 10% of the 
maximum EMG amplitude during the voluntary movements for 
each subject.  

Two classifiers based on the event-related desynchronization 
(ERD) and the movement-related cortical potentials (MRCP) 
patterns were combined. A naïve Bayes classifier was used to 
detect the ERD patterns preceding the movements. Band-pass 
filtering (Butterworth, 2th order, 6 ≤ f ≤ 30 Hz) and a small 
Laplacian filter were applied. The power values were estimated 
using the Welch’s method in segments of 1.5 s and for 
frequencies between 7-30 Hz (Hamming windows of 1 s, 50 % 
overlapping). The values obtained in the calibration run (see 
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section C.2) between -3 s and -0.5 s with respect to the 
movement onsets were labeled as resting state samples. 
Estimations generated at t = 0 s were labeled as movement onset 
samples. The Bhattacharyya distance was used to select the 10 
best features (channel/frequency pairs) to build the Bayesian 
classifier. 

The MRCP pattern was detected using a Butterworth band-
pass filter (2th order, 0.05 ≤ f ≤ 5 Hz). A virtual channel was 
obtained by subtracting the average potential of channels F3, Fz, 
F4, C3, C4, P3, Pz and P4 to individually selected channels after 
a visual inspection. The average MRCP pattern from -1.375 s to 
0.125 s was obtained for the selected channels using the data 
obtained during the calibration phase. This pattern was then used 
to design a matched filter. During the online operation, the 
matched filter was applied to the virtual channel of the validation 
dataset. 

Finally, the outputs from both detectors (ERD and MRCP) 
were combined using a logistic regression classifier. Finally, the 
outputs from both detectors (ERD and MRCP) were combined 
using a logistic regression classifier. To train this classifier 
samples of the resting and movement condition were taken from 
intervals between -3 and -0.5 s (resting) and between -0.125 to 
0.25 s (movement) with respect to the movement onsets. A 
threshold was applied to the estimations to decide every 19.53 
ms (5 samples) whether a movement intention was detected.  
The threshold was optimally obtained using the calibration 
dataset and following the criterion of maximizing the true 
positive (TP) rate, i.e. the percentage of trials with a correct 
motor intention detection and with no incorrect detections. 

D. Experimental procedure 
The general protocol is depicted in Fig. 3. It consists of two 
main steps: assessment and intervention. 

1. Pre-, post- and post30-assesment: The main outcome 
measure of the proposed intervention was the quantification of 
changes in the excitability of the motor cortex contralateral to 
the arm moved during the experiment. To this aim, the brain 
response to Transcranial Magnetic Stimulation (TMS) pulses 
delivered over the motor cortex at different intensities was 
measured from the AD and TR muscles before and after the 
intervention. For these assessments subjects were seated in a 
chair and they were instructed to keep their arms relaxed. After 
the skin preparation (rubbing with cotton and alcohol), EMG 
signals were recorded from the AD and TR muscles using 
surface electrodes (rectangular 22.225 x 34.925 mm, 
NeuroPlus™) in a bipolar configuration. The ground electrode 
was placed over the wrist. In all subjects, the TMS stimuli were 
delivered on the right cerebral hemisphere in to induce Motor 
Evoked Potentials (MEPs) on the left arm. First, the hotspot of 
stimulation was determined. This site was identified as the area 
in which the most consistent MEPs on the AD and TR muscles 
were elicited simultaneously. This position was marked on the 
patient’s head with a permanent marker to ensure that the stimuli 
were consistently delivered over the same area of the motor 
cortex before (pre-FES), after (post-FES) and 30 minutes after 
(post30-FES) the proposed intervention. Then, the subject-
specific resting motor threshold (rMT) was estimated using the 
reduced relative frequency method [18]. Next, MEPs were 
elicited in the resting arm at five different TMS intensities: 90%, 
100%, 110%, 120%, and 130% of the rMT. Ten MEPs were 

recorded for each intensity and at each assessment stage. These 
ten MEPs were divided in two blocks of five stimuli each to 
avoid the possibility of biasing the measurements of a certain 
condition by misplacing the coil. The intensity of stimulation 
was randomized across subjects and delivered every 6.5 
seconds. 

 
Fig. 3. Experimental protocol.  

2. Intervention: the main part of the intervention consisted 
of a set of cue-guided reaching movements with the hybrid 
robotic assistance being triggered according to the subjects’ 
motor intentions decoded from the EEG signals. Before starting 
the intervention, the subjects had to be equipped with assistive 
system. First, the ArmeoSpring was adjusted according to the 
subjects’ arm lengths. The level of mechanical support was 
regulated such that the arm was kept about the subjects’ thighs 
in the horizontal plane. Surface electrodes (Pals platinum - 
rectangle 5x5 cm) were attached to the AD and TR muscles, and 
the maximum and minimum FES intensity was determined for 
each subject. Considering that the peripheral stimuli should be 
strong enough to recruit the afferent pathways and arrive at the 
motor cortex [8], [19], the minimum FES intensity was 
established as the amplitude in which the user perceived the 
stimulus and a visible muscle contraction was recognized 
(lightly below or equal to the motor threshold). The maximum 
FES intensity was defined as the maximum current that was 
considered comfortable by the subjects. The two thresholds were 
determined to assure that the FEL controller adjusted the current 
intensity within these range. After the calibration of the FES 
parameters, the subject-specific range of movement of the 
assisted limb was measured. This range of movement was used 
to define the maximum distance to be covered by the subject in 
each movement performed. 
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Once the donning process was completed, the intervention 
proceeded with the calibration stage. At this stage, subjects were 
asked to follow the instructions represented in the visual 
feedback interface, which indicated them (using a countdown) 
when to perform reaching movements without FES. During the 
countdown, subjects were instructed to remain as relaxed and 
quite as possible. Each time the countdown was finished and the 
movement state was prompted, subjects were asked to perform 
the reaching movement following a reference trajectory 
displayed on the screen in front of them. A period of one second 
was allowed to reach the target from the initial position. All 
subjects carried out a total of 30 movements divided in two 
blocks of 15 movements each. The recorded data was used to 
train an EEG-based movement onset detector. 

The last stage of the intervention consisted in the 
experimentation stage. At this stage, subjects repeated the 
execution of the same reaching movement carried out during the 
calibration, but electrical stimuli were delivered each time the 
EEG-based BCI detected the user own movement intention. To 
increase the accuracy of the BCI system and prevent subjects 
from receiving electrical stimuli wrongly, the output of the BCI 
system was enabled from -250 ms to +1 s with respect to the 
beginning of the ‘Movement’ state (see Fig. 2, vertical dotted 
lines in red). The subjects were advised that the electrical stimuli 
appeared whenever motor-related processes were observed 
within this window of time and they were instructed to report 
trials (movement executions) in which the FES was received too 
soon or too late with respect to their inner perception of their 
movement intentions and execution. All subjects carried out 
blocks of 20 movements until at least 50 good pairings 
(electrical stimuli arriving on time with the user’s own intention 
to move) were achieved. 

E. Outcome measures and statistical analysis 
The main outcome measure was the change in MEP peak-to-

peak amplitude as a result of the intervention. A three-way 
repeated-measures ANOVA with factors ‘Time’ (1: pre; 2: post; 
and 3: post30) and ‘Muscle’ (1: AD; 2: TR) and ‘Intensity’ (1: 
90%; 2: 100%; 3: 110%; 4: 120%; and 5: 130%) was used to 
investigate the effect of the intervention (BCI + hybrid robotic 
system) on the change in excitability in the descending cortico-
muscular pathway. Statistical significance was assumed if P ≤ 
0.05. In addition, the performance of the BCI system was 
assessed by estimating the TP rate according to the subjects’ 
feedback. The TP rate was estimated from the experimentation 
phase of the intervention by computing the percentage of 
movements in which the subjects perceived the stimulus with 
their movement intentions. 

III. RESULTS 
The average rMT across all participants was 60.6 ± 25.7% 

of the maximum stimulator output. All participants performed 
on average a total of 92 ± 16.4 intervention movements. The TP 
results of the BCI system was 77.3 ± 12.6 % across all subjects. 
The individual and general results are shown in table I. 

Fig. 4 shows a representative example of the average MEPs 
amplitude for the AD and TR muscles of participant (P4) elicited 
at 120 % of the rMT during the pre-, post- and post30-
assessment. It can be observed that the average peak-to-peak 
value of the MEP in the AD muscle increased 201 % and 279 % 

at the post- and post30-assessments with respect to the value of 
the pre-assessment condition. Similarly, the response measured 
in the TR muscle showed an increase of 243 % and 148 % at the 
post- and post30-assessment with respect to the pre-assessment. 
Similarly, the same pattern, an increased response after the 
intervention, was observed in the others TMS intensities. 

TABLE I.  PERFORMANCE OF THE CUE-BASED BCI SYSTEM 

Participants Total number of 
movements 

Number of 
Associations 

BCI accuracy 
(TP) 

P1 110 52 62.72 % 
P2 100 41 81 % 
P3 70 51 80 % 
P4 80 51 95 % 
P5 100 48 68 % 

Mean 92 ± 16.4 48.6 ± 4.5 77.3 ± 12.6 % 
 

 
Fig. 4. A representative example of the elicited MEP prior and after the 
intervention.  

Fig. 5 shows the averaged (across subjects) peak-to-peak 
values of the evoked MEPs prior to and following the 
interventions. In order to combined the results obtained with all 
subjects, these are expressed relative to the maximum peak-to-
peak value prior to the intervention. The statistical test did not 
find significant differences either when considering the three-
way interaction (‘Time’ x ‘Muscle’ x ‘Intensity’, P = 0.98) or 
the two-way interaction (‘Time’ x ‘Intensity’, P = 0.81; ‘Time’ 
x ‘Muscle’, P = 0.24), nor between the time intervals (P = 0.19). 
Although no statistically significant differences were found, the 
trend of the responses was towards the increase of the 
corticospinal excitability as consequence of the intervention. In 
average, the AD peak-to-peak MEP at 130 % of the rMT across 
subjects resulted in an increased of 6.9 % and 13.1 % in the post- 
and post30-assessment with respect to the pre-assessment 
measurement. Likewise, the TR muscle reported an increase of 
22.4 % and 7.9 % for the post- and post30-assessment 
respectively with respect to the pre-assessment.  

IV. DISCUSSION AND CONCLUSIONS 
To the authors' knowledge, this is the first study describing 

the modulation of cortical excitability by coupling voluntary 
motor-related cortical pattern with a hybrid robotic system 
during the execution of a functional task, involving a multi-
degree of freedom movement of the upper limb. Results showed 
an overall and distributed increase in the cortical excitability as 
a result of the proposed intervention. Although no significant 
differences were observed in the excitability of the cortical 
projection to the target muscles (AD and TR), it is expected that 
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the changes observed here in five subjects become significant 
with a larger sample of subjects. 

 

Fig. 5. Changes in descending corticospinal motor pathway excitability after 
the BCI intervention. Values represent the peak-to-peak value of the MEP 
before (pre), immediately after (post) and 30 minutes after the cessation of the 
intervention (post30) across all subjects. Error bars represent the 95% of 
confident intervals.  

Robotic therapies and functional electrical stimulation have 
proven to be potentially beneficial to recover motor function 
after a brain damage. However, it is not clear under which 
circumstances robotic/FES therapies can maximize the 
functional benefit to the patients. Assuming that the recovery in 
patients with a stroke has to be achieved by reinforcing the 
cortical control of the paretic limb, it is expected that 
rehabilitation outcomes of robotic devices can be maximized 
when inducing plastic changes. 
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