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ABSTRACT

Medical imaging tasks often involve multiple contrasts, such as T1-
and T2-weighted magnetic resonance imaging (MRI) data. These
contrasts capture information associated with the same underlying
anatomy and thus exhibit similarities. In this paper, we propose a
Coupled Dictionary Learning based multi-contrast MRI reconstruc-
tion (CDLMRI) approach to leverage an available guidance contrast
to restore the target contrast. Our approach consists of three stages:
coupled dictionary learning, coupled sparse denoising, and k-space
consistency enforcing. The first stage learns a group of dictionaries
that capture correlations among multiple contrasts. By capitalizing
on the learned adaptive dictionaries, the second stage performs joint
sparse coding to denoise the corrupted target image with the aid of
a guidance contrast. The third stage enforces consistency between
the denoised image and the measurements in the k-space domain.
Numerical experiments on the retrospective under-sampling of clin-
ical MR images demonstrate that incorporating additional guidance
contrast via our design improves MRI reconstruction, compared to
state-of-the-art approaches.

Index Terms— multi-contrast MRI, coupled dictionary learn-
ing, coupled sparse denoising, guidance information

1. INTRODUCTION
Magnetic Resonance Imaging (MRI) is a noninvasive and non-
ionizing medical imaging technique that has been widely used for
medical diagnosis, clinical analysis, and staging of disease. Owing
to its versatility, different MRI pulse sequences produce images
with different contrasts, such as Fluid-attenuated inversion recovery
(FLAIR), T1-weighted, and T2-weighted. Each contrast images
different physical properties of the tissues examined [1, 2]. The ac-
quisition time of conventional brain multi-contrast MRI is at least 30
minutes, which can lead to discomfort in some patients and requires
sedation for pediatric patients. Different image constrasts, how-
ever, are highly correlated, because they image the same underlying
anatomy [3]. Such correlation can potentially be used to shorten
acquisition time by partial acquisition of the target contrast, fol-
lowed by reconstruction that takes into account other fully-sampled
contrasts as guidance/reference.

MRI reconstruction from under-sampled measurements has
been thoroughly investigated in the case of single contrast acqui-
sition. The pioneering framework proposed by Lustig et al. [4],
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motivated by compressive sensing theory [5–8], uses the fact that
MR images are sampled in the spatial frequency domain (a.k.a.
k-space) and can be represented as a sparse combination of fixed,
predefined bases, for example, wavelets. Building on this work,
Ravishankar et al. [9] proposed a dictionary learning based MRI
reconstruction approach, DLMRI, which is based on the fact that
patches of MR images can be sparsely represented with respect to
a set of adaptive learned bases [10, 11]. Those adaptive bases con-
tribute to improved performance of DLMRI over SparseMRI [4].
Both SparseMRI and DLMRI consider a single contrast.

The reconstruction of an MRI target contrast based on the avail-
ability of other contrasts has also been recently investigated in some
works [3, 12–18]. For example, for the case where one contrast
(the "target contrast") is under-sampled and the other is fully sam-
pled and serves as guidance/reference, Weizman et al. [12, 13] pro-
posed reference-based MRI, that exploits gray level similarity be-
tween T2-weighted and FLAIR, to reconstruct the target contrast
(FLAIR) given the guidance contrast (T2-weighted). Their approach
is specific to contrasts with gray level similarity, not to structural
similarity which is our focus here. Ehrhardt et al. [3, 14] propose an
approach, STVMRI, that exploits structure-guided total variation to
integrate the location and direction priors from a guidance contrast
into the reconstruction of the target contrast.

Inspired by DLMRI [9], we propose a coupled dictionary learn-
ing approach for multi-contrast MRI reconstruction, referred to as
CDLMRI, for contrasts that exhibit structural similarity (e.g. T1-
weighted and T2-weighted), a scenario more general than the one
addressed in [12]. Specifically, our approach cycles between three
stages: coupled dictionary learning, coupled sparse denoising and k-
space consistency enforcing. The first stage learns a group of dictio-
naries that capture inherent structural similarity on textures, edges,
boundaries, or other salient features across multiple contrasts. The
second stage performs joint sparse coding using the learned adaptive
dictionaries to denoise the corrupted target image with the aid of a
guidance contrast. The third stage enforces consistency between the
denoised image and the measurements in the k-space domain. Our
approach shows significant advantages over the competing methods,
DLMRI [9] and STVMRI [3] both in visual quality, and in peak
signal-to-noise ratio (PSNR).

2. PROBLEM FORMULATION

We denote by x(1) ∈ CN the vectorized 2D MR imaging contrast
of size

√
N ×

√
N to be reconstructed. The vector y(1) ∈ Cm

denotes the under-sampled k-space measurements related to x(1),
and the matrix Fu1 ∈ Cm×N denotes the corresponding under-
sampled Fourier transform matrix. In addition, we assume that a
fully-sampled guidance MR imaging contrast x(2) ∈ CN is avail-
able. Our goal is to reconstruct x(1) from its k-space samples y(1)

under the aid of the guidance image x(2).
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2.1. Data Model for Multi-contrast MRI Data
As we would like to utilize the structural similarity between x(1)

and x(2), we first propose a data model that captures this similar-
ity. Our data model works with image patches, instead of the entire
image level, because a patch-based model is able to capture local
image features effectively, as shown in other applications such as
image denoising, super-resolution, inpainting, deblurring and demo-
saicing [19–25].

Let x
(1)
ij ∈ C

n and x
(2)
ij ∈ C

n denote the vector representations
of image patch pairs of size

√
n×
√
n extracted from the image x(1)

and x(2), respectively, where the tuple (i, j) denotes the coordinates
of the top-left corner of the patches within the images. Formally,
we write x

(1)
ij = Rijx

(1) (resp. x
(2)
ij = Rijx

(2)), where the ma-

trix Rij ∈ Cn×N represents the operator that extracts patch x
(1)
ij

(resp. x
(2)
ij ) from x(1) (resp. x(2)). In order to capture both the sim-

ilarity and discrepancy between two different contrasts, we assume
that each patch pair (x

(1)
ij ,x

(2)
ij ) can be represented by a sum of two

sparse representations: a common sparse component that is shared
by both contrasts, and a unique sparse component for each contrast.
In particular, we express the patch pair as follows:

x
(1)
ij = Ψc zij + Ψ uij , (1)

x
(2)
ij = Φc zij + Φ vij , (2)

where zij ∈ RK is the common sparse representation shared by
both contrasts, uij ∈ RK is a sparse representation specific to
contrast x(1), and vij ∈ RK is a sparse representation specific
to contrast x(2); in addition, Ψc = [ψc1, · · · ,ψcK ] ∈ Rn×K
and Φc = [φc1, · · · ,φcK ] ∈ Rn×K are a pair of dictionaries
associated with the common sparse representation zij , whereas
Ψ = [ψ1, · · · ,ψK ] ∈ Rn×K and Φ = [φ1, · · · ,φK ] ∈ Rn×K
are dictionaries associated with the sparse representations uij and
vij , respectively. Note that, this model can be generalized for Ψ
and Φ to have different number of atoms.

2.2. CDLMRI
Our goal is to leverage the proposed data model (1)-(2) in order to re-
cover the target MRI contrast x(1) given the guidance MRI contrast
x(2) and the k-space measurements y(1). To this end, we propose
Coupled Dictionary Learning for multi-contrast MRI reconstruction
algorithm that attempts to solve the following optimization problem

minimize
x(1),zij ,uij ,vij

Φc,Φ,Ψc,Ψ

∑
ij

{
‖Rijx

(1) − (Ψczij + Ψuij)‖22

+‖Rijx
(2) − (Φczij + Φvij)‖22

+ν1‖Fu1x
(1) − y(1)‖22

}
subject to ‖zij‖0 ≤ sc, ‖uij‖0 ≤ s1, ‖vij‖0 ≤ s2, ∀i, j,∥∥∥∥[ψckφck

]∥∥∥∥2

2

≤ 1, ‖ψk‖22 ≤ 1, ‖φk‖22 ≤ 1, ∀k.

(3)
Note that the first two terms in the objective ensure that the image
patches are consistent with their postulated model and the third term
in the objective ensures that the target image is consistent with its k-
space measurements; the parameter ν1 ≥ 0 balances between model
and measurements fidelity. Moreover, the first set of constraints in-
duce sparsity for the vectors zij ,uij ,vij and the second set of con-
traints normalizes the atoms of the dictionaries in order to remove
the scaling ambiguity and avoid trivial solutions.

Problem (3) is highly nonconvex. Therefore, we attempt to solve
this problem by alternating between three stages over a number of

Algorithm 1 CDLMRI Algorithm

Input: Under-sampled k-space measurements: y(1); Guidance con-
trast: x(2); Parameter: ν1; Sparse constraints: sc, s1, s2; Num-
ber of iterations for CDL: L; Number of cycles for CDLMRI:
T ; Number of overlapping patches at each pixel: β.

Output: Estimated x̃(1).
Initialization: Initialize x(1) as x(1) = FHu1y

(1).
Optimization:

1: for t = 1, · · · , T do
2: Coupled Dictionary Learning stage. Estimate the coupled

dictionaries Ψc, Ψ, Φc, Φ using Algorithm 2.
3: Coupled Sparse Denoising stage. Estimate the sparse repre-

sentations zij and uij by solving (4) and (5) using the OMP
algorithm. It also involves estimating the denoised patches
x̂

(1)
ij = Ψczij + Ψuij from zij , uij .

4: k-space Consistency Enforcing stage. Estimate the target
contrast x̃(1) from estimated k-space samples ỹ(1) via (13)
and (8).

5: end for

cycles: 1) Coupled dictionary learning, 2) Coupled sparse denoising,
and 3) k-space consistency enforcing, as shown in Algorithm 1.

Stage 1) Coupled Dictionary Learning. In the first cycle, x(1) is
initialized as FHu1y

(1) (i.e. x(1) is set to be equal to the inverse DFT
of the zero-filled Fourier measurements). In the remaining cycles,
in this stage, x(1) will be the output of Stage 3) from the previous
cycle. In particular, for fixed x(1), we attempt to solve (3) via alter-
nating minimization where in a first step we update zij ,uij ,vij for
fixed Ψc,Ψ,Φc,Φ and in a second step we update Ψc,Ψ,Φc,Φ
for fixed zij ,uij ,vij . As shown in Algorithm 2, the sparse cod-
ing step is addressed using the orthogonal matching pursuit (OMP)
algorithm [21, 26] and dictionary update step is adapted from the
Block Coordinate Descent [27]. Note that, since a single image
consists of large amount of patches, we only use a subset of the
patches to constitute the training dataset X(1) = [· · · ,x(1)

ij , · · · ]
and X(2) = [· · · ,x(2)

ij , · · · ] in Stage 1) to save training time.

Stage 2) Coupled Sparse Denoising. As the sparse representations
computed in Stage 1) are associated only with a subset of the col-
lection of image patches, it is necessary to perform one additional
sparse denoising stage. In addition, we also introduce linearly de-
creasing error thresholds to fine tune the sparse representations, since
this operation has been shown experimentally to improve the de-
aliasing and denoising performance. In particular, we give priority
to perform the following optimization in order to determine an ap-
proximation to the common sparse representations associated with
the various image patches:

min
zij

max
{
‖Rijx

(1) −Ψczij‖22 + ‖Rijx
(2) −Φczij‖22 − εc, 0

}
s.t. ‖zij‖0 ≤ sc.

(4)
We then perform the following optimization in order to determine an
approximation to the unique sparse representations associated with
the various target image patches:

min
uij

max
{
‖Rijx

(1) −Ψczij −Ψuij‖22 − ε1, 0
}

s.t. ‖uij‖0 ≤ s1.
(5)

Here εc and ε1 denote the expected error thresholds which are used,
together with sc and s1, in OMP as the stopping criteria. The above



Algorithm 2 Coupled Dictionary Learning algorithm

Input: A subset of estimated target image patches: X(1) =

[· · · ,x(1)
ij , · · · ]; The subset of the corresponding guidance im-

age patches: X(2) = [· · · ,x(2)
ij , · · · ]; Sparse constraints: sc, s1,

s2; Number of iterations: L;
Output: Coupled dictionaries: Ψc,Φc,Ψ,Φ.
Initialization: Initialize each dictionary with randomly selected

patches of the corresponding contrast. Initialize all sparse rep-
resentations with zeros.

Optimization:
1: for l = 1, · · · , L do
2: a) Sparse Coding step. This step updates the sparse codes

for fixed dictionaries. Note that steps 3 - 6 apply the OMP al-
gorithm [26] to estimate Z = [· · · , zij , · · · ] given data X(1),
X(2) and dictionaries Ψc, Φc.

3: Initialize the active set Γ = ∅ and zij ← 0.
4: while |Γ| < sc do
5: select a new coordinate k̂ that leads to the smallest residual

and, then update the active set and the solution zij :

(k̂, α̂) ∈ arg min
k∈Γc,α∈R|Γ|+1

∥∥∥∥∥
[
x

(1)
ij

x
(2)
ij

]
−
[
Ψc

Φc

]
Γ∪{k}

α

∥∥∥∥∥
2

2

;

Γ← Γ ∪ {k̂}; zijΓ ← α̂; zijΓc ← 0;

6: end while
7: This OMP process is repeated to estimate U =

[· · · ,uij , · · · ] and V = [· · · ,vij , · · · ] given X(1)−ΨcZ =

ΨU and X(2) − ΦcZ = ΦV, with sparsity constraints s1

and s2, respectively.
8: b) Dictionary Update step. This step updates the dictionar-

ies for fixed sparse codes.
9: for k = 1, · · · ,K do

10: Update the k-th column of Ψc and Φc as follows:

dk ←
1

zkzkT

([
X(1) −ΨU

X(2) −ΦV

]
−
[
Ψc

Φc

]
Z

)
zk
T

+

[
ψck
φck

]
[
ψck
φck

]
← dk

max(‖dk‖2, 1)

where zk denotes the k-th row of Z.
11: end for
12: for k = 1, · · · ,K do
13: Update the k-th column of Ψ and Φ as follows:

ψk ←
1

ukukT
(X(1) −ΨcZ−ΨU)uk

T
+ψk

φk ←
1

vkvkT
(X(2) −ΦcZ−ΦV)vk

T
+ φk

φk ←
φk

max(‖φk‖2, 1)
;ψk ←

ψk
max(‖ψk‖2, 1)

where uk (resp. vk) denotes the k-th row of U (resp. V).
14: end for
15: end for

formulations imply that once the objective value for (i, j)-th patch
decreases below the expected error threshold, there is no need to find
a better point and so we terminate the OMP loop. Otherwise, the
OMP program keeps iterating until sc (resp. s1) non-zero values are
retrieved for zij (resp. uij). In addition, as the quality of the target
image improves along the entire cycles, we decrease the thresholds
εc and ε1 linearly at each cycle. This strategy significantly accel-
erates the convergence speed, as well as allows us to dynamically
control the real sparsity of each patch more effectively.

Given the sparse representations zij and uij , we obtain each
denoised patch as x̂

(1)
ij = Ψczij + Ψuij , where Ψc and Ψ are

learned dictionaries in the Stage 1).

Stage 3) k-space Consistency Enforcing. Finally, in this stage, we
enforce the consistency between the denoised image and its measure-
ments in the k-space domain, similar to DLMRI [9]. In particular,
given the estimated patches x̂

(1)
ij from Stage 2), this step is formu-

lated as a least squares problem:

min
x(1)

∑
ij

∥∥∥Rijx
(1) − x̂

(1)
ij

∥∥∥2

2
+ ν1

∥∥∥Fu1x
(1) − y(1)

∥∥∥2

2
, (6)

By assuming that patches wrap around at image boundaries (which
implies that the number of overlapping patches occurring at each
pixel is equal), we immediately obtain the solution:

x̃(1) = FH ỹ(1) (7)
where FH denotes the conjugate of the Fourier transform matrix;
ỹ(1) denotes the estimated k-space samples and can be expressed as

follows:

ỹ(1)
pq =


(
Fx̂(1)

)
pq
, (p, q) /∈ Ω(1)

1

1 + ν̃1

(
Fx̂(1) + ν̃1FFHu1y

(1)
)
pq
, (p, q) ∈ Ω(1)

(8)

where ν̃1 = ν1/β, x̂(1) = 1
β

∑
ij RH

ij x̂
(1)
ij represents the denoised

image, and β denotes the number of overlapping patches at the cor-
responding pixel location in x(1). We denote by Ω(1) the subset of
k-space that has been sampled and by ỹ

(1)
pq the updated value at lo-

cation (p, q) in the k-space.
The overall process consisting of the three stages is repeated

over a number of cycles, which has been summarized in Algorithm 1.

3. EXPERIMENTS

In this section, we conduct some practical experiments to evalu-
ate the performance of the proposed algorithm. Similar to previous
approaches [3, 9, 12, 28–30], the data acquisition was simulated by
retrospectively under-sampling the 2D discrete Fourier transform of
clinical magnitude MR images. The sampling masks include Carte-
sian 1D and 2D random sampling. We compare the proposed ap-
proach with DLMRI [9] to show the benefits of integrating guidance
information into the MRI reconstruction task. DLMRI [9] is also
based on dictionary learning techniques, but it does not use a guid-
ance contrast to aid the reconstruction of the target contrast. We
also compare with SVTMRI [3] which is also based on the use of a
guidance contrast to aid the reconstruction of the target one.

In the experiments, we set
√
N×
√
N = 256×256,

√
n×
√
n =



True T1 Mask Guidance T2

DLMRI,
PSNR = 33.4dB.

STVMRI,
PSNR = 33.7dB.

CDLMRI,
PSNR = 36.1dB.

(a) 4 fold 1D random under-sampling.

True T1 Mask Guidance T2

DLMRI,
PSNR = 28.9dB.

STVMRI,
PSNR = 29.0dB.

CDLMRI,
PSNR = 30.2dB.

(b) 20 fold 2D random under-sampling.

Fig. 1. Reconstruction from Cartesian under-sampling. In each sub-figure, the first row shows the groundtruth T1-weighted, sampling mask
and guidance modality T2-weighted. The second and third rows show the reconstructed images and the corresponding residual error from
DLMRI [9], STVMRI [3], and the proposed approaches. It can be seen that the proposed approach reliably reconstructs fine details and
substantially suppresses aliasing, noise and artifacts, leading to the smallest residual error.

8 × 8, K = 512, L = 50, T = 60, sc = 6, s1 = s2 = 2, εc =
0.1 ↓ 0.005 (meaning: εc is set to 0.1 in the beginning and linearly
decreases to 0.005 along the cycles.), ε1 = 0.09 ↓ 0.004, β =
64, ν1 = ∞ (for noise-free situation), and undersampling factor =
4 fold and 20 fold for the Cartesian 1D and 2D random sampling,
respectively.

The visual performance is shown in Fig. 1. It can be seen that the
reconstructed image and corresponding residual from DLMRI [9]
introduce noticeable aliasing, noise and blurred areas. In com-
parison, the edges and outlines in the reconstructed image from
STVMRI [3] are very sharp, thereby more visually appealing in
some high-frequency areas. However, notice that some areas in the
results of STVMRI [3] have been over-sharpened, thus introducing
nonnegligible artifacts. In contrast, our approach substantially atten-
uates aliasing and noise and, at the same time, reliably restores fine
details and suppresses artifacts, leading to a more comprehensive
and interpretable reconstruction. The performance improvement is
also demonstrated by the PSNR values.

Fig. 2 shows the learned coupled dictionaries from the T1- and
T2- weighted MRI images. It can be seen that the atom pairs from
common dictionaries Ψc,Φc capture associated edges, blobs and
textures with the same direction and location. Most of them exhibit
considerable resemblance to each other, but with opposite intensity.
This phenomenon is consistent with MRI characteristics, such as
Cerebrospinal fluid (CSF) being dark in T1-weighted contrast and
bright in T2-weighted. This outcome indicates that the common dic-
tionaries are able to capture the similarity between T1-weighted and
T2-weighted contrasts. In comparison, the learned unique dictionar-
ies Ψ,Φ represent the disparities of these modalities and therefore
rarely exhibit similarity.

4. CONCLUSION
We presented an adaptive multi-contrast MRI reconstruction frame-
work that capitalizes on both patch-based sparsity priors induced by

Common Dict
cΨ Ψ

Φ

Unique Dict

Unique  Dict
cΦCommon Dict

Fig. 2. Learned coupled dictionaries from T1 and T2-weighted con-
trasts; 256 atoms are shown. The top row displays the common and
unique dictionaries for the T1-weighted contrast. The bottom row
displays dictionaries learned from corresponding T2-weighted con-
trast. It can be seen that common dictionaries exhibit atoms with
similar structure.

coupled dictionaries and structure similarity priors from the guid-
ance contrast. The coupled dictionaries are trained directly on the
target images and thus are adaptive to the contrast of interest. In
addition, they also capture the correlations between T1- and T2-
weighted contrasts, thereby beneficial information can be extracted
from the guidance contrast to aid the reconstruction of the target con-
trast. Practical experiments demonstrate the superior performance of
our design and significant advantage over competing methods. In the
future, we will adapt our algorithm for other practical sampling pat-
terns, such as radial sampling and also explore the impact of noise.
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Appendix A: CDLMRI
We provide more details in relation to Section 2.2 CDLMRI in this
appendix.

Stage 1) Coupled Dictionary Learning (details). The dictionary
update step is to solve the optimization problem:

minimize
Ψc,Ψ,Φc,Φ

∑
ij

{
‖Rijx

(1) − (Ψczij + Ψuij)‖22

+‖Rijx
(2) − (Φczij + Φvij)‖22

}
subject to

∥∥∥∥[ψckφck

]∥∥∥∥2

2

≤ 1, ‖ψk‖22 ≤ 1, ‖φk‖22 ≤ 1, ∀k

(9)

Given a subset of the patches to constitute the training dataset
X(1) = [· · · ,x(1)

ij , · · · ] and X(2) = [· · · ,x(2)
ij , · · · ] in Stage 1), the

optimization problem (9) is equivalent to:

minimize
Ψc,Ψ,Φc,Φ

∥∥∥∥[X(1) −ΨU

X(2) −ΦV

]
−
[
Ψc

Φc

]
Z

∥∥∥∥2

F

subject to
∥∥∥∥[ψckφck

]∥∥∥∥2

2

≤ 1, ‖ψk‖22 ≤ 1, ‖φk‖22 ≤ 1, ∀k

where, Z = [· · · , z(1)
ij , · · · ], U = [· · · ,u(1)

ij , · · · ], V = [· · · ,v(1)
ij , · · · ].

Taking the dictionary update of Ψc and Φc for example, we update
the atom pairs one by one. For the k-th atom pair ψc and φc, we
can immediately establish that

dk ← min
d

∥∥∥∥[X(1) −ΨU

X(2) −ΦV

]
−
[
Ψc

Φc

]
Z +

[
ψck
φck

]
zk − dzk

∥∥∥∥2

F

s.t. ‖d‖22 ≤ 1,

By expanding the Frobenius norm and removing the constant term,
it turns out that the above problem is equivalent to the optimization
problem

min
d

1
2

∥∥dzk
∥∥2

F
− dT

([
X(1) −ΨU

X(2) −ΦV

]
−
[
Ψc

Φc

]
Z +

[
ψck
φck

]
zk
)

zk
T

s.t. ‖d‖22 ≤ 1,

where zk denotes the k-th row of Z.1 We compute the derivative of
the objective w.r.t. d, leading to a norm equation:

dk ←
1

zkzkT

([
X(1) −ΨU

X(2) −ΦV

]
−
[
Ψc

Φc

]
Z

)
zk
T

+

[
ψck
φck

]
Then, we apply the `2 norm constraint.[

ψck
φck

]
= dk ←

dk
max(‖dk‖2, 1)

The dictionary update of Ψ and Φ is performed in a similar way.
In order to accelerate the training, the proposed algorithm can be
updated to online training version without difficulty.

Stage 3) k-space Consistency Enforcing (details). In this stage, we
aim to enforce consistency between the denoised image and its mea-
surements in the k-space domain. In particular, given the estimated

1Note that zk is a row vector resulting from the derivative w.r.t the k-th
atom pair, while zij is a column vector corresponding to the ij-th patch pair.

patches x̂
(1)
ij from Stage 2), this step is formulated as a least square

problem:

min
x(1)

∑
ij

∥∥∥Rijx
(1) − x̂

(1)
ij

∥∥∥2

2
+ ν1

∥∥∥Fu1x
(1) − y(1)

∥∥∥2

2
, (10)

which admits an analytical solution satisfying the normal equation

(∑
ij

RH
ijRij + ν1F

H
u1Fu1

)
x(1) =

∑
ij

RH
ij x̂

(1)
ij + ν1F

H
u1y

(1) ,

(11)
where the superscript ()H denotes the Hermitian transpose op-
eration. The term

∑
ij RH

ijRij ∈ CN×N is a diagonal matrix
where each diagonal entry is the number of overlapping patches at
the corresponding pixel location in x(1). Assuming that patches
wrap around at image boundaries, the number of overlapping
patches at each pixel is the same, denoted by β.2 Thus, the term
1
β

∑
ij RH

ij x̂
(1)
ij represents the denoised image x̂(1), where the in-

tensity value of each pixel is the average of all the overlapping
patches that cover this pixel. Multiplying by the normalized full
Fourier transform matrix F on the both sides of equation (11) leads
to (

F
∑
ij

RH
ijRijF

H + ν1FFHu1Fu1F
H

)
Fx(1)

= F
∑
ij

RH
ij x̂

(1)
ij + ν1FFHu1y

(1) . (12)

The matrix FFHu1Fu1F
H is a diagonal matrix consisting of ones

(corresponding to sampling locations in k-space) and zeros. Under
the "wrap around" assumption, F

∑
ij RH

ijRijF
H = βIP . Thus,

the matrix pre-multiplying Fx(1) in (12) is diagonal and trivially
invertible. The vector FFHu1y

(1) represents the zero-filled Fourier
measurements. Dividing both sides of (12) by the constant β to ob-
tain

ỹ(1)
pq =


(
Fx̂(1)

)
pq
, (p, q) /∈ Ω(1)

1

1 + ν̃1

(
Fx̂(1) + ν̃1FFHu1y

(1)
)
pq
, (p, q) ∈ Ω(1)

where ν̃1 = ν1/β, x̂(1) = 1
β

∑
ij RH

ij x̂
(1)
ij denotes the denoised im-

age. We denote by Ω(1) the subset of k-space that has been sampled
and by ỹ

(1)
pq the updated value at location (p, q) in the k-space. Note

that (8) uses the dictionaries that were learned in Stage 1) to inter-
polate the non-sampled Fourier frequencies, and update the sampled
frequencies. Then, we immediately obtain the solution:

x̃(1) = FH ỹ(1) (13)

where FH denotes the conjugate Fourier transform matrix. ỹ(1) de-
notes the estimated k-space samples as in (8). In other words, the
estimation x̃(1) is obtained by inverse DFT of ỹ(1). Then the process
returns to the Stage 1). The whole process is shown in Algorithm 1.

2In particular, β = n when the overlap stride r = 1, where the over-
lap stride is defined as the distance in pixels between corresponding pixel
locations in adjacent image patches.



Appendix B: More Experiments
Tissue can be characterized by two different relaxation times – T1
(longitudinal relaxation time) and T2 (transverse relaxation time).3

T1-weighted and T2-weighted pair of MRI scans are two basic types
of multi-contrast data, where the former is produced by using short
TE and TR times and conversely the latter is produced by using
longer TE (Time to Echo) and TR (Repetition Time) times. In gen-
eral, T1-weighted MRI images results in highlighted/bright fat tis-
sue, such as subcutaneous fat (SC fat) and bone marrow, and sup-
pressed/dark water-based tissue, such as Cerebrospinal fluid (CSF).
In contrast, T2-weighted MRI images highlight both fat tissue and
water-based tissue. Therefore, the correlation of T1-weighted and
T2-weighted is complex, instead of simple reverse mapping rela-
tionship.

In this experiment, we use under-sampled T1-weighted MRI as
the target contrast and corresponding fully-sampled T2-weighted as
the guidance contrast to replicate the same scenario as in [3]. Simi-
lar to previous approaches [3, 9, 12, 28–30], the data acquisition was
simulated by retrospectively under-sampling the 2D discrete Fourier
transform of clinical magnitude MR images.4. The sampling masks
include Cartesian 1D and 2D random sampling. We compare the
proposed approach with DLMRI [9] to show the benefits of inte-
grating guidance information into the MRI reconstruction task. We
also compare with SVTMRI [3] which uses the structure-guided to-
tal variation to integrate the guidance contrast to aid the reconstruc-
tion of the target one.Figure 3 and 4 show reconstruction results for
the scenario where a variable density Cartesian mask is employed
for under-sampling on the target T1-weighted contrast, with a fully
sampled T2-weighted MRI for guidance contrast.

3T1 (longitudinal relaxation time) is a measure of the time taken for ex-
cited spinning protons to realign with the external magnetic field and return
to equilibrium. T2 (transverse relaxation time) is a measure of the time taken
for excited spinning protons to lose phase coherence among the nuclei spin-
ning perpendicular to the main field.

4After using the Fourier transform to transform measured k-space data
into image space, the image data is of complex type, which is then manipu-
lated for different clinical utility. In clinical practice, magnitude images are
nearly exclusively used for diagnosis as it maximizes the signal-to-noise ra-
tio (SNR). Phase-images are occasionally generated in clinical MRI for the
depiction of flow and characterization of susceptibility-induced distortions.
Therefore, from the perspective of diagnosis, we focus on the magnitude im-
ages



Groundtruth T1 Mask Guidance T2

DLMRI
PSNR = 39.7dB.

STVMRI
PSNR = 40.7dB.

CDLMRI,
PSNR = 43.3dB.

(a) simulated MRI with 4 fold 1D random under-sampling.

Groundtruth T1 Mask Guidance T2

DLMRI
PSNR = 33.4dB.

STVMRI
PSNR = 33.7dB.

CDLMRI
PSNR = 36.1dB.

(b) clinical MRI with 4 fold 1D random under-sampling.

Fig. 3. Reconstruction for T1-weighted MRI, with fully-sampled T2-weighted version as reference using 4 fold Cartesian 1D random under-
sampling. The first row shows the groundtruth T1-weighted contrast, sampling mask and guidance T2-weighted contrast. The second and
third rows show the reconstructed images and the corresponding residual error from DLMRI [9], STVMRI [3], and the proposed CDLMRI.
It can be seen that the proposed approach reliably reconstructs fine details and substantially suppresses aliasing, noise and artifacts, leading
to the smallest residual error.

Groundtruth T1 Mask Guidance T2

DLMRI
PSNR = 32.9dB.

STVMRI
PSNR = 34.2dB.

CDLMRI
PSNR = 36.8dB.

(a) 5 fold 2D random under-sampling.

Groundtruth T1 Mask Guidance T2

DLMRI
PSNR = 28.5dB.

STVMRI
PSNR = 29.0dB.

CDLMRI,
PSNR = 30.2dB.

(b) 20 fold 2D random under-sampling.

Fig. 4. Reconstruction for T1-weighted MRI, with fully-sampled T2-weighted version as reference using 5 fold and 20 fold 2D random
under-sampling, using DLMRI [9], STVMRI [3], and the proposed CDLMRI. The first row shows the groundtruth T1-weighted, sampling
mask and guidance modality T2-weighted. The second and third rows show the reconstructed images and the corresponding residual error
from DLMRI [9], STVMRI [3], and the proposed CDLMRI. It can be seen that the proposed approach outperform the competing approaches,
leading to the smallest residual error.
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