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 9 

Abstract  10 

Digital fabrication represents innovative, computer-controlled processes and technologies with the 11 

potential to expand the boundaries of conventional construction. Their use in construction is currently 12 

restricted to complex and iconic structures, but the growth potential is large. This paper aims to 13 

investigate the environmental opportunities of digital fabrication methods, particularly when applied to 14 

complex concrete geometries. A case study of a novel robotic additive process that is applied to a wall 15 

structure is evaluated with the Life Cycle Assessment (LCA) method. The results of the assessment 16 

demonstrate that digital fabrication provides environmental benefits when applied to complex 17 

structures. The results also confirm that additional complexity is achieved through digital fabrication 18 

without additional environmental costs. This study provides a quantitative argument to position digital 19 

fabrication at the beginning of a new era, which is often called the Digital Age in many other 20 

disciplines.     21 

Keywords  22 

Digital fabrication, LCA, complexity, concrete, robotic construction, sustainability. 23 

 24 

1 Introduction 25 

The construction sector is responsible for significant environmental impacts, such as 40% of the 26 

energy consumption and greenhouse gas emissions worldwide (UNEP, 2012). But these extremely 27 

large impacts represent also opportunities for improvement, and buildings are seen by the main 28 

international agencies (UNEP, IPCC) as a key player for carbon mitigation actions (IPCC, 2014). This 29 

potential is foreseen as occurring through the implementation of new technologies, such as digital 30 

technologies (McKinsey&Company, 2016). Digital technologies are broadly used in the manufacturing 31 

industry and the direct production of elements from design information (e.g., 3D printing) has become 32 

an essential component of modern product development (Chen et al., 2015). However, digital 33 

fabrication in construction is still in its early stage, probably because the construction industry is a 34 

highly fragmented, risk-averse sector (Arora et al., 2014). Most construction firms are small, so few of 35 

them have the ability to exploit new technologies, which rely on specific knowledge. Learning is done 36 

on a project-to-project basis with professionals to develop perceptions and skills from their individual 37 
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experiences (Giesekam et al., 2016). This unsystematic process of building up knowledge leads to a 38 

reluctance to use unfamiliar technologies and materials (Pinkse and Dommisse, 2009). 39 

Finally, the benefits that digital technologies can provide are not clear. Recent publications have 40 

highlighted the potential sustainability benefits of additive manufacturing (Ford and Despeisse, 2016; 41 

Kohtala, 2015). However, most of these studies focused on small-scale processes. For instance, 42 

Kreiger and Pearce (2013) showed that distributed manufacturing through 3D printing has potentially 43 

fewer environmental impacts and lower energy demand than conventional manufacturing. Similar 44 

results were gathered by Faludi et al. (2015), who highlighted a reduction in waste and energy savings 45 

from a smaller machining effort with 3D printing compared to traditional CNC milling. Finally, Gebler et 46 

al. (2014) provided a general perspective on 3D printing technologies from an environmental, 47 

economic and social perspective. However, very few of these studies were quantitative, and Ford and 48 

Despeisse (2016) are pushing for more applied research on the environmental implications of digital 49 

fabrication. In particular, its implementation in the construction sector requires quantitative 50 

assessments that consider aspects such as the design freedom that is facilitated by additive 51 

techniques.  52 

The objective of this study is to quantify the environmental benefits that digital fabrication can provide 53 

to the construction sector and define for which processes these construction techniques have a clear 54 

interest. Digital design and robotic fabrication developments which increase complexity in architecture 55 

yet should provide a cost effective method to deal with this structural complexity.Consequently, this 56 

study focuses on the environmental assessment of a building element that can be produced with 57 

different levels of complexity and a comparison between an additive robotic fabrication technique and 58 

traditional building construction techniques. This approach enables us to evaluate the potential 59 

environmental benefits of digital fabrication for each level of complexity.Specifically, we perform a 60 

comparative assessment of two construction processes (digital fabrication and conventional 61 

construction) for different types of concrete walls, from the simplest to the most complex. 62 

 63 

2 From 3D printing to digital fabrication in architecture  64 

The first three dimensional printing (3DP) technologies arrived during the 1980s to more efficiently 65 

fabricate prototypes in the product manufacturing industry. 3DP employs additive manufacturing (AM) 66 

processes to create three-dimensional objects by adding consecutive layers of material. These 67 

systems can now manufacture end products with the development of new materials and improvements 68 

in speed and accuracy based on superior hardware and computer technology (Lipson and Kurman, 69 

2013). Nowadays, AM is used across various industries (medicine, aerospace, art, etc.), mainly for 70 

prototypes but increasingly for final products (implants, lightweight structures, jewellery, etc.). 71 

Computer-controlled manufacturing methods are fundamentally transforming many design and 72 

production disciplines, similar to the mechanisation of the textile industry or the introduction of the 73 

assembly line. The high flexibility and reduced production costs of digital technologies introduced a 74 

new era towards the mass customisation of products (Berman, 2012). 75 
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3DP has experienced rapid development in recent years, and more materials can now be used in 76 

these processes. The size of these technologies has also rapidly increased, showing the potential to 77 

build large and complex-shaped structures by printing. As interest in additive manufacturing has 78 

grown, research into large-scale processes has begun to reveal potential applications in construction 79 

(Feng et al., 2015). The development of digital fabrication in architecture starts from specific projects, 80 

in which design aspirations and technological innovations lead to the development of fabrication 81 

processes beyond conventional boundaries (Dunn, 2012). Digital fabrication processes at the 82 

architectural scale are based on computational design methods and robotic construction processes, 83 

which are typically categorised as subtractive or additive fabrication. Specifically, architecture is 84 

typically built through material aggregation (assembly, lamination, extrusion, and other forms of 3D 85 

printing) in additive fabrication processes, frequently with an industrial robot, which enables the 86 

implementation of the additive principle at a large scale (Gramazio and Kohler, 2008).  87 

Recent developments in digital technologies and the introduction of computer-controlled additive 88 

fabrication in architecture demonstrate strong potential to construct customised complex structures 89 

(Gramazio et al., 2014). In particular, the optimisation of concrete structures through digital fabrication 90 

is currently being broadly investigated because of the large use of concrete in building construction  91 

and the labour costs from formwork preparation (Wangler et al., 2016). For example, the research 92 

project “Contour Crafting” at the University of Southern California showed the possible application of 93 

layered extrusion technologies for large-scale concrete construction (Khoshnevis et al., 2006). 94 

Similarly, Loughborough University applied 3D concrete printing to non-standard geometries to reduce 95 

the amount of material, time, waste and need for formwork (Lim et al., 2012). However, some of these 96 

technologies have limitations regarding the incorporation of reinforcement during the production 97 

process. The project Smart Dynamic Casting (SDC) at ETH Zürich overcame this problem with a novel 98 

digital fabrication process for complex concrete structures that enables the implementation of 99 

reinforcement during production. SDC uses dynamic slip-forming techniques to fabricate customised, 100 

vertically oriented shapes, which would conventionally require custom-made formworks (Lloret et al., 101 

2014).  102 

 103 

3 Methodology 104 

The selected method for the evaluation of the case study is the Life Cycle Assessment (LCA) 105 

framework present in the ISO 14040-44: 2006 standards (ISO, 2006a, b). LCA has been commonly 106 

used in many industrial sectors to evaluate the environmental load of processes and products during 107 

their life cycle. This method presents a comprehensive, systemic approach for the environmental 108 

evaluation, comparison and optimisation of processes (Cabeza et al., 2014). LCA has become a 109 

widely used methodology over the past 20 years to evaluate the impacts of materials, construction 110 

elements and buildings (Hoxha et al., 2017). 111 

European regulations for the promotion of a sustainable built environment highly stress the reduction 112 

of energy during the use phase. However, the proportional percentage of embodied energy is 113 

increasing as the operational energy demand is further optimised. Recent studies such as Passer et 114 
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al. (2012) agree that the operational energy is reaching the limit of reduction measures. Further 115 

optimisation of the life-cycle impacts of buildings may only occur by lowering the embodied energy of 116 

materials (Pacheco-Torgal, 2014). Consequently, we performed a cradle-to-gate analysis, including 117 

data from raw material extraction and transport, building materials and digital technologies production, 118 

and robotic fabrication (EN 15978 modules: A1-A3, A5). The operation and end-of-life stages were 119 

excluded from this case study evaluation.  120 

The LCA method was applied in this paper to compare the differences in the environmental impacts 121 

between digital fabrication and conventional construction and to understand for which type of projects 122 

digital fabrication produces environmental benefits. This case study compared two functional units of 123 

reinforced concrete wall with equal functionality and structural performance, including 1 m2 of wall that 124 

was constructed with digital fabrication techniques and 1 m2 of a conventional reinforced concrete 125 

wall. Specifically, the LCA comparison was applied to different types of walls, including straight, single-126 

curved and double-curved, to illustrate the possible levels of complexity. Finally, we tested the 127 

variability regarding the volume of concrete and steel in the structure in a sensitivity analysis to 128 

evaluate the additional benefits of digital fabrication if the process is optimised. The LCA method was 129 

implemented in the software SimaPro 8. Because of the Swiss context of this project, Ecoinvent v3.1 130 

was used as a database (Weidema B. P., 2013). The Recipe Midpoint (H) v1.12 impact method 131 

(Goedkoop et al., 2009) was used. The selected impact categories were climate change (kg CO2 eq.), 132 

ozone depletion (kg CFC-11 eq.), human toxicity (kg 1.4-DB eq.), terrestrial acidification (kg SO2 eq.), 133 

freshwater eutrophication (kg P eq.), terrestrial ecotoxicity (kg 1.4-DB eq.), freshwater ecotoxicity (kg 134 

1.4-DB eq.), water depletion (m3), metal depletion (kg Fe eq.) and fossil depletion (kg oil eq.). 135 

 136 

4 Description of the Mesh Mould construction technique 137 

Contemporary architecture has evolved towards a new culture based on the integration of design, 138 

structure and materiality to create complex non-standard surfaces (Rippmann et al., 2012). However, 139 

non-standard architecture requires the planning and fabrication of complex and labour-intensive rebar 140 

geometries and formworks that are not easy to fabricate with current construction techniques. The 141 

research project Mesh Mould from Gramazio Kohler Research at ETH Zürich is a novel construction 142 

system that is based on the combination of formwork and reinforcement into one single element that is 143 

fabricated on-site. This element is a three-dimensional mesh that is robotically fabricated through 144 

bending, cutting and welding steel wires. The mesh acts as the formwork during concrete pouring and 145 

as structural reinforcement after the concrete is cured (Hack et al., 2015). The structure is no longer 146 

restricted to planarity or single curvature and can be geometrically complex and individually adapted to 147 

the forces that act on the mesh (Hack et al., 2013). Figure 1 shows one of the recent prototypes of the 148 

Mesh Mould project.  149 
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 150 

Figure 1. Prototypes of the Mesh Mould structure (Gramazio Kohler Research, ETH Zurich).  151 

 152 

5 Case study  153 

The Mesh Mould construction technique was selected as a case study for the following LCA evaluation 154 

because of its formal and functional flexibility, which is adaptable from conventional to highly complex 155 

architectural forms. The Life Cycle Inventory (LCI) of a wall that is fabricated with the Mesh Mould 156 

technique and the LCI of different conventionally constructed reinforced concrete walls are 157 

summarised in this section. We considered a section of 1 m2 with a thickness of 20 cm for both types 158 

of walls.  159 

5.1 Digitally fabricated wall 160 

5.1.1 Concrete 161 

The concrete in the Mesh Mould wall is more demanding than that from the conventional technique. 162 

The properties of the concrete influence the protrusion rate through the mesh and the roughness of 163 

the surface. In response to the requirements of the Mesh Mould technique, the Institute of Building 164 

Materials (IFB, ETH Zürich) developed a special concrete mixture that could be optimised for the filling 165 

and trowelling processes (Hack et al., 2015). This mix is described and compared with an ordinary 166 

C25/30 concrete in Table 1. The ETHZ IFB concrete was modelled in the LCI using Ecoinvent 167 

processes. The silica fume was considered a by-product from the production of ferrosilicon alloy, and 168 

the allocation of environmental impacts was performed according to an economic distribution (Chen et 169 

al., 2010). Hypothesis on costs and production scheme were taken from Grist et al. (2015). For 170 

modelling the superplasticiser, we used data from different concrete production processes in 171 

Ecoinvent database. An average from different superplasticisers was included due to the unavailability 172 

of LCA data from the superplasticiser developed for the ETHZ IFB concrete (for details, see 173 

supplementary information). The volume of concrete contained in 1 m2 of wall was ��,�� = 0.2 m3.  174 
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 175 

Flow ETHZ IFB  C 25/30 

Ordinary Portland cement  500 kg/m3 300 kg/m3 

Undensified silica fume  43.5 kg/m3 - 

Water 169 kg/m3 190 kg/m3 

Aggregates of grain size 0-4 mm 705 kg/m3 790 kg/m3 

Aggregates of grain size 4-8 mm 1,008 kg/m3 1,100 kg/m3 

Polycarboxylate ether superplasticiser 4.32 kg/m3 - 

Table 1. ETHZ IFB concrete and C25/30 concrete mix composition.  176 

The difference in environmental impacts between an ordinary C25/30 concrete and the ETHZ IFB 177 

high-performance concrete mix was investigated in the LCA comparison, which is shown in Figure 2. 178 

The graph shows that the difference between the contribution to climate change of 1 cubic meter (m3) 179 

of the two concrete mixtures is significant. The customised mixture contributes approximately 40% 180 

more CO2 emissions than the conventional concrete. The increased amount of Portland cement (500 181 

kg/m3) is the main cause of this discrepancy, which nearly duplicates the amount within 1 cubic meter 182 

(m3) of C25/30 concrete. In contrast, the analysis through the cement efficiency concept developed by 183 

Damineli et al. (2010), where the environmental impact is expressed in kg CO2.m
-3.MPa-1, indicates a 184 

higher CO2 intensity in the ordinary concrete (Figure 3). The ETHZ IFB mix presents a compressive 185 

strength of 60 MPa, which duplicates the strength of the C25/30 concrete. Consequently, less ETHZ 186 

IFB concrete is needed to reach the same structural performance as an ordinary concrete, producing 187 

20% less CO2 emissions. 188 

 189 

Figure 2. Comparison of the climate change impact of 1 cubic meter of C25/30 and ETHZ IFB 190 

concrete. 191 
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Figure 3. Comparison of the cement efficiency of 1 cubic meter of C25/30 and ETHZ IFB concrete 193 

(expressed in kg CO2/m
3/MPa). 194 

The background data source for performing the LCAs can be found in the supplementary information.  195 

5.1.2 Steel mesh 196 

Metal wires with a diameter of 3 mm formed the 3D mesh of the digitally fabricated prototypes. The 197 

steel was B500A, which indicates the same tension yield strength fyk = 500 N/mm2 as the 198 

reinforcements in a conventional wall but less ductile material. Conventionally, reinforced concrete 199 

walls have a minimum nominal reinforcement ���� = 0.3 - 0.7% of the concrete volume, depending on 200 

the structural normative (CEN, 2004). Because of constraints such as the additional formwork function, 201 

the mesh volume fraction for the digitally fabricated wall was assumed to be ��� = 0.7%.Considering 202 

these data, the total steel mass of 1 m2 of wall was calculated as follows:  203 

	
,�� = ��� ∙ ��� ∙ 
 = 0.2 ∙ 0.007 ∙ 7850 ≈ 11	�� (1) 

where ��� is the total volume of the wall, ��� is the percentage of contained reinforcement and 
 is 204 

the standard density of the steel.  205 

5.1.3 Energy 206 

The energy demand of the robotic construction process was calculated based on the construction time 207 

of a wall prototype and the power supply of the construction robot. The tool head had a theoretical 208 

building speed of 10 h per 1 m2 (volume of 1 m x 1 m x 0.2 m). The robot “In-Situ Fabricator”, which 209 

has been developed by the NCCR Digital Fabrication, is electrically powered by lithium-ion batteries 210 

with a total capacity of 5.1 kWh, which enable the robot to operate for 3–4 h without being plugged in 211 

(Dörfler et al., 2016). As a result, the energy consumption during the construction with the Mesh Mould 212 

technique (���)	was calculated:   213 

��� = �� ∙ 	��� =
5.1	

3
∙ 10 ≈ 17	� ℎ 

(2) 

where �" is the power consumption of the robot and �## is the construction time of the functional unit 214 

of the wall.  215 

5.1.4 Digital technologies 216 

The embodied energy of the digital technologies was included in the LCI of the Mesh Mould wall, 217 

including the production of the “In-Situ Fabricator” construction robot and an attached tool for welding, 218 

bending and cutting, which are a property of the NCCR Digital Fabrication. The environmental impact 219 

of the robot production was calculated based on its material composition, which is listed in Agustí-Juan 220 

and Habert (2017). In addition, the tool head had an approximate mass of 10 kg and mainly consisted 221 

of aluminium. Because of the uncertainty in the service life of both customised digital technologies, we 222 

assumed a running time of 90,000 hours (Motion Controls Robotics, 2017). Based on the service life 223 
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and the construction time, we calculated the units of the robot and the tool that were used during the 224 

construction of the project: 225 

 
$� = $%&&' = 	

���

�()
=

10

90,000
= 1.11 ∙ 10+,	 

(3) 

where -. and -/001 represent the units of the robot and the bending, welding and cutting tool, 233 is 226 

the construction time and 242 the lifetime of the digital technologies.  227 

5.2 Conventional wall 228 

5.2.1 Concrete and reinforcing steel 229 

A reinforced concrete wall with a thickness of 0.2 m, as described in the Elementaten-Katalog EAK 230 

(CRB, 2011), was taken as a reference. The conventional wall contained the same volume of concrete 231 

and steel as the digitally fabricated wall. The concrete was C25/30, which is characterised by a 232 

compression strength fck = 25 N/mm2. The reinforcing steel was an ordinary, highly ductile B500B, 233 

with a tension yield strength fyk = 500 N/mm2.  234 

5.2.2 Formwork 235 

Four walls with increasing complexity were evaluated: straight, curved, double-curved and complex 236 

double-curved. The formwork for the construction of the conventional wall varied according to the 237 

degree of complexity of the wall. The initial scenario compared two straight concrete walls, one that 238 

was digitally fabricated with the Mesh Mould technique and one that was conventionally constructed. 239 

The formwork for the conventional wall consisted of three-layered laminated boards of spruce veneers 240 

(PERI, 2015). The formwork consisted of two panels with a nominal thickness of 21 mm, and we 241 

considered 10 times reuse (Malpricht, 2010). In scenario 1, we increased the complexity of the 242 

structure for a curved wall, so no formwork reuse was assumed. Additional softwood boards were 243 

used to support the facing of the three-layered panels and control the deformation of the concrete 244 

surface. In scenario 2, the complexity of the wall was increased compared to the previous scenario, 245 

this time considering a double-curved wall. In this case, the varying loads from the different physical 246 

states of the concrete were difficult to control and led to a higher use of softwood to stabilise the facing 247 

of the formwork. Double-curved wooden moulds can be fabricated (Weilandt et al., 2009), but these 248 

designs are labour intensive and have some formal limitations. Finally, the scenario with the highest 249 

complexity was a complex double-curved wall with a free-form polystyrene formwork, similar to the 250 

structure in Figure 4.  251 
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 252 

Figure 4. Sketch of a double-curved wall with a conventional foam formwork (Hack et al., 2014). 253 

This system consisted of polystyrene blocks that were cut according to the desired form and covered 254 

by a 5-mm layer of epoxy resin. The data inventory of the formwork production included the material 255 

and the energy demand for wire cutting the blocks. Additionally, we included 30% of waste 256 

polystyrene, produced during cutting of EPS blocks into complex formwork shapes (Kaftan and 257 

Stavric, 2013). The energy demand of the formwork production was calculated based on the speed 258 

(1,500 mm/min) and power (600 W) of a 2-axis wire-cutting machine. Finally, we considered the landfill 259 

deposition of the polystyrene after use. The LCI of the formwork in each scenario is summarized in 260 

Table 2. 261 

Scenario Structure Formwork 
reuse (times) 

3-layer laminated 
board [m3] 

Softwood 
board [m3] 

EPS foam 
slab [m3] 

Epoxy resin 
[m3] 

Energy 
[kWh] 

0 Straight wall 10  0.0042 0 0 0  
1 Curved wall 0 0.042 0.105 0 0  
2 Double-curved wall 0 0.042 0.320 0 0  
3 Complex double- 

curved wall 
0 0 0 0.52 0.01 0.013 

Table 2. Life Cycle Inventory of the formwork for the conventional wall in the different scenarios.  262 

5.2.3 Manual labour 263 

The construction of a conventional wall system involves manual labour. However, energy 264 

requirements and emissions that are related to human life are usually not included in environmental 265 

analysis. Some studies have included it and conclude that the environmental impact is anyhow 266 

negligible compared to the impact of construction work (Alcott, 2012).  267 

 268 

6 Results  269 

The results of the Life Cycle Assessment are presented below. The digitally fabricated wall is analysed 270 

in detail and compared to a conventional structure with the same functional unit. 271 

6.1 Assessment of the digitally fabricated wall 272 

The environmental assessment of the wall that was constructed with the Mesh Mould technique is 273 

illustrated in Figure 5. The concrete production process has a relative impact of more than 75% for 274 

Climate change because of the energy-intensive transformation process of the clinker for the cement 275 



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT
production and simultaneous release of CO2 during calcination. Moreover, the concrete has a 276 

contribution of approximately 60% to the environmental impact in indicators such as terrestrial 277 

acidification, fossil depletion and water depletion. Specifically, the impact of the concrete in the first 278 

indicators is caused by the burning process of fossil fuels during clinker production and the water is 279 

depleted during gravel production. On the other hand, the reinforcement has a dominant impact for 280 

freshwater eutrophication (63%), human toxicity (57%), freshwater ecotoxicity (61%) and metal 281 

depletion (89%). The pollution in the steel production for these impact categories is primarily related to 282 

the release of heavy metals to the atmosphere during steel recycling (Gomes et al., 2013). In contrast, 283 

the embodied energy of the digital technologies has a negligible relative impact, with a contribution of 284 

approximately 2% to freshwater eutrophication, human toxicity, freshwater ecotoxicity and metal 285 

depletion. Finally, the influence of the electricity production to fulfil the energy demand during 286 

construction is small in most of the midpoint categories, with a maximum contribution of 20% in ozone 287 

depletion. The results of the LCA indicate that the environmental performance of the Mesh Mould wall 288 

primarily depends on the use of materials. Therefore, an additional analysis to determine the 289 

environmental potential of an optimised design is conducted in the sensitivity analysis. 290 

 291 

Figure 5. Relative contribution of the individual processes to the environmental impact of a wall that is 292 

constructed with the Mesh Mould process. 293 

6.2 Comparison of conventional and digital fabrication techniques 294 

The LCA comparison of the digital fabrication and conventional construction processes for four types 295 

of walls is graphically depicted in Figure 6. This figure includes an analysis of the climate change and 296 

human toxicity indicators with an increase in the walls’ complexity, which is represented by the four 297 

scenarios in Table 3. The results present variability that depends on the midpoint category and 298 

considered scenario. For a straight wall, the environmental impacts of the conventional wall are lower 299 

than the Mesh Mould wall. For a single-curved wall, the contribution to climate change of a 300 

conventional wall is lower than the digitally fabricated one, while the human toxicity is similar for both 301 

(6% difference). For the double-curved wall, the CO2 emissions from the Mesh Mould wall are still 8% 302 

higher than the conventional wall constructed with plywood formwork. In contrast, the human toxicity 303 

indicator in the same scenario is 19% higher in a double-curved conventional wall than in the Mesh 304 
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Mould wall. The results prove that the environmental performance of the conventional wall decreases 305 

with increasing structural complexity. The difference in environmental impacts between a single-306 

curved and a double-curved wall is mainly attributed to the increase in softwood boards to contain the 307 

additional forces from the increased structural complexity of the structure. Finally, for a complex 308 

double-curved wall, which implies the use of polystyrene formwork in the conventional technique, the 309 

Mesh Mould construction process allows savings of 38% for climate change and 31% for human 310 

toxicity factors.  311 

 312 

Figure 6. LCA comparison of a Mesh Mould wall (no formwork required) and a wall that is constructed 313 

with conventional techniques (formwork). The scenarios represent the increasing complexity of the 314 

walls.  315 

The relative contributions from the production processes of a complex double-curved wall with 316 

polystyrene formwork to the different impact categories are depicted in Figure 7. We can observe the 317 

high impact of the epoxy resin for the formwork covering, which is responsible for 45% of the climate 318 

change emissions, 64% of terrestrial acidification, 60% of water depletion and 69% of fossil depletion. 319 

Moreover, the production of the polystyrene mostly influences the ozone depletion indicator (17%). 320 

Finally, the landfilling of the formwork after one reuse highly contributes to ecotoxicity. On the contrary, 321 

the environmental impacts of the Mesh Mould contruction process do not change with rising demands 322 

of the form, so the environmental potential is growing with the required effort in the conventional 323 

technique. Therefore, the digital fabrication method becomes more interesting the more unique and 324 

complex the architectural forms are.  325 
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 326 

Figure 7. Relative contribution of the individual processes to the environmental impact of a complex 327 

double-curved wall that is constructed with conventional techniques. 328 

 329 

7 Sensitivity analysis 330 

The results show that the digital fabrication process induces greater environmental impacts than the 331 

conventional technique for walls with low degrees of complexity (scenarios 0 and 1). The Mesh Mould 332 

construction process is a research project that is still in its optimisation phase. As a result, the LCI of 333 

the digitally fabricated wall contains some assumptions, mainly at the material level, during the 334 

comparison with conventional construction. In this section, the uncertainty on the concrete and steel 335 

volume in the Mesh Mould wall is graphically depicted to further analyse when digital fabrication 336 

produces environmental benefits compared to conventional construction.  337 

7.1 Concrete 338 

In the initial comparison, the Mesh Mould wall was conservatively considered to have the same 339 

dimensions as a conventional wall built with C25/30 concrete. However, the compression strength of 340 

the ETHZ IFB concrete is higher based on the greater amount of cement, which could be used to 341 

reduce the thickness of the structural element. In published case studies, the use of high performance 342 

concrete has already been efficiently used to reduce thickness of structural elements such as bridges 343 

and provide an environmental benefit (Habert et al., 2012). Moreover, the difficulty of positioning the 344 

rebars and the formwork before pouring the concrete inside a tight building element is here potentially 345 

overcomed with digital fabrication techniques. Consequently, this section quantifies the minimum wall 346 

thickness that is compliant with structural requirements to improve the environmental performance of a 347 

straight wall that is constructed with the Mesh Mould process. In the following analysis, the break-348 

even-point is approached by continuously reducing the thickness of the Mesh Mould wall. The 349 

maximum thickness of the digitally fabricated wall can be distinguished when the contribution from 350 

both construction elements to the impact categories is equal. The calculation approach for the Mesh 351 

Mould wall is based on adjusting the concrete volume to the variable thickness of the wall without 352 
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modifying the other parameters. Figure 8 compares the CO2 emissions for wall thicknesses between 353 

10 and 20 cm to those of a 20-cm-thick conventional concrete wall.  354 

 355 

Figure 8. Comparison of the contribution to the climate change category of two straight walls: a 356 

conventionally built wall with constant thickness and a digitally fabricated wall with variable thickness.  357 

The graph demonstrates that the CO2 emissions of the digitally fabricated wall are 12% lower than the 358 

conventional wall when the thickness is reduced to 10 cm. The graph shows a break-even point for the 359 

climate change category at a thickness of 12 cm, which means that digital fabrication technology 360 

would be effectively performant from an environmental perspective when producing thinner straight 361 

walls than those from conventional methods. The feasibility of a Mesh Mould wall with this thickness is 362 

evaluated by calculating the slenderness criteria according to Eurocode 2: Design of concrete 363 

structures (CEN, 2004), which leads to the ratios in formulas 4 and 5:  364 

 56

789'',��
≤ 25 

(4) 

where twall,MM is the minimum thickness of a Mesh Mould concrete wall and 56 is the effective length of 365 

the wall, which is calculated by 366 

 56 = ; ∙ 58 = 2.4 (5) 

where 58 is the clear height of the wall (2.4 m), and β is a coefficient that represents the support 367 

conditions, which was conservatively taken as 1.0 for this evaluation. The calculation shows that a 368 

minimal wall thickness of twall,min≥ 0.1 m is required in the Mesh Mould wall. Therefore, the thickness at 369 

the break-even point of CO2 emissions (tMM,BEP = 0.12 m) would be sufficient. Finally, a second 370 

calculation regarding the compression strength of the ETHZ IFB concrete mix is performed. A direct 371 

proportionality between the strength of the concrete and the bearing capacity of the wall is assumed, 372 

and no failure modes or load situations except compression are considered to simplify the calculation. 373 

The conventional wall has a thickness of 0.2 m and its concrete has a compression strength of fck = 25 374 

N/mm2. Formula 6 shows the minimum required compression strength (=�>,��,���) of the ETHZ IFB 375 

mix for a wall of 12 cm: 376 
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where twall,con is the thickness of the conventional wall, tMM,BEP  is the thickness of the Mesh Mould wall 377 

at the break-even point and =�> is the compression strength of the standard concrete mix. Typically, 378 

high-performance concrete has a fine fraction of a supplementary cementitious material and w/c<0.4, 379 

which enables the material to reach a compressive strength over 80 or even 100 N/mm2. The ETH IFB 380 

mix is a high-performance concrete, which contains silica fume as supplementary cementitious 381 

material and has a water-cement ratio (w/c) of 0.34. This concrete mixture presents a minimum 382 

compressive strength between 60-70 MPa, which exceeds the required fck,MM,min = 41.7 N/mm2. In 383 

conclusion, the conducted structural analysis shows that the break-even point in CO2 emissions for the 384 

digitally fabricated wall compared to a conventional wall is theoretically reachable and that the wall 385 

thickness can be reduced to 0.1 m.  386 

7.2 Reinforcing steel 387 

During the initial analysis, the volume fraction value that was assumed for the reinforcement of the 388 

Mesh Mould wall was rMM = 0.7%. In this sensitivity analysis, we establish a range around the previous 389 

value with a minimum and maximum reinforcement content. On the one hand, distributing steel only 390 

where it is structurally necessary could potentially reduce the steel volume fraction of rMM,min = 0.5%. 391 

On the other hand, the structural performance of the wires in a bearing wall could increase the 392 

reinforcement content, with a steel volume fraction of rMM,max = 1.5%. Figure 9 graphically depicts the 393 

sensitivity analysis of the digitally fabricated wall when considering the previous range of 394 

reinforcement volume fractions. 395 

 396 

Figure 9. LCA comparison of two straight walls: a conventionally built wall with 0.7% steel volume 397 

fraction and a digitally fabricated wall with variable volume fraction of reinforcement.  398 

The graph reveals the great impact of the variability in the amount of reinforcement steel on the global 399 

environmental impact of digitally fabricated wall. In particular, the uncertainty between rMM,min = 0.5% 400 

and rMM,max = 1.5% results in a difference of approximately 125% in freshwater eutrophication and 401 

freshwater ecotoxicity, 113% in human toxicity and 140% in metal depletion emissions. The 402 

importance of efficient steel usage is shown in the previous results. However, the optimisation of 403 

reinforcing steel reduces the environmental impacts compared to a conventional reinforced concrete 404 
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wall only in some categories such as metal depletion (23%). In categories such as climate change, the 405 

reduction in steel do not enable the Mesh Mould wall to achieve lower emissions compared to a 406 

conventionally constructed straight concrete wall. Consequently, the structural performance of walls 407 

that are fabricated with the Mesh Mould technique should be modelled and tested to minimise the 408 

volume fraction of steel but combined with the optimisation of other parameters, such as the concrete 409 

volume. 410 

 411 

8 Synthesis 412 

The results of the sensitivity analysis are summarised in this section. The extreme values of the 413 

individual materials represent a range of possible outcomes for the Mesh Mould case study. 414 

Scenarios for the digitally fabricated wall: 415 

• Best scenario: The optimal performance of the Mesh Mould wall is characterised by a minimal 416 

reinforcement steel volume fraction of rMM,min =0.5% and a lower wall thickness of tMM,min = 0.1 m, 417 

which is the limit from the slenderness criteria. 418 

• Reference scenario: The initially considered Mesh Mould wall has a reinforcement of rMM =0.7% 419 

and a wall thickness of twall = 0.2 m. 420 

• Worst scenario: Buckling failure might require a wall thickness of tMM = 0.2 m, and additional 421 

complications with the mesh could lead to a reinforcement steel content of rMM,max = 1.5%. 422 

Scenarios for conventional construction: 423 

• Standard scenario: The smallest environmental impact for the conventional method is reached in 424 

a straight wall, where the formwork was reused 10 times. The dimensions are set to twall = 0.2 m, 425 

using rwall =  0.7% of steel and ordinary C25/30 concrete. 426 

• Complex scenario: Conventionally, a complex double-curved wall that is constructed with 427 

polystyrene formwork and is not reusable showed the worst environmental performance. The 428 

dimensions are set to twall = 0.2 m, with rwall =  0.7% of steel and ordinary C25/30 concrete. 429 

The range of environmental impacts from the best- and worst-case scenarios and as well as the initial 430 

digitally fabricated wall compared to the complexity-dependent impacts of the conventional wall are 431 

illustrated in Figure 10.  432 
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 433 

Figure 10. LCA comparison of a digitally fabricated wall with a straight and a complex double-curved 434 

wall that are constructed with conventional techniques. The error bars represent the best and worst 435 

scenarios of the wall. 436 

The large variability in the environmental emissions of the best and worst cases of the Mesh Mould 437 

wall highlights the importance of material optimisation. The best scenario of the digitally fabricated wall 438 

reduces material usage and decreases the CO2 emissions by 33% compared to the reference 439 

scenario. Simultaneously, the worst scenario exhibites substantially higher emissions than the 440 

reference scenario, with an increase of 52% in metal depletion. The results indicate that the best 441 

scenario of the Mesh Mould wall produces potential environmental benefits compared to a 442 

conventionally constructed straight concrete wall. Specifically, the best scenario of the Mesh Mould 443 

wall reduces the emissions by 3-13% depending on the indicator. However, the outcome of this 444 

comparison greatly depends on the material optimisation of the system. A less optimised Mesh Mould 445 

wall (worst scenario) has lower environmental performance than a conventional straight wall.   446 

Finally, the results prove that the reference Mesh Mould system can currently environmentally 447 

compete with a conventionally constructed double-curved wall. The reference scenario of the Mesh 448 

Mould wall shows greater impacts compared to the complex conventional scenario only in three 449 

midpoint categories, but the difference is minimal (1-9%). Moreover, the worst scenario of the digitally 450 

fabricated wall can environmentally compete with a complex conventional wall in categories such as 451 

climate change, terrestrial ecotoxicity or fossil depletion. In conclusion, the complexity is an important 452 

factor to consider during comparisons with conventional construction. Contrary to conventional 453 

techniques, the impacts of the Mesh Mould process do not increase with the uniqueness and 454 

complexity of the architectural forms. 455 

 456 

9 Discussion  457 

In this paper, we evaluated the environmental potential of an innovative digital fabrication process for 458 

the construction of complex concrete structures. The conducted research confirmed the environmental 459 
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potential of additive fabrication, as anticipated in previous studies such as Kohtala and Hyysalo 460 

(2015).  Moreover, the analysis showed that digital fabrication in complex geometries (double-curved 461 

walls) provides an environmental benefit compared to conventional construction. Digital fabrication 462 

techniques facilitate the construction of complex and slender structures without the use of 463 

conventional formworks, with associated material savings. However, does this additional complexity in 464 

the structure provide an environmental benefit? This question seems reasonable and can be 465 

addressed by examining which additional functions can support double-curved walls that are built with 466 

digital fabrication. This specific question leads to the use of complex forms in architecture. Complexity 467 

is an architecture characteristic, whose costs and value creation have often been discussed in the 468 

literature (Venturi, 1977), and we would like to raise three different possibilities to discuss the 469 

appropriate use of complexity for sustainability. 470 

First, complexity can be seen as a consequence of a highly integrated construction process. The 471 

conventional organisation of a construction is conceived as a successive and layered process where 472 

each element and function is addressed by a different element and built at different moments by 473 

different skilled workers. This combination of functions through the help of digital technologies can 474 

save time and building materials, frequently associated with money and grey energy reductions 475 

(Agustí-Juan and Habert, 2017). This integrated design increases the complexity, which can be 476 

handled with no additional costs through digital fabrication. When digital fabrication is used to build 477 

elements that permit an integrated design, the complexity of these elements is likely justified from an 478 

environmental perspective because integrated functions can save materials and because the 479 

production of these complex elements is more efficient when digital fabrication is used. However, the 480 

choice of functions is crucial. For instance, the complex building element in this study can be 481 

understood as the fusion of structure and final layering. From a classic sustainable design perspective, 482 

these two elements are considered to have completely different service lives. The structure has a 483 

service life of 60 years, while interior finishing is thought to be changed every 15 years (Hoxha et al., 484 

2014). If the structure must be changed every 15 years, the environmental impact drastically 485 

increases. On the contrary, avoiding the replacement of interior finishing because of its long-lasting 486 

design can save energy. 487 

This observation leads to a second question regarding complexity in architecture as an enlightenment 488 

of the structure and more generally as an ornament. The function of ornaments has long been 489 

discussed. Rosenbauer (1947) stated  that “Engineering, when it uses materials up to their functional 490 

limits approaches the economy of nature and thereby creates forms as beautiful as the forms of 491 

nature. […] Engineering occasionally produces art but we cannot assume that all art will come from 492 

engineering. We must have poets and we must have designers and their business is to embellish and 493 

adorn our lives and our culture. […] Ornament cannot be abolished as the desire for embellishment is 494 

essentially human, and humans will gratify it wherever they can”. This author also wrote that “the 495 

machine will then produce ornament willed by the designer as naturally as did the handtools of the 496 

artist craftsman. Then there will be proper and excellent ornament, differing from traditional ornament 497 

as our culture differs from those of the past. The public will buy it as the good things of the past were 498 
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bought by that public, and greater numbers will be economically able to do so. This is the real manner 499 

in which the machine may raise our standard of living.”  500 

Considering this perspective and the results of this study, in which the machine produced ornaments 501 

with lower environmental impact than the same element from a conventional technique, we can 502 

consider digital fabrication as an effective construction technique to produce complex ornaments. 503 

Moreover, the function of ornaments and the inherent complexity that is related to its production is 504 

justified by the social need of ornamentation. In a recent perspective on ornamentation in architecture, 505 

Moussavi and Kubo (2006) established that “Architecture needs mechanisms that allow it to become 506 

connected to culture”. The aesthetic composition of buildings is effectively related to the culture by 507 

creating affects and sensations. Even if modern design does not require ornaments, society continues 508 

demanding these additional elements to connect with the contemporary culture. In their book, the 509 

authors also showed through examples how ornaments in contemporary architecture can integrate 510 

functions (structure, visibility, etc.) behind an apparently purely aesthetic performance. 511 

Finally, complexity can be seen as a consequence of a problem-solving attitude. Societies often solve 512 

problems by developing more complex environments and technologies (Tainter and Taylor, 2014). 513 

This can be seen as positive, for instance, studies on environmental psychology-oriented design 514 

suggest that high levels of spatial and visual complexity in the workspace foster creativity. Factors 515 

such as the creativity or productivity of employees are influenced by their aesthetic judgements of the 516 

built environment (Gifford, 2014). However, complexity both solves problems and generates them. 517 

Innovative technologies, which are intended to save energy through complex designs and controls, 518 

may consume more. The complexity of designs produces unintended interactions among components, 519 

producing further problems, and the current sustainability concerns regarding buildings are creating 520 

more complex building designs. Complexity in control systems, for example, leads to unanticipated 521 

growth in facility management. Interior environmental systems are so complex that many users cannot 522 

fine-tune the controls, so a large amount of energy is wasted (Bordass and Leaman, 1997).  523 

Digital fabrication can facilitate the production of elements with higher complexity without increasing 524 

the environmental costs, as is usually observed in conventional construction, which could contradict 525 

the traditional observation pattern that increasing complexity, while initially effective, accumulates and 526 

induces diminishing returns, undermining the ability to solve future problems. In that sense, this study 527 

matches the common understanding of the digital revolution as the third moment in humanity when an 528 

increase in system complexity allowed positive feedback (Gershenfeld, 2012). These occasions have 529 

been so rare that they are designated with terms that signify a new era, namely, the Agricultural 530 

Revolution and the Industrial Revolution. These events were followed by great expansions in the 531 

number of humans, wealth and complexity of societies.  532 

 533 

10 Conclusions 534 

In this study, the environmental impact of an innovative digital fabrication construction was compared 535 

to a similar structure that was built with conventional construction techniques. The results showed that 536 

digital fabrication produces high environmental benefits compared to conventional construction when 537 
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complex structures are built. In this study, we confirmed that the environmental impact of the Mesh 538 

Mould process does not grow with the uniqueness and complexity of the architectural form. Additional 539 

complexity was achieved without additional environmental costs, so the potential benefit of digital 540 

fabrication increased proportionally to the level of complexity of the structure. This result is a 541 

quantitative argument to position digital fabrication at the beginning of a new era, which is often called 542 

the Digital Age in many other disciplines. This analysis also showed that the current Mesh Mould 543 

system can environmentally compete with conventional structures, which have a high degree of both 544 

formal and structural complexity. However, the results highlighted the need for improvement to 545 

compete at a lower degree of complexity. In this case, high thickness reduction must be achieved 546 

without compromising the structural performance. Finally, this study also raised the attention of the 547 

need to justify complexity from an environmental point of view to avoid the risk of complexifying a 548 

socio-technical system for no real mean.  549 
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• LCA comparison between robotic fabrication and conventional construction.  

• Mesh Mould construction process analysed from an environmental point of view. 

• Environmental benefits of digital fabrication when applied to complex structures. 

• Justification of complexity from a sustainable perspective. 

 

 


