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Abstract 1 

A fundamental question in systems neuroscience is how endogenous neuronal activity self-2 

organizes during particular brain states. Recent neuroimaging studies have demonstrated 3 

systematic relationships between resting-state and task-induced functional connectivity (FC). 4 

In particular, continuous task studies, such as movie watching, speak to alterations in 5 

coupling among cortical regions and enhanced fluctuations in FC compared to the resting-6 

state. This suggests that FC may reflect systematic and large-scale reorganization of 7 

functionally integrated responses while subjects are watching movies. In this study, we 8 

characterized fluctuations in FC during resting-state and movie-watching conditions. We 9 

found that the FC patterns induced systematically by movie-watching can be explained with a 10 

single principal component. These condition-specific FC fluctuations overlapped with inter-11 

subject synchronization patterns in occipital and temporal brain regions. However, unlike 12 

inter-subject synchronization, condition-specific FC patterns were characterised by increased 13 

correlations within frontal brain regions and reduced correlations between frontal-parietal 14 

brain regions. We investigated these condition-specific functional variations as a shorter time 15 

scale, using time-resolved FC. The time-resolved FC showed condition-specificity over time; 16 

notably when subjects watched both the same and different movies. To explain self-17 

organisation of global FC through the alterations in local dynamics, we used a large-scale 18 

computational model. We found that condition-specific reorganization of FC could be 19 

explained by local changes that engendered changes in FC among higher-order association 20 

regions, mainly in frontal and parietal cortices.  21 
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Introduction 22 

The neural correlates of information processing at a local scale have been widely studied. 23 

However, the integration of information at the whole-brain level may also be crucial for 24 

understanding brain function (Baars, 1993; Tononi, 2004). Advances in neuroimaging 25 

techniques such as functional magnetic resonance imaging (fMRI) now allow us to ask how 26 

the brain regulates information flow in large-scale cortical networks (Deco et al., 2015). For 27 

example, several studies suggest that neuronal synchronization mediates communication in 28 

large-scale cortical networks during task performance (Brovelli et al., 2004; Gross et al., 29 

2004; Siegel et al., 2008) and the resting state (Brookes et al., 2011; Hipp et al., 2012).  30 

 31 

Resting state functional connectivity (rs-FC) is a widely-used technique to characterize large-32 

scale organization of brain activity, based on the temporal correlations between blood oxygen 33 

level-dependent (BOLD) signals (Biswal et al., 1995). Rs-FC patterns have been shown to 34 

provide ‘fingerprints’ for functional brain organization during the resting-state (Finn et al., 35 

2015; Smith, 2016) and task induced responses (Tavor et al., 2016). Recent studies suggest 36 

a strong relationship between the FC during resting state and task performance (Betti et al., 37 

2013; Cole et al., 2016, 2014; Rosenberg et al., 2015). In particular, continuous task 38 

paradigms such as viewing natural scenes (i.e. movie watching) are of particular interest due 39 

to their ecological validity (Betti et al., 2013). Several studies have found that FC is more 40 

reliable and promotes the detection of individual differences while subjects view movies (Kim 41 

et al., 2017; Vanderwal et al., 2017, 2015). Moreover, a systematic reorganization of the 42 

cortical interactions – with changes in functional network assignments – has been 43 

demonstrated during movie-watching (Kim et al., 2017; Wolf et al., 2010). Therefore, the 44 

condition-specific changes and enhanced reliability of FC may be induced by the task-45 

dependent engagement of specific brain regions (Hasson, 2004; Hasson et al., 2010) and/or 46 

large-scale functional reorganization (Kim et al., 2017; Simony et al., 2016; Wolf et al., 2010). 47 

On the basis of these studies, we hypothesized that the intrinsic reorganization of FC during 48 

movie-watching could be quantified and modelled in terms of systematic fluctuations in 49 

connectivity patterns.  50 

 51 

To study the reorganization of FC, we analysed the variations in grand-average (over time) 52 

and time-resolved FC during rest and movie-watching. We characterized the variations in FC 53 

patterns across subjects using principal component analysis (PCA). PCA and associated 54 

techniques have been used to characterize resting-state fluctuations (Carbonell et al., 2011), 55 

whole-brain connectivity dynamics (Allen et al., 2012) and disease-related rs-FC states 56 

(Craddock et al., 2009). Based on the projections of individual subject scores on the principal 57 

components, we identified FC-states specific to the movie-watching condition. We then 58 

compared these condition-specific FC patterns with inter-subject synchronization (Kim et al., 59 

2017; Simony et al., 2016). 60 

 61 
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One question – related to the task-dependent reorganization of FC – is whether alterations in 62 

grand-average FC (over the whole session) reflect a continuous (temporally stable) functional 63 

state or the emergence of functional modes fluctuating over time (Gonzalez-Castillo et al., 64 

2015). To answer this question, we extended our analysis beyond grand-average FC states 65 

and investigated the temporal fluctuations in FC states based on the dynamics of phase-66 

coupling among brain regions. 67 

 68 

Finally, we used whole-brain computational modelling to test whether the reorganization of 69 

FC can be explained by the fluctuations in local connectivity. In other words, we adopted a 70 

mechanistic approach to task-dependent FC using a large-scale, biophysically plausible 71 

modelling framework. In brief, we constrained long-range interactions between brain regions 72 

using diffusion weight imaging-derived (DWI) structural connectivity, and estimated the 73 

fluctuations in local connectivity – of each brain region – during movie-watching that best 74 

explained the observed FC.  75 

  76 
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Results 77 

To characterize fluctuations in functional connectivity (FC), first we established the 78 

relationship between the FC patterns during resting-state and movie-watching conditions. The 79 

grand average FC over the resting-state and movie-watching sessions exhibited similar 80 

patterns (r=0.8) (Figure 1A). The similarity among the FC of individual subjects was 81 

substantially higher under the same condition (resting-state r=0.46  0.06; movie r=0.49  82 

0.06) than across conditions (r=0.40  0.07). These results confirm previous findings that 83 

showed similar grand average FC patterns during resting-state and movie-watching (Betti et 84 

al., 2013; Cole et al., 2014). 85 

 86 

To quantify the variability in FC across subjects during resting-state and movie-watching 87 

conditions, we performed principal component analysis (PCA) over subjects (Figure 1B). 88 

PCA decomposes high-dimensional data features into orthogonal axes (principal 89 

components) that explain the most variance. The projections provide a score for each 90 

observation (i.e., subject/run) along the principal components. We applied PCA to 91 

concatenated vectorised matrices from 21 subjects, during 2 separate runs of resting state 92 

and movie-watching conditions. This allows us to compare the scores (i.e. expression of 93 

principal components by individual subjects) during rest and movie-watching.  94 

 95 

Distinct modes of variation in functional connectivity during movie-watching 96 

 97 

The first principal component (PC-1) – explaining 25.8% of the variance (Figure 1C) – 98 

reflected a FC pattern that was conserved over runs. The scores of PC-1 were significantly 99 

correlated with the global variance of each fMRI run (r=0.99, p<0.0001, dof=83) (Figure 1L). 100 

This result suggests that the principal mode of variation in FC reflects variations in global 101 

signal. The second principal component (PC-2) (Figure 1E) – explaining 7.2% of the variance 102 

– clearly distinguished the movie-watching condition from resting-state (i.e., PC-2 scores 103 

perfectly separate resting-state and movie-watching conditions). We will refer to this 104 

component as a condition-specific PC (Figure 1F). This result suggests that the condition-105 

specific variations in FC can be explained along a single mode of variation (PC-2), which is 106 

orthogonal to the global-signal related mode (PC-1). 107 

 108 

We repeated PCA for 1000 surrogate FCs across subjects to define the components 109 

explaining a significant proportion of variance (see Materials and Methods). The variance 110 

explained by the first 13 components was greater than the variance explained by surrogate 111 

FCs; suggesting that the first 2 PCs explain a significant amount of variation. The remaining 112 

components did not show any specificity regarding the movie-watching condition and were 113 

not analysed further.  114 

 115 
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To test the consistency of the condition-specific PCs across runs, we repeated the PCA for 116 

each run separately and quantified the similarities between PCs across runs. For each run, 117 

we identified condition-specific PCs that were highly consistent across runs (r=0.83 for PC-2 118 

scores) (Supplementary Figure 1). Furthermore, the similarities between PCs and scores 119 

were higher for condition-specific components than global signal-related components (r=0.75 120 

for PC-1 scores) (Supplementary Figure 1). These results suggested that the condition-121 

specific PC and associated scores (i.e., expression in individual subjects) were conserved 122 

across runs, which suggest a link between condition-specific and individual variations in FC. 123 

 124 

Contribution of potential non-neuronal confounds 125 

 126 

Previous studies have shown differential subject movements and increased arousal while 127 

watching natural scenes (Siegel et al., 2016; Vanderwal et al., 2015). Therefore, the 128 

condition-specific PC may reflect the contributions from movement or arousal artefacts. To 129 

address the role of head motion, we calculated the correlation between mean frame-wise 130 

displacement and principal component scores. The first PC scores, reflecting global signal 131 

variations, were significantly correlated with head motion (Spearman rank r=0.37, p<0.001, 132 

dof=83). We found no significant correlation between head motion and condition-specific PC 133 

scores (Spearman rank r=0.03, p=0.75, dof=83). 134 

 135 

To preclude other artefactual contributions, we repeated the analyses after regressing out the 136 

global signal (Figure 1G-J). After global signal regression (GSR) the first principal component 137 

(PC-1) explained 9.69% of the variance and reflected condition-specific variations in FC 138 

(Figure 1J). Similarly, no significant correlation was observed between head motion and 139 

condition-specific PC scores after GSR (Spearman rank r=0.02, p=0.85, dof=83). Crucially, 140 

the condition-specific components were similar with and without GSR (r=0.81) (Figure 1K). 141 

This analysis suggests that condition-specific variations in FC are not associated with head 142 

motion and that they are robust to global signal regression.  143 

 144 

Relationship between condition-specific FC variations and inter-subject 145 

synchronization 146 

 147 

The condition-specific variations in FC may reflect time-locked fluctuations during movie-148 

watching condition as reported in previous studies (Kim et al., 2017; Simony et al., 2016). We 149 

characterized these time-locked FC patterns (during the movie-watching condition) using 150 

inter-subject synchronization FC (ISS-FC) (Figure 2A). In brief, ISS-FC removes the 151 

contribution of endogenous activity by evaluating the FC between two regions from different 152 

subjects (Kim et al., 2017; Simony et al., 2016). For each run, the subjects were randomly 153 

assigned into 2 non-overlapping groups. The FC was then evaluated as the correlation 154 

between pairs of regions across the average BOLD time-series from distinct sets of subjects. 155 
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Since the subjects were exposed to the same stimuli only during movie watching, ISS-FC 156 

exhibited high-magnitude correlations in the movie-watching but not in the resting-state 157 

condition (Kim et al., 2017) (Supplementary Figure 2).  158 

 159 

ISS-FC during movie watching showed the highest values within occipital and temporal 160 

regions; suggesting that synchronization is due to time-locked visual and auditory events 161 

(Figure 2B). In addition, ISS-FC showed high synchronization between occipital/temporal and 162 

parietal brain regions, such as inferior and superior parietal cortex (Figure 2B). The pattern of 163 

the condition-specific PC was similar to the ISS-FC (r=0.46) (Figure 2C-D). As in the ISS-FC, 164 

the condition-specific PC exhibited higher values within occipital and temporal, and between 165 

occipital/temporal and parietal brain regions (Figure 2C). However, the condition-specific PC 166 

differed from the ISS-FC in various aspects: First, the condition-specific PC exhibited more 167 

pronounced connectivity changes in fusiform and lingual gyri, and inferior temporal compared 168 

to the ISS-FC. Second, the condition-specific PC comprised enhanced intra- and inter-169 

hemispheric connectivity between frontal brain regions (particularly lateral and medial orbital 170 

frontal cortex, pars orbitalis and frontal pole), which were not observed in the ISS-FC. Third, 171 

the condition-specific PC exhibited strong negative values (reduced connectivity) particularly 172 

across frontal and parietal regions. These attenuated values involved FC between caudal 173 

anterior/posterior cingulate and supramarginal gyrus, superior/inferior parietal, and caudal 174 

middle-frontal cortex. These results suggest that although the condition-specific PC overlaps 175 

with the ISS-FC, it highlights a distinct functional reorganization, expressed predominantly in 176 

higher-order association regions. 177 

 178 

Condition-specific FC trajectories in time-resolved FC 179 

 180 

The grand average FC approach cannot differentiate between a temporally stable mode of 181 

FC and fluctuations in FC (i.e., a succession of distinct FC patterns). To address this issue, 182 

we analysed time-resolved fluctuations in FC (also known as dynamic FC). Here, we tested 183 

the hypothesis that FC continuously reorganizes during movie-watching. We constructed 184 

time-resolved FC based on the fluctuations in phase-locking values (PLVs) between brain 185 

regions (see Materials and Methods). The advantage of this approach is that it eliminates 186 

the dependency on a particular window and step size, as in sliding-window analysis. Instead, 187 

it requires one to specify a narrowband range to calculate PLVs. Here, we chose 0.04-188 

0.07Hz, which does not overlap with the frequency ranges of low-frequency drift and high-189 

frequency noise (Glerean et al., 2012). First, we band-pass filtered the BOLD time-series and 190 

employed Hilbert transform. We then calculated the PLVs at each time point using the 191 

instantaneous phases of each brain region (Figure 3A).  192 

 193 

To establish the link between the time-resolved FC analyses and Pearson correlation-derived 194 

FC, we calculated the grand average PLVs over time, and performed PCA across subjects. 195 
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This analysis showed that the principal components based on PLVs also exhibit condition 196 

specificity (Figure 3D). Furthermore, condition-specific PC of PLVs was similar to those 197 

derived from Pearson correlation-derived FC (r=0.88). Therefore, the condition specific FC 198 

patterns for PLVs were aligned with those based on the Pearson correlation-derived grand-199 

average FC. 200 

 201 

For each subject, we performed PCA on PLVs over time (Figure 3B). We identified the 202 

condition-specific component for each subject as the one (i.e. PC-1 or PC-2) exhibiting the 203 

highest correlation with the grand-average condition-specific component (Figure 3E). For the 204 

majority of the subjects, the trajectories (i.e. the PC scores) of the condition-specific 205 

components reflected a clear distinction between conditions (Supplementary Figure 3). We 206 

quantified this condition-specificity for each individual subject by comparing the median 207 

trajectories (i.e. median PC scores) during the resting-state and the movie-watching 208 

conditions (Figure 3C). We then calculated the distance (i.e. squared difference) between the 209 

median trajectories of rest/movie conditions (Figure 3F). The distance between rest/movie 210 

median trajectories were compared to the distance between 1000 randomly grouped 211 

trajectories (Figure 3G). 20 out of 21 subjects showed a significantly larger distance between 212 

rest/movie trajectories than any other randomly grouped trajectories (p<0.001) (Figure 3I). 213 

Since the trajectories of the condition-specific PCs are time-dependent, we assessed the 214 

significance of the median trajectory distances between runs/conditions across subjects. We 215 

found that the distance across conditions (i.e. movie/rest conditions) were significantly larger 216 

than the distance across runs (i.e. rest/rest and movie/movie runs) (p<0.0001, permutation t-217 

test, 10000 permutations) (Figure 3H). We found no significant difference between the 218 

distance across runs for resting state and movie conditions (p=0.82, permutation t-test, 10000 219 

permutations) (Figure 3H). These results speak to the emergence of a conserved FC pattern 220 

during movie-watching condition on a short timescale. 221 

 222 

Condition-specific FC patterns within and across runs 223 

 224 

To study the role of time-locked events on PLV dynamics during movie-watching (analogous 225 

to inter-subject synchronization), we calculated the similarity between instantaneous PLVs 226 

across conditions and runs. In brief, for each time point, we calculated the similarity between 227 

the PLVs of a single subject (k) and the average PLVs across the rest of the subjects (nk). 228 

The average PLVs were calculated to test the PLV similarity in 3 different cases: Across 229 

conditions (e.g. if subject k is at resting state run 1, the average PLVs were calculated for 230 

movie-watching run 1), across runs (e.g. if subject k is at resting state run 1, the average 231 

PLVs were calculated for resting state run 2) and within runs (e.g. if subject k is at resting 232 

state run 1, the average PLVs were calculated for resting state run 1) (Figure 4A).  233 

 234 
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Both for resting-state and movie-watching conditions, the similarity across runs was 235 

significantly higher than the similarity across conditions (p<0.0001 for both runs: permutation 236 

t-test, 10000 permutations) (Figure 4B-E), confirming the continuous functional 237 

reorganization during movie-watching condition. Furthermore, this result shows that during 238 

movie-watching, the similarity between instantaneous PLVs was higher, even when the 239 

subjects were viewing different scenes. For resting state runs, the average similarity between 240 

instantaneous PLVs did not show any significant difference across runs (p=0.54 for run 1, 241 

p=0.34 for run 2, permutation t-test, 10000 permutations) (Figure 4B, C). In contrast, the 242 

average similarity between instantaneous phase-locking was significantly higher for the same 243 

movie runs than across runs (p<0.0001 for both runs: permutation t-test, 10000 permutations, 244 

p<0.0001) (Figure 4D,E). These results indicate that the PLV dynamics during movie-245 

watching reflects both the effects of time-locked events and a continuous functional 246 

reorganization.  247 

 248 

Large-scale computational modelling of the regional dynamics underlying movie-249 

watching FC 250 

 251 

Both the grand average and time-resolved FC analyses suggested a functional reorganization 252 

during movie-watching. Based on these results, we hypothesized that the variations in 253 

regional dynamics could explain the functional reorganization. We used a Hopf normal model 254 

to characterize the BOLD activity of each region (Deco et al., 2017). The regions were 255 

coupled to each other via DWI-derived structural connectivity scaled by a global coupling 256 

parameter (Figure 5A). The dynamics of each region were governed by a local bifurcation 257 

parameter (a). The local bifurcation parameters (a) reflect whether an individual region is in a 258 

noise-driven regime (a < 0), oscillatory regime (a > 0), or alternates between the two regimes 259 

(a ~ 0) (Figure 5A). We estimated the global coupling and local bifurcation parameters of 260 

each subject/run by maximizing the similarity (i.e. Pearson correlation) between empirical and 261 

model FCs using gradient-descent. We found no significant difference between the model fits 262 

for resting-state (r=0.518  0.057) and movie-watching conditions (r=0.497  0.045) (p=0.146, 263 

permutation t-test, 10000 permutations). To characterize the overall topography underlying 264 

each condition, first we estimated the optimal global coupling parameter (g) and optimal 265 

bifurcation parameters (a) for resting state and movie watching condition. At rest, the average 266 

bifurcation parameter estimates were low in parietal and temporal regions, whereas they were 267 

higher in occipital and frontal regions (Figure 5B). For movie condition, the bifurcation 268 

parameters were elevated in parietal and temporal regions and decreased in anterior 269 

cingulate, lateral prefrontal cortices and in supramarginal gyrus (Figure 5C). There was no 270 

difference between the mean optimal bifurcation parameters of rest and movie conditions 271 

(Figure 5D).  272 

 273 
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To quantify the difference between conditions, we compared the optimal global coupling and 274 

bifurcation parameters of the resting-state and the movie-watching conditions (Figure 6A). 275 

We found no significant difference in global coupling parameters between rest and movie 276 

conditions (p=0.719, permutation t-test, 10000 permutations) (Figure 6B). In the movie 277 

condition, the local bifurcation parameters were significantly decreased – towards negative 278 

values – in bilateral caudal anterior cingulate, right supramarginal gyrus, and left postcentral 279 

cortex (Figure 6D). In contrast, the bifurcation parameters were significantly increased in 280 

bilateral orbital frontal and lateral orbital frontal cortices, left medial temporal cortex, right 281 

frontal pole, middle rostral frontal and superior parietal cortex cortices (Figure 6D). These 282 

changes in higher-order association regions are consistent with the patterns observed in 283 

condition-specific PC.  284 

 285 

Finally, we repeated the PCA on the bifurcation parameter estimates across subjects and 286 

conditions (Figure 6E-G). The scores of the first principal component (PC-1) – explaining 287 

41.77% of variance – and the second principal component (PC-2) – explaining 10.25% of 288 

variance – were both significantly correlated with the scores of the empirically observed 289 

condition-specific PC (PC-1 Spearman rank r=0.44, p=0.004, dof=41; PC-2 Spearman rank 290 

r=0.63, p<0.0001, dof=41; PC-1+PC-2 Spearman rank r=0.73, p<0.0001, dof=41). The first 291 

principal component (PC-1) exhibited a strong positive peak in precuneus and isthmus of 292 

cingulate; with slightly higher values in medial frontal and temporal regions, which is very 293 

similar to default mode network (DMN) topography (Figure 6E). The second principal 294 

component (PC-2) had higher values in temporal and frontal regions as observed in the 295 

contrast between conditions (Figure 6F). Furthermore, the scores of the first and second 296 

principal components were negatively correlated in, and only in, the movie-watching condition 297 

(Spearman rank r=-0.496, p=0.02, dof=20) (Figure 6G). These results suggest that the 298 

changes in local connectivity during the movie-condition engender multiple modes of 299 

variation, which reflect condition-specific and DMN-like topographies.  300 
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Discussion 301 

In this paper, we investigated the reorganization of functional connectivity (FC) during movie-302 

watching condition. We showed that during movie-watching FC patterns vary along a single 303 

mode of variation (i.e. a condition-specific pattern of connectivity that captures the variations 304 

across subjects), which emerges as a continuous functional state over time.  305 

 306 

We used principal component analysis (PCA) to characterize the variations in FC across 307 

individuals and conditions (i.e. resting-state vs. movie-watching). We found that the principal 308 

component (PC-1) reflected the variations in global signal, whereas the second principal 309 

component (PC-2) reflected the distinction between resting-state and movie-watching 310 

conditions. We investigated the patterns of the condition-specific component in the context of 311 

inter-subject synchronization FC (ISS-FC) (Kim et al., 2017; Simony et al., 2016). The 312 

connectivity patterns of the condition-specific component were similar to the ISS-FC. Both 313 

characterizations of FC highlighted intra- and inter-hemispheric connectivity within occipital 314 

and temporal regions as well as their connections with parietal regions. These results are 315 

consistent with increased intra- and inter-network connectivity in auditory/language 316 

networks (Betti et al., 2013; Vanderwal et al., 2015) and visual network (Vanderwal et 317 

al., 2015) during movie watching. Our results suggest that the enhanced communication 318 

between regions related to audiovisual processing and attention are primarily driven by the 319 

time-locked events during movie-watching (Hasson, 2004; Hasson et al., 2010). This 320 

interpretation may explain the larger grouping of visual, auditory and attention 321 

networks during the processing of scenes (Kim et al., 2017).  322 

 323 

However, unlike ISS-FC, condition-specific fluctuations showed enhanced connectivity within 324 

frontal brain regions and reduced connectivity between frontal-parietal brain regions and 325 

cingulate (e.g. supramarginal gyrus, superior/inferior parietal cortex, caudal middle frontal 326 

cortex vs. anterior and posterior cingulate cortex). These results are consistent with previous 327 

studies of functional reorganization during movie-watching (Kim et al., 2017; Simony et al., 328 

2016; Wolf et al., 2010). Furthermore, the frontal-parietal network has been shown to 329 

exhibit higher inter-individual variability during movie watching (Vanderwal et al., 2017, 330 

2015). Our results also support the relationship between individual- and condition-331 

specific FC variations in fronto-parietal regions. We argue that – during movie-watching – 332 

reorganization of FC with the primary sensory regions is mainly driven by extrinsic factors 333 

such as sensory stimulation, whereas the higher-order association regions exhibit a self-334 

organisation of endogenous activity. 335 

 336 

The existence of a condition-specific component in grand-average FC may not be sufficient to 337 

draw conclusions about the functional reorganization during movie-watching. Therefore, we 338 

asked how the condition-specific PC topography relates to the time-resolved FC. We used the 339 

Hilbert transform of narrowband filtered BOLD time-series, and characterized time-resolved 340 
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FC based on phase-locking values over time. We found condition-specific components on 341 

grand average PLVs over subjects as well as individual PLVs over time. The trajectories of 342 

the condition-specific PLV components suggested that this component might appear as a 343 

stable state during movie-watching. We substantiated this conclusion by analysing the 344 

similarity between instantaneous PLVs and average PLVs (over subjects), under different 345 

conditions/runs. The similarity was significantly lower when the subjects were scanned under 346 

different conditions (i.e. rest vs. movie) than they were under same condition (i.e. rest vs. rest 347 

and movie vs. movie). Furthermore, only during movie-watching, did we find that PLV 348 

similarity was higher for subjects in the same run (i.e. run 1 vs. run 1) than subjects in the 349 

different runs (i.e. run 1 vs. run 2). Overall, these results suggested that whole-brain FC (in 350 

the time-scale of BOLD signals) is continuously reconfigured on a short time scale. Previous 351 

studies found that the dynamics of ISS-FC states are highly robust, depending on the 352 

narrative of a story; although the FC patterns were similar over time (Simony et al., 353 

2016). Our results suggest that the dynamics of condition-specific FC states exhibit 354 

both continuous and time-locked components. We speculate that the functional 355 

reorganization in higher-order association regions may reflect the adaptation of the brain’s 356 

intrinsic architecture to mediate large-scale information flow during movie-watching.  357 

 358 

Previous studies have reported decreased head movements and higher arousal while movie-359 

watching (Siegel et al., 2016; Vanderwal et al., 2015). Therefore, the emergence of a 360 

condition-specific FC component could also reflect systematic artefacts. In this study, we 361 

found no significant differences between mean frame-wise displacements (head motion) of 362 

the subjects across conditions. However, we observed that head motion was significantly 363 

altered while watching movie (i.e. during movie-watching condition some subjects moved 364 

less, whereas others move more). The scores of the condition-specific PC were not 365 

correlated with the mean frame-wise displacements or the PC scores associated with head 366 

motion. However, both measures were significantly correlated with the PC scores reflecting 367 

global signal variations. To rule out the possibility of other confounds, we repeated the 368 

analysis and identified similar condition-specific component after performing global signal 369 

regression (GSR), which was replicated across runs. Apart from the head motion and global 370 

signal analyses, the contribution of non-neuronal confounds is unlikely, given the results: 371 

First, the variations in occipital and temporal regions in condition-specific component 372 

substantially overlaps with inter-subject synchronization (no changes were observed in 373 

somatomotor brain regions), which relies on the covariation between brain regions averaged 374 

over different subjects. Although the sensory-motor brain regions are known to be more 375 

susceptible to non-neuronal confounds (Bijsterbosch et al., 2017; Power et al., 2017), these 376 

results are more likely explained by common audiovisual stimulation than synchronization of 377 

head motion or respiration across subjects. Second, the condition-specific components were 378 

very similar across runs, and narrowband filtered data (0.04-0.07Hz). Known artefactual 379 

sources such as low-frequency drift, cardiac and respiratory variations are often associated 380 
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with lower or higher frequencies (Glerean et al., 2012). Therefore, substantial variations in the 381 

condition-specific component would be expected in the narrow-band signals, if they were 382 

related to these confounding factors. 383 

 384 

Our results suggested a distinct and continuous reorganization of FC during movie-watching. 385 

Under the assumption that structural connectivity does not change, one can use whole-brain 386 

computational modelling to characterize local variations in neurodynamics during movie-387 

watching. Here, we used Hopf normal model to characterize BOLD signals. The motivation 388 

behind using this model was that noise-driven and oscillatory dynamics can be modelled 389 

using a single parameter (local bifurcation parameter). When the local bifurcation parameter 390 

of a particular region is negative, each region exhibits noise-driven dynamics. For positive 391 

bifurcation parameter values, the region exhibits sustained oscillations. Therefore, higher 392 

parameters values of a region in the model indicate that the region has larger influence on its 393 

connected regions. The model revealed significant decreases in bifurcation parameters 394 

particularly in anterior cingulate cortex and in supramarginal gyrus, which suggested an 395 

association between decreased bifurcation parameters and the key regions that exhibited 396 

suppressed connectivity patterns in the component-specific PC. In contrast, the bifurcation 397 

parameters increased in lateral prefrontal cortex, medial temporal cortex and superior parietal 398 

regions. These results suggest that endogenous activity in higher-order association regions 399 

are altered during movie-watching. Nevertheless, it is important to note that the model 400 

describes the BOLD signals in the associated low-frequency narrow-band. Therefore, the 401 

results should be interpreted only in relation to low-frequency fluctuations in BOLD signals. 402 

 403 

The PCA over model parameters revealed two different modes of variation that were 404 

associated with the FC condition-specific variations. Although the second PC was more 405 

consistent with the alterations in empirical and model data, the first PC also showed 406 

substantial conditional-specificity. Interestingly, the first PC exhibited a pattern typical of 407 

default mode network (DMN), which involves the isthmus cingulate, precuneus, medial frontal 408 

and temporal cortices. Furthermore, the associated PC scores were negatively correlated 409 

across subjects in only the movie-watching condition. Therefore, the model predicts that the 410 

interaction between condition-specific and DMN-like activation patterns has a crucial role in 411 

the reorganization of FC. This prediction is consistent with the robust and reproducible 412 

reconfiguration of DMN during narrative comprehension (Simony et al., 2016). 413 

Particularly, we observed that the local bifurcation parameters of the DMN regions 414 

shifted towards the critical point (i.e. a=0), which may explain the emergence of the 415 

robust and reproducible dynamical DMN configurations. However, based on these 416 

results, it is not possible to draw conclusions on the causal mechanisms that drive the 417 

relationship between DMN and condition-specific networks. The most important caveat is the 418 

lack of individual-specific estimates for structural connectivity. Therefore, the emergence of 419 

DMN-like component may simply reflect an additional mode of variation that compensates for 420 
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the lack of variability in individual-specific structural connections. However, the results may 421 

also indicate that several regions of DMN (particularly the precuneus) have a role in 422 

mediating the switch between distinct functional states, which is consistent with previous 423 

studies showing that precuneus dynamically binds to distinct functional networks (Utevsky et 424 

al., 2014). An alternative explanation may involve the variations of arousal and vigilance 425 

levels. This explanation is consistent with a selective neuromodulatory enabling of intrinsic 426 

synaptic connections by ascending modulatory neurotransmitter systems (e.g., noradrenaline) 427 

(Shine et al., 2018). This is particularly relevant in light of the systematic changes in the local 428 

bifurcation parameter that showed regionally-specific and condition-sensitive effects in our 429 

modelling analyses. Recent studies showed the relationship between transcriptomic 430 

variations and task-related alterations (Shine et al., 2018) as well as microcircuit 431 

specialization (Burt et al., in Press) in the human brain. These advances may allow 432 

systematic investigation of the mechanisms behind the functional reorganization of the brain. 433 

 434 

Finally, several limitations should be noted while interpreting the results in this paper. The 435 

most important limitation of this study is the small sample size (21 subjects). Therefore, the 436 

results require replication in an independent dataset. In addition, the design of this study did 437 

not allow us to compare the results with other conditions (such as a different movie). Although 438 

different runs involved different scenes of the same movie, previous studies have found 439 

differences in FC regarding the type/familiarity of the movie (i.e. abstractness, social content) 440 

(Vanderwal et al., 2015; Wolf et al., 2010). Future studies may investigate the variants of the 441 

movie-watching condition, different tasks and/or other continuous experimental paradigms 442 

(e.g. reading, social interactions, etc.). Another important limitation of this study is the use of 443 

coarse (33 regions per hemisphere), anatomically defined parcellation. Recently developed 444 

cortical parcellations offer functional (or multimodal) definitions of cortical areas, which also 445 

facilitate better mapping of functional networks. Our coarse parcellation of the cortex had 446 

advantages particularly for time-resolved FC analysis and whole-brain modelling due to 447 

computational efficiency and the implicit reduction in the number of parameters. Techniques 448 

such as independent component analysis may provide better characterization of time-449 

dependent states. Such analytical extensions would require longer recording sessions and a 450 

better definition of the cortical areas. A limitation regarding the computational modelling is that 451 

the model relies on average DWI-derived SC, which may fail to detect interhemispheric 452 

connections, individual variations, and is insensitive to directed connections. Previous studies 453 

have shown that the changes in directed effective connectivity may also play role in defining 454 

the reorganization of FC (Gilson et al., 2017), which may explain lack of significant 455 

differences in visual cortex. Effective connectivity – as assessed using dynamic causal 456 

modelling studies of the resting state – also point to a modulation of regional excitability by 457 

different components of the default mode. For example, previous studies revealed that the 458 

influence of the SN (salience network) and DAN (dorsal attention network) on the DMN 459 



15 
 

(default mode network) regions is inhibitory; whereas the DMN exerted an excitatory influence 460 

on the SN and DAN regions (Zhou et al., 2018).  461 

 462 

Current experimental paradigms are optimal for the study of task-dependent changes in 463 

BOLD signals, but these may not reveal the dynamic organization of whole-brain FC. Unlike 464 

other task-evoked experimental approaches, continuous task paradigms offer a contextual 465 

environment (e.g. movie-watching), which engage a collection of processes (e.g. audiovisual 466 

processing, attention, social cognition…etc.) contextualized by the stimuli. Our findings 467 

suggest that continuous task experiments may be useful to study how humans hierarchically 468 

reorganize its internal representations to adapt to environmental context (Friston, 2010). 469 

Impairments in these adaptation mechanisms may explain the symptoms in various mental 470 

disorders such as schizophrenia (Stephan et al., 2016). Future studies with more 471 

sophisticated continuous experimental designs may reveal richer dynamical manifestation of 472 

functional reorganization such as consolidation of particular functional states in time (i.e. 473 

adaptation) and/or emergence of observable transient functional states (i.e. multistability).  474 



16 
 

Materials and Methods 475 

Study design 476 

 477 

The fMRI imaging data used in this paper have been described in details elsewhere (Betti et 478 

al., 2013; Mantini et al., 2012). Twenty-four right-handed young, healthy volunteers (15 479 

females, 20–31 years old) participated in the study. They were informed about the 480 

experimental procedures, which were approved by the Ethics Committee of the Chieti 481 

University, and signed a written informed consent. The study included a resting state and a 482 

natural vision condition. In the resting state, participants fixated a red target with a diameter of 483 

0.3 visual degrees on a black screen. In the natural-vision condition, subjects watched (and 484 

listened) to 30 minutes of the movie “The Good, the Bad and the Ugly” in a window of 485 

24x10.2 visual degrees. Visual stimuli were projected on a translucent screen using an LCD 486 

projector, and viewed by the participants through a mirror tilted by 45 degrees. Auditory 487 

stimuli were delivered using MR-compatible headphones. 488 

 489 

Data acquisition 490 

 491 

Functional imaging was performed with a 3T MR scanner (Achieva; Philips Medical Systems, 492 

Best, The Netherlands) at the Institute for Advanced Biomedical Technologies in Chieti, Italy. 493 

The functional images were obtained using T2*-weighted echo-planar images (EPI) with 494 

BOLD contrast using SENSE imaging. EPIs comprised of 32 axial slices acquired in 495 

ascending order and covering the entire brain (32 slices, 230 x 230 in-plane matrix, 496 

TR/TE=2000/35, flip angle = 90°, voxel size=2.875×2.875×3.5 mm3). For each subject, 2 and 497 

3 scanning runs of 10 minutes duration were acquired for resting state and natural vision, 498 

respectively. Each run included 5 dummy volumes – allowing the MRI signal to reach steady 499 

state, and an additional 300 functional volumes that were used for analysis. Eye position was 500 

monitored during scanning using a pupil-corneal reflection system at 120 Hz (Iscan, 501 

Burlington, MA, USA). A three-dimensional high-resolution T1-weighted image, for anatomical 502 

reference, was acquired using an MP-RAGE sequence (TR/TE=8.1/3.7, voxel 503 

size=0.938x0.938x1 mm3) at the end of the scanning session. 504 

 505 

Data preprocessing 506 

 507 

Data preprocessing was performed using SPM5 (Wellcome Department of Cognitive 508 

Neurology, London, UK) running under MATLAB (The Mathworks, Natick, MA). The 509 

preprocessing steps involved the following: (1) correction for slice-timing differences (2) 510 

correction of head-motion across functional images, (3) coregistration of the anatomical 511 

image and the mean functional image, and (4) spatial normalization of all images to a 512 

standard stereotaxic space (Montreal Neurological Institute, MNI) with a voxel size of 3×3×3 513 

mm3. Furthermore, the BOLD time series in MNI space were subjected to spatial 514 
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independent component analysis (ICA) for the identification and removal of artefacts related 515 

to blood pulsation, head movement and instrumental spikes (Smith et al., 2010). This BOLD 516 

artefact removal procedure was performed by means of the GIFT toolbox (Medical Image 517 

Analysis Lab, University of New Mexico). No global signal regression or spatial smoothing 518 

was applied to the preprocessed time series. For each recording (subject and run), we 519 

extracted the mean BOLD time series from the 66 regions of interest (ROIs) of the brain atlas 520 

(Hagmann et al., 2008)(Supplementary Table 1). We avoided regressing out nuisance 521 

parameters and using motion scrubbing, because the effects of these procedures on time-522 

resolved FC analyses (phase locking values) could be unpredictable. 2 subjects were 523 

excluded due to signal dropout and 1 subject was excluded due to substantial spikes in the 524 

time-series.  525 

 526 

Anatomical Connectivity 527 

 528 

Anatomical connectivity was estimated from Diffusion Spectrum Imaging (DSI) data collected 529 

in five healthy right-handed male participants (Hagmann et al., 2008; Honey et al., 2009). The 530 

grey matter was first parcellated into 66 ROIs, using the same low-resolution atlas used for 531 

the FC analysis. For each subject, we performed white matter tractography between pairs of 532 

cortical areas to estimate a neuroanatomical connectivity matrix. The coupling weights 533 

between two brain areas were quantified using the fibre tract density, and were proportional 534 

to a normalized number of detected tracts. The structural matrix (SC) was then obtained by 535 

averaging the matrices over subjects. 536 

 537 

Principal component analysis 538 

 539 

For all subjects and runs (i.e. 21 subjects, 2 resting state and 2 movie runs) the functional 540 

connectivity matrices were constructed based on Pearson correlation coefficient between all 541 

pairs of ROIs. 542 

 543 

The upper triangular parts of FC (i.e. 66(66 − 1) 2⁄  connections) matrices were concatenated 544 

across subjects/runs (21x4 subjects/runs) leading to the feature matrix with dimensions 2145 545 

x 84 (number of connections x number of subjects/runs). Then, principal component analysis 546 

(PCA) was applied to the resulting feature matrix. To identify the noise components, the 547 

analyses were repeated for 1000 surrogate time-series for each subject/run. The properties of 548 

the surrogate time-series of each individual subject were preserved in spectral domain 549 

(Prichard and Theiler, 1994). The dimensionality of the data was characterized by the fraction 550 

of explained variance of the principal components that are larger than those of the surrogates. 551 

Since PCA decomposes the data into orthogonal axes with associated projections (i.e. 552 

scores) of each individual observation, we characterized the components based on these 553 

projections scores. The first PC might reflect the global synchronization levels. To quantify 554 
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this, we calculated the correlation between the first PC scores and the variance of global 555 

signal (i.e. the mean signal across regions). The principal component related to movie-556 

watching condition was characterized as the one exhibiting clear separation between 557 

conditions based on the PC scores (i.e. the scores higher than 0 indicated the movie-558 

watching runs, whereas the scores less than 0 indicated the resting-state runs).  559 

 560 

To quantify the consistency of principal components, we repeated the analysis using 2 561 

separate runs. For both runs, the feature matrices comprised the concatenated upper 562 

triangular FC matrices of 1 resting state run and 1 movie run (i.e. 2145 x 42 matrices). The 563 

consistency was quantified as Pearson similarity of the components and their projections 564 

across runs (Supplementary Figure 1). 565 

 566 

Non-neuronal confounds 567 

 568 

During natural viewing condition the individuals are shown to have restricted movements and 569 

increase arousal (Vanderwal et al., 2015). Therefore, the differences in FC can be 570 

substantially affected by underlying artefacts. For each subject and run, we quantified head 571 

motion by calculating the mean frame-wise displacement (Power et al., 2012). We checked 572 

for outliers with regards to head motion, and confirmed that no subject had a mean FD 573 

> 1mm. We found no significant differences in mean frame-wise displacement across 574 

conditions (p=0.21, permutation t-test, 10000 permutations) (mean FD resting state 575 

0.320.20; movie watching 0.350.23). However, we observed condition-specific changes in 576 

motion parameters (i.e. several subjects consistently exhibited higher head movement during 577 

movie-runs, whereas other subjects exhibited lower head movement). To test this 578 

observation, we first used a regression model for mean frame-wise displacement: 579 

 580 

� = �� + ���� + ���� + �������� 581 

 582 

Where mean frame-wise displacement is y, Xc is a dummy variable representing condition 583 

(resting-state vs. movie-watching), Xt is another variable representing each subject’s 584 

tendency to exhibit increased/decreased movement during movie condition. The regression 585 

coefficient was not significant for the condition term (p=0.71), but the coefficients were 586 

significant for tendency and the interaction terms (p=0.01 and p=0.002, respectively). We also 587 

analysed the variations in mean frame-wise displacement using principal component analysis 588 

(PCA) over runs. We found that the second principal component (PC-2) explaining 16% of the 589 

variation was associated to the alterations in mean frame-wise displacement during movie-590 

watching condition. The projections of PC-2, related to movie-watching mean frame-wise 591 

displacement, were not correlated with the projections of condition-specific PC (Spearman 592 

rank r=0.02, p=0.85).  593 

 594 
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Apart from head motion, various other confounding factors may affect during movie-watching 595 

condition. For this reason, we repeated all the analyses after regressing out the global signal 596 

from the time-series of each ROI for each subject and run.  597 

 598 

Inter-subject synchronization 599 

 600 

To establish the construct validity of the principal component topography, we compared the 601 

condition-specific PC with inter-subject synchronization functional connectivity (ISS-FC)(Kim 602 

et al., 2017; Simony et al., 2016). ISS-FC was proposed as a measure to remove the effects 603 

of spontaneous activity and to define inter-regional correlations based on common stimuli 604 

across subjects. To calculate ISS-FC, we randomly split the subjects into 2 groups (50 605 

random groups) and calculated the average BOLD time-series of each region over subjects 606 

per group. Then, we calculated the correlations between the average BOLD time-series 607 

across pairs of regions. This procedure was repeated separately for 2 resting-state and 2 608 

movie-watching runs, and the average ISS-FC across movie-runs were reported in the main 609 

results. Since the sample size in this study is small, we replicated the analyses in the 610 

previous studies (Kim et al., 2017) and demonstrated the ISS-FC at resting-state and movie-611 

watching conditions (Supplementary Figure 2).  612 

 613 

Time-resolved functional connectivity 614 
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 615 

To extract time-resolved functional connectivity (dynamic FC; dFC), we used phase locking 616 

values (PLVs) of BOLD time series in a narrow frequency band (Demirtaş et al., 2016; 617 

Glerean et al., 2012). This approach enables the characterization of connectivity patterns at 618 

each time point, and it does not require specification of a window and a step-size, as in 619 

sliding-window analysis. The preprocessed time series were band-pass filtered in 0.04-620 

0.07Hz range to reduce the effects of low-frequency drift and high-frequency noise (Glerean 621 

et al., 2012). The Hilbert transform was then used to quantify instantaneous phase. The 622 

Hilbert transform, S(t) = Acos(φ(t)) of the preprocessed BOLD time series decomposes the 623 

signal into to an analytical signal S(t) with an instantaneous phase φ(t) and amplitude A. For 624 

each time point t, the difference ∆���(�) between the phases of the respective ROIs was 625 

calculated, where i and j are the indices of each ROI. The phase differences were adjusted 626 

between 0 and π such that: 627 

 628 

∆���(�) =
���(�) − ��(�)�, �� ���(�) − ��(�)� ≤ �

2� − ���(�) − ��(�)�, ��ℎ������
1 629 

 630 

Then, the phase-locking values (PLVs), PLV��(t) were constructed using the phase differences 631 

normalized between 0 and 1, thereby representing perfect anti-synchronization and perfect 632 

synchronization respectively, such that: PLV��(t) = 1 − ∆���(�)/�.  633 

 634 

PCA trajectories of time-resolved FC 635 

 636 

The principal component analysis was repeated for grand average PLVs, to establish the link 637 

between Pearson correlation-derived FCs and PLVs. Since the PLVs were more sensitive to 638 

global synchronization levels, we subtracted the mean from each average PLV matrix before 639 

performing any analyses. After identifying the grand average condition-specific PLV 640 

component, we performed PCA on concatenated PLVs over time for each subject (i.e. 2 641 

resting-state and 2 movie-watching runs). The condition-specific temporal components were 642 

identified as the PC with the highest similarity to the grand average condition-specific PLV 643 

component. We then characterized the trajectories (i.e. PC scores over time) of the condition-644 

specific temporal components of the subjects. Here, the term “trajectory” was preferred over 645 

“scores” to highlight the fact that the PCA was performed over time. We asked whether the 646 

PC showing highest similarity to the condition-specific component distinguishes between 647 

resting-state and movie-watching trajectories. We quantified the condition-specific distinction 648 

by calculating the average distance between the median trajectories of the resting-state and 649 

movie-watching conditions. The distances between median trajectories were defined as the 650 

squared difference between median PC scores of resting-state and movie-watching 651 

trajectories. For each subject, we assessed the significance of the distinction by comparing 652 

the condition-specific distance against the surrogates. The trajectories of each subject were 653 
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randomly shuffled and then assigned into two groups. The p-values were based on the 654 

distance between condition-specific trajectories, relative to the surrogate distances. Since the 655 

individual PC trajectories are time-dependent, we assessed the difference between conditions 656 

across subjects by calculating the median distances across conditions and runs. For each 657 

subject, the median trajectory distance between resting-state and movie-watching conditions 658 

was calculated. Then, the distances between 2 separate runs of resting-state and movie-659 

watching conditions were calculated. Finally, we performed a permutation t-test to compare 660 

the average distance across conditions and runs.  661 

 662 

Time-resolved FC similarity across conditions and runs 663 

 664 

To study the role of time-locked events on PLV dynamics during movie-watching condition 665 

(analogous to inter-subject synchronization), we calculated the similarity between 666 

instantaneous PLVs across conditions and runs. For each time point, we calculated the 667 

similarity between the PLVs of a single subject (k) and the average PLVs across the rest of 668 

the subjects (nk). The average PLVs were calculated to test the PLV similarity in 3 different 669 

circumstances: Across conditions (i.e. if subject k is at resting state run 1, the average PLVs 670 

were calculated for movie-watching run 1), across runs (i.e. if subject k is at resting state run 671 

1, the average PLVs were calculated for resting state run 2) and within runs (i.e. if subject k is 672 

at resting state run 1, the average PLVs were calculated for resting state run 1).  673 

 674 

Computational modelling 675 

 676 

We modelled the whole-brain rs-fMRI BOLD signals using 66 nodes. Each node was coupled 677 

with each other via DWI-derived structural connectivity (SC) matrix. We described the local 678 

dynamics of each individual node using normal form of a supercritical Hopf bifurcation (Deco 679 

et al., 2017). The advantage of this model is that it allows transitions between asynchronous 680 

noise activity and oscillations. Where ω is the intrinsic frequency of each node, a is the local 681 

bifurcation parameter, η is additive Gaussian noise with standard deviation β, the temporal 682 

evolution of the activity, z, in node j is given in complex domain as: 683 

 684 

���

��
= ��� + ��� − ���

��� + ���(�) 2 685 

 686 

and, 687 

�� = ������ = �� + ��� 3 688 

 689 

This system shows a supercritical bifurcation at aj = 0. Being specific, if aj is smaller than 0, 690 

the local dynamics has a stable fixed point at zj = 0, and for aj values larger than 0, there 691 
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exists a stable limit cycle oscillation with a frequency f = ω/2π. Finally, the whole-brain 692 

dynamics is described by the following coupled equations: 693 

 694 

���

��
= ��� − ��

� − ��
���� − ���� + � � ������ − ���

�

+ ����(�) 4 695 

 696 

���

��
= ��� − ��

� − ��
���� + ���� + � � ������ − ���

�

+ ����(�) 5 697 

 698 

Where Cij is the Structural Connectivity (SC) between nodes i and j, g is the global coupling 699 

factor, and the standard deviation of Gaussian noise, β = 0.02. The natural frequency (f) of 700 

each region was taken as the peak frequency in the given narrowband of the corresponding 701 

region in the empirical time-series.  702 

 703 

Following a similar approach previously employed (Deco et al., 2014), we analytically 704 

estimated the model FC using linearization of the system around a stable fix point. Where 705 

�� = {��� … ����, ��� … ����}  represents the Taylor expansion of the system, A is the 706 

Jacobian matrix, and �(�)  is the noise term, the fluctuations around the fix point can be 707 

described as: 708 

���

��
= ��� + �(�) 6 709 

 710 

Where the deterministic parts of right-hand side of equations 4 and 5 are described by −�� 711 

and −�� , respectively, the Jacobian matrix of the system evaluated at the fixed point 712 

���  , ���  , � ∈ {1 … 66} can be constructed as: 713 
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 716 

Where �, � ∈ {1 … 66}, each element of matrix A can be calculated as: 717 

 718 
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 728 

Where Q is the noise covariance matrix, the covariance matrix of the system P can be 729 

estimated by solving Lyapunov equation: 730 

 731 

�� + ��� = −� 12 732 

 733 

Finally, the model correlation matrix (FC) can be extracted from the covariance matrix as: 734 

 735 

����� =
���

�������

, �, � ∈ {1 … 66} 13 736 

 737 

We estimated the model optimal parameters a and g by maximizing the similarity between 738 

model FC (equation 13) and empirical FC using gradient descent optimization. For each 739 

subject, the empirical functional connectivity was calculated as the average FC across the 740 

corresponding conditions (i.e. resting state or movie sessions) of the corresponding subject. 741 

The similarity between model FC and empirical FC was quantified as Pearson correlation 742 

similarity. To avoid the solutions reflecting a local minimum, for each subject/condition we 743 

estimated the best solution after repeating the optimization with 100 random initial conditions.  744 

 745 

 746 

Statistical analyses 747 

 748 

The comparisons across conditions (resting-state versus movie sessions) were done using 749 

permutation t-test. Since the same subjects were tested under different conditions, we used 750 

dependent t-test. The randomization during the permutation t-test was also controlled to 751 

preserve this dependence across conditions. For optimal bifurcation parameters, the p-values 752 

were FDR corrected (p<0.01), with the Benjamini & Hochberg algorithm, when appropriate 753 

(Hochberg and Benjamini, 1990).  754 

 755 



24 
 

To assess the association between measures, we used Spearman rank correlations (to avoid 756 

potential contribution of outliers and due to limited sample size). Calculating the correlations 757 

separately for each condition (due to repeated-measures) did not alter the significance; 758 

therefore, for simplicity we reported a single correlation value between each measure. We 759 

used Pearson correlation as a measure of similarity between connectivity matrices (i.e. PC 760 

axes, FCs, PLVs).  761 

 762 

The visualizations of the cortical surface were done using Connectome Workbench software. 763 

We used a population-average cortical surface (Conte69) (Van Essen, 2005), and a template 764 

to visualize the anatomical parcellations on the cortical surface. 765 

  766 
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Figures 910 

 911 
Figure 1. A Mean functional connectivity (FC) during resting-state and movie-watching conditions.  B Schematic describing principal component 912 
analysis (PCA) over FCs of 2 resting-state and 2 movie-watching condition concatenated across 21 subjects. C-F PCA results without global 913 
signal regression (GSR). Explained variance by each PC (black) and random surrogates (gray) without GSR (C). Compared to 1000 random 914 
surrogates the dimensionality of FCs without GSR was 13. The first PC (D) explains 25.8% of the variation, whereas second PC (E) explains 915 
7.2% of the variation. The projections of first two PCs shows that the second component is specific to movie runs (F). The first PC of the FCs 916 
without GSR reflects global signal standard deviation (L). G-J PCA results with global signal regression (GSR). G Explained variance by each 917 
PC (black) and random surrogates (gray) with GSR. Compared to random surrogates the dimensionality of FCs with GSR is 22. The first PC, 918 
which is specific to movie runs explains 9.69% of the variation (J). K The similarity between condition-specific components with and without 919 
GSR. *** indicates p<0.0001. 920 
  921 
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 922 
Figure 2. Comparison of condition-specific PC and inter-subject synchronization FC. A Schematic illustrating the computation of inter-subject 923 
synchronization FC (ISS-FC). The subjects were randomly separated into 2 groups. Then the average BOLD time-series were calculated for 924 
each group. ISS-FCs were computed as the correlation between BOLD time-series across groups for each pair of regions. B The largest 100 925 
connections in ISS-FC during movie-watching condition. The most prominent correlations were observed among occipital and temporal brain 926 
regions, and between occipital and parietal brain regions. C The largest 100 connections in condition-specific PC. Condition-specific PC also 927 
shows increased connectivity among occipital and temporal brain regions, and between occipital and parietal brain regions; and the overall 928 
connectivity pattern in ISS-FC and condition-specific PC was highly similar (D). However, the condition-specific PC also exhibited increased 929 
connectivity among frontal brain regions and suppressed connectivity between cingulate and parietal regions (C).  930 
  931 
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 932 
Figure 3. Time-resolved FC based on phase locking values (PLVs). A Schematic describing the calculation of PLVs. Preprocessed BOLD time-933 
series were narrow-band filtered in 0.04-0.07Hz range and the resulting signals were Hilbert transformed. Phase-locking values were calculated 934 
based on the difference between instantaneous phases across brain regions. B Schematic describing principal component analysis (PCA) 935 
performed on average PLVs across subjects (top) and dynamics of PLVs across time for each subject (bottom). A condition-specific component 936 
was identified based on the maximum similarity between dynamic PLV components and average condition-specific PLV component (D). The 937 
average and dynamic condition-specific components were very similar across subjects (E). Based on the trajectories of condition-specific PLV 938 
components, the distance between the median trajectories of resting-state and movie-watching conditions were calculated (C). F Example 939 
trajectory for single subject. G The distance between the median trajectories of resting-state and movie-watching conditions compared to the 940 
histogram of the distances for 1000 randomly split trajectories. H The median trajectory distances between resting-state and movie-watching 941 
conditions,  between 2 resting-state runs and between 2 movie-watching runs. The distance between conditions was significantly higher than the 942 
distance between runs (permutation t-test, 10000 permutations). *** indicates p<0.0001, n.s. indicates p>0.05. 943 
  944 
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 945 
Figure 4. Time-resolved similarity between PLVs across conditions and runs. A Schematic describing the procedure. For each subject the PLVs 946 
at each time point was compared to the average PLVs across the remaining subjects at the same time point. Black/gray lines/shades indicate 947 
that the average PLVs were calculated for different condition (i.e. if subject k is at rest, average PLVs were calculated for movie-watching). 948 
Green lines/shades indicate that the PLVs were calculated for the same condition but different run (i.e. if subject k is at rest in run 1, average 949 
PLVs were calculated for the resting-state run 2). Blue lines/shades indicate that the PLVs were calculated for the same condition and the same 950 
run (i.e. if subject k is at rest in run 1, average PLVs were calculated for the resting-state run 1). B-C During resting-state the similarity between 951 
PLVs were significantly lower across conditions (i.e. rest vs. movie), but there was no significant difference between the similarities across runs. 952 
D-E During movie-watching, the similarity between PLVs was significantly lower across conditions. However, the similarity between PLVs was 953 
significantly higher within runs compared to across runs. The histograms illustrates the distributions of similarity measures over time, whereas 954 
*** indicates the p<0.0001 assessed by permutation t-test across subjects. n.s. indicates p>0.05. 955 
  956 
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 957 
Figure 5. Large-scale computational modelling. A The schematic of the modelling framework. The BOLD activity of each region was described 958 
using Hopf normal model, where the local bifurcation parameters (a) mediate the local dynamics. Negative values of bifurcation parameter, a, 959 
indicates noise-driven activity, whereas positive values indicate oscillatory activity with increasing amplitude. Brain regions are coupled each 960 
other through DWI-derived SC matrix. The optimal model parameters were estimated using gradient descent optimization, which maximizes the 961 
similarity between empirical and model FC. B Mean optimal bifurcation parameter topography at resting state. C Mean optimal bifurcation 962 
parameter topography during movie condition. D The distributions of the bifurcation parameters during movie condition and resting state. n.s. 963 
indicate p>0.05. 964 
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 966 
Figure 6. Modelling results for individual subject fitting. A The schematic of individual subject fitting. B The group differences for global coupling 967 
parameters did not show significant difference. C-D The group differences between optimal bifurcation parameters at rest (black) and during 968 
movie condition (red) (permutation t-test, 10000 permutations). C The topography of the group differences (T-statistics; hot colours indicate 969 
larger values during movie condition). D Boxplots of the regions showing significantly difference after FDR correction (p<0.01). E-G Principal 970 
component analysis applied to optimal bifurcation parameters in the model. E The topography of the first principal component. F The topography 971 
of the second principal component. PC-1 has higher values in precuneus, posterior cingulate, medial temporal and frontal regions, exhibiting 972 
typical pattern associated to default mode network. PC-2 exhibit increased values in frontal and temporal regions, and decreased values 973 
particularly in supramarginal gyrus consistent with the contrast between conditions. G The projections of the principal components on rest and 974 
movie conditions. *** indicates p<0.01, n.s. indicates p>0.05. 975 
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