Accepted Manuscript Y
Neurolmage

Flexible proton density (PD) mapping using multi-contrast variable flip angle (VFA)
data

Sara Lorio, Tim M. Tierney, Amy McDowell, Owen J. Arthurs, Antoine Lutti, Nikolaus

Weiskopf, David W. Carmichael

PII: S1053-8119(18)32101-3
DOI: https://doi.org/10.1016/j.neuroimage.2018.11.023
Reference: YNIMG 15428

To appearin:  Neurolmage

Received Date: 20 April 2018
Revised Date: 13 November 2018
Accepted Date: 16 November 2018

Please cite this article as: Lorio, S., Tierney, T.M., McDowell, A., Arthurs, O.J., Lutti, A., Weiskopf, N.,
Carmichael, D.W., Flexible proton density (PD) mapping using multi-contrast variable flip angle (VFA)
data, Neurolmage (2018), doi: https://doi.org/10.1016/j.neuroimage.2018.11.023.

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to

our customers we are providing this early version of the manuscript. The manuscript will undergo
copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please
note that during the production process errors may be discovered which could affect the content, and all
legal disclaimers that apply to the journal pertain.


https://doi.org/10.1016/j.neuroimage.2018.11.023
https://doi.org/10.1016/j.neuroimage.2018.11.023

Lorio et al. 2018

Flexible proton density (PD) mapping using multi-contrast variable flip angle (VFA)
data

Sara Lorid, Tim M. Tierney, Amy McDowelf', Owen J. Arthurs®, Antoine Luttf, Nikolaus
Weiskopf, David W. Carmichaéf

'UCL Great Ormond Street Institute of Child Healthpiversity College London, London,
UK

“Wellcome Centre for Human Neuroimaging, UCL Ingtitof Neurology, University College
London, London, UK

*Department of Radiology, Great Ormond Street Haspitr Children, London, UK
“Laboratory for Research in Neuroimaging, Departmeh€linical Neuroscience, Lausanne
University Hospital and University of Lausanne, kaone Switzerland

*Department of Neurophysics, Max Planck Institute Ffuman Cognitive and Brain
Sciences, Leipzig, Germany

°EPSRC / Wellcome Centre for Medical Engineeringpni&idical Engineering, King's
College London, UK

Key words. quantitative MRI, proton density, biophysical tissproperties, anatomical

malformation, post-mortem MRI

6690 Words, 73 References

4 Tables, 7 Colour figures

Corresponding Author

Sara Lorio, PhD

Developmental Neurosciences

UCL Great Ormond Street Institute of Child Health
30 Guilford Street

London, WCI1N 1EH

Telephone: +44 (0) 2079052709

E-mail: s.lorio@ucl.ac.uk



Lorio et al. 2018

Highlights

PD measures free water content, crucial for noasgiwe tissue characterization.
We achieve high quality PD mapping using data-crireethods.
Our new method does not rely on prior anatomicaissue information.

PD mapping is demonstrated in highly abnormal baaich post-mortem.
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Abstract

Quantitative proton density (PD) maps measure theuat of free water, which is important
for non-invasive tissue characterization in patbglaand across lifespan. PD mapping
requires the estimation and subsequent removaaaibiis influencing the signal intensity
other than PD. These factors include the T1, T2faxaion effects, transmit field
inhomogeneities, receiver coil sensitivity prof{leP) and the spatially invariant factor that is
required to scale the data. While the transmitdfiekn be reliably measured, the RP
estimation is usually based on image post-procgssnhniques due to limitations of its
measurement at magnetic fields higher than 1.5€. jdst-processing methods are based on
unified bias-field/tissue segmentation, fitting teensitivity profile from images obtained
with different coils, or on the linear relationstyetween T1 and PD. The scaling factor is
derived from the signal within a specific tissueang@artment or reference object. However,
these approaches for calculating the RP and scédictgr have limitations particularly in

severe pathology or over a wide age range, rasgitheir application.

We propose a new approach for PD mapping based roaltacontrast variable flip angle
acquisition protocol and a data-driven estimatioethad for the RP correction and map
scaling. By combining all the multi-contrast datgaired at different echo times, we are able
to fully correct the MRI signal for T2* relaxatiaffects and to decrease the variance and the
entropy of PD values within tissue class of thalfimap. The RP is determined from the
corrected data applying a non-parametric bias asitom, and the scaling factor is based on
the median intensity of an external calibrationechj Finally, we compare the signal intensity
and homogeneity of the multi-contrast PD map wli well-established effective PD (PD¥)
mapping, for which the RP is based on concurremsts bield estimation and tissue
classification, and the scaling factor is estimatiean the mean white matter signal. The
multi-contrast PD values homogeneity and accuratlyinvthe cerebrospinal fluid (CSF) and
deep brain structures are increased beyond thatnelot using PD* maps. We demonstrate
that the multi-contrast RP approach is insenstiivanatomical or a priori tissue information
by applying it in a patient with extensive brainnabmalities and for whole body PD

mapping in post-mortem foetal imaging.
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I ntroduction

MR proton density (PD) mapping quantifies the anairiree water protons (Cercignani M.
et al.,, 2018, chapter 4; Neeb et al., 2008), whsclerucial for measuring water volume
fraction employed in tissue composition models (Baig et al., 2018; Mezer et al., 2013;
Weiskopf et al., 2015). Although lipid, protein andcleic acids in cellular structures contain
a large pool of non-aqueous protons (30% of protonsvhite matter), those are MRI-
invisible due to the short T2 (Cercignani M. et 2018, chapter 4). Currently there is an
increasing interest in using quantitative PD magpia accurately determine the tissue
(patho-) physiological composition (Mezer et aD13). In fact, recent studies demonstrated
that PD maps improve lesion detection in multipteeosis (Gracien et al., 2016), hepatic
encephalopathy (Shah et al., 2008) and perituno@@déma (Blystad et al., 2017).

Despite many clinical studies use fast spin-eclquerces to acquire high resolution PD-
weighted images (Chong et al., 2016; Fuchs et28ll4; Jones et al., 1992; Oikawa et al.,
2002), in this work we will focus on quantitativddPwhich is typically estimated from
gradient-echo images. Quantitative PD mapping reguinowledge of relaxation effects (T1,
T2*), inhomogeneities in the transmitted radio-fregcy field (B1), receiver sensitivity
profile (RP) and a spatially invariant scaling facthat yields PD values between 0 and 100
p.u.(Cercignani M. et al., 2018, chapter 4). Howetee approaches currently used for the
estimation of both the RP and scaling factor cambecurate in case of severe pathology or
anatomical changes (Volz et al., 2012a, 2012b)eheg propose to perform PD mapping
based on a data-driven method for the estimatidRFoinhomogeneity and map scaling. This
approach can be applied on ex-vivo samples andse of pronounced brain pathologies

because it is independent from anatomical noreigsiormation.

At high field strengths>3T) the measurement of the RP is problematic dubddact that
the magnetic field measured in receive mode iseopial to the one measured in transmit
mode, since the simple reciprocity of both fieldsmmot be assumed at field strengths higher
than 1.5T (Watanabe et al. 2011;Volz et al., 201Zlhe RP estimation can be performed
using different image processing techniques. Weikland colleagues (Weiskopf et al.,
2013) used the bias correction approach embeddé#teisSPM unified image segmentation
(Ashburner and Friston, 2005; Weiskopf et al., 201thich has been shown to provide
reliable RP correction for the PD estimates inliben (Volz et al., 2012a). However, where

anatomical priors employed for tissue segmentation either inaccurate (e.g. in case of
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severe anatomical abnormalities) or do not exiBtifipping in the body), the RP estimation
will be inaccurate or unavailable with this appfova&imilarly Wang and colleagues
computed the PD and RP sensitivity map (Wang eR@IL8) assuming that cortical grey and
white matter have specific T1 values, and usedsitvéntense images for each tissue class to
fit the RP with a quadratic function. The methodsvgaiccessfully tested on healthy subjects
and stroke patients, but it might fail for diseasesh as tumours or lesions affecting the WM
(Wang et al., 2018).

Another approach for determining the RP is by udimg well-known linear relationship
between T1 and PD values (Fatouros et al., 19%buFas and Marmarou, 1999; Gelman et
al., 1999; MacDonald et al., 1986), as propose¥dly and colleagues (Volz et al., 2012b).
This procedure has been shown to provide reliablesédues in healthy brains (Volz et al.,
2012b; Abbas et al., 2014), but any areas withgagjical changes to be masked, precluding
the accurate estimation of RP sensitivity in thespnce of undetected brain abnormalities or
lesions (Volz et al.,, 2012b). Mezer and colleag(Mszer et al., 2013) estimated the RP
sensitivity by combining the multi-channel coil anfmation, and applying the linear
relationship between T1 and PD values over manylsmeerlapping volumes to regularise
the fitting procedure (Volz et al., 2012b; Baudidege al., 2016). However his approach
might be inaccurate when tumours or other disebess$ to major changes in local tissue
properties (Baudrexel et al., 2016).

To avoid any dependency on the anatomy, the RFbearalculated using methods such as
the nonparametric non-uniform intensity normaliaatiN3) algorithm (Sled et al., 1998).
This method iteratively derives a slow varying nplitative field that maximizes the
frequency content of the tissue intensity distitmutby using a B-spline approximation.
Recently a variation of N3, called N4ITK, has begmwmposed in order to improve the
robustness and speed of the B-spline interpolgfiastison et al., 2010). Both N4ITK and
N3 can be applied to any organ or pathological datae they do not require anatomical
information, although the use of a binary mask icaprove the accuracy of RP estimation
over the volume of interest (Sled et al., 1998;tiBos et al., 2010). To the best of our

knowledge those methods have not been used f&Phestimation in PD mapping studies.

The scaling factor is usually derived from the medansity of a specific tissue class such as
the white matter (WM) (Weiskopf et al., 2011) oe tterebrospinal fluid (CSF) (Mezer et al.,
2013, 2016; Volz et al., 201205 the scaling is based on the WM, the mean intgns
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assumed to be equal to 69 p.u. (Weiskopf et aL3R0n the case that the CSF is used for the
scaling, the mean signal is set to 100 p.u. (Vblale 2012b). These values are a reasonable
approximation in healthy brains, but they are k&b introduce error when WM or CSF
signal means are hard to estimate or altered biyojmagical or developmental processes,
limiting the applicability of these PD mapping medls. Moreover using the CSF as a scaling

factor might be difficult with short TR acquisitismlue to the low signal amplitudes.

Here we propose a PD mapping approach based orl-established multi-echo FLASH
(fast low angle shot) dataset acquired with a radhtrast variable flip angle (VFA) protocol
for multi-parameter mapping (MPM) (Weiskopf et &Q013). Aiming to utilise all available
data, we employed all the contrasts for the PD espnation including the magnetization
transfer (MT) weighted scan in the MPM protocoltekfcorrecting the multi-echo images for
relaxation effects, we determined the RP usingraparametric algorithm based on N4ITK
(Tustison et al., 2010). The effectiveness of #yproach was evaluated using data with
different receiver coils and comparing the PD valobtained. To derive a scaling factor
independent from any tissue model, we used thebkajran external calibration object, i.e., a
plastic tube filled with water doped with Gadolimu The new PD mapping approach was
applied both on healthy brain data where it cowddelaluated against existing methods and
on a post-mortem foetal dataset to demonstrateids applicability. Finally, we assessed the
maps values and homogeneity by analysing the diftefactors that contribute to the PD
values distribution comparing the multi-contrast Bproach with the well-established PD
mapping (Weiskopf et al., 2013). This was perfornvéthin brain tissue classes, using
voxel-wise comparison and computing signal entrapg variance as measures for the map

homogeneity.

Method

Data acquisition

10 healthy subjects (35years) were scanned using a 3T Prisma (Siemetangen,
Germany) with a 64 channel radio-frequency (RFerezr coil and a two channel transmit
body coil. Written informed consent was obtainemipto study according to the approval

requirements of the local Ethics committee.



Lorio et al. 2018

A plastic tube (size 10cm x 1.5cm) filled with altmn of 0.09mg/ml Gadolinium was
placed on the right temple of the subjects’ headcédibration purposes (Sasaki et al., 2005).
The Gadolinium employed in this study was the Dmta® (gadoterate meglumine)
manufactured by Guerbet’s and was introduced toaedhe water T1, increasing signal
levels in the Tlw images while keeping almost werali T2* values, the solution

concentration was chosen based on Sasaki and guudiedSasaki et al., 2005).

Three 3D multi-echo FLASH datasets with predomin®@-, T1- and MT-weighting
(respectively PDw, T1w, MTw) (Weiskopf et al., 2Q0M@ere acquired with spatial resolution
of 1mnT, using the following repetition time (TR) and flimgle @) (PDw: TRbh=24.5
ms/6°; Tlw: TR4=24.5 ms/21°). PDw and T1lw images were acquiredgit equidistant
echo times (TE) between 2.3 and 18.7ms, while MTas wcquired at six equidistant TE
between 2.3 and 14.04ms. The field of view (FOV¥3W&86 x 240 x 176 mm and the matrix
size 256 x 240 x 176. To correct for non-lineanityhe RF transmit chain, RF spoiling was
performed during the acquisition. RF spoiling wasf@rmed by transmitting pulses with
different phases in order to linearly increasephase differences between subsequent pulses
by a phase increment of 137°, as previously opathisy Lutti and Weiskopf to obtain stable
T1 values in grey and white matter (Lutti and Wesk 2013). Parallel imaging (Roemer
and Edelstein, 198%as used along the phase-encoding (PE) directmrelgration factor 2
GRAPPA reconstruction (Griswold et al., 2002)), p&8tial Fourier was used in the partition

direction. The acquisition time for each weightetlwas approximately 5.2 minutes.

3D echo-planar imaging (EPI) spin-echo (SE) anchgtited echo (STE) images were used
to calculate maps of the transmit field'BLutti et al., 2012, 2010) and correct for theeeff

of RF transmit inhomogeneities on the quantitatmaeps (Helms and Dechent, 2009;
Weiskopf et al., 2013). The image resolution wasmisotropic, matrix size 64 x 48 x 48
and FOV = 256 x 192 x 192 mm along readout x PEritpn direction, parallel imaging
using GRAPPA factor 2 x 2 in PE and partition dil@t, TR = 250 ms, acquisition time 1.3
minutes. The flip angles of the SE/STE refocusintsgs were decreased from 230°/115° to
130°/65° and in steps of 10°/5°.

To correct the RF transmit field maps for geomedigtortion and off-resonance effects, a BO
map was acquired using a two-dimensional double-&tASH sequence (Lutti et al., 2012,

2010). The acquisition parameters were: 64 axieés| slice thickness = 2 mm, inter-slice
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gap = 1 mm, matrix = 64 x 64, FOV = 192 x 192 mny 90°, TR = 1020 ms, TEL/TE2 =

10/12.46 ms, acquisition time ~2 minutes.

Estimation of R1 and MT maps

Quantitative R1 and MT maps were calculated asriestin (Weiskopf et al., 2013) using
an in-house code running under SPM12 (http://wwyafi.ucl.ac.uk/spm) and Matlab2015b
(Mathworks, Sherborn, MA, USA). In brief, the maigitie images of each weighted set were
first co-registered to remove potential motion efife and then averaged across echoes to
increase the signal-to-noise ratio (SNR) (Helms Bedhent, 2009). The three mean images
were employed to estimate the apparent R1 andetineéguantitative MT saturation using an
approximation of the Ernst equations for dual fipgle measurements using the FLASH
signal (Helms et al., 2008b, 2008a; Helms and DetgH009; Weiskopf et al., 2013). The
guantitative R1 maps were computed from the appdénby correcting the flip angle for
inhomogeneities in the local RF transmit field gsB1™ maps and imperfect RF spoiling
(Helms et al., 2008a, 2008b; Preibisch and Deichhm@009). The semi-quantitative MT
saturation was corrected for R1 dependency andesidual RF inhomogeneities using a

semi-empirical approach described by Weiskopf asidagues (Weiskopf et al., 2013).

Estimation of PD* and standard PD maps

The PD* maps were calculated as described in (Helirad., 2008a; Weiskopf et al., 2013)
using the T1w data averaged over all echoes, thari@1BT maps. The RP correction was
based on the UNICORT method which determines thei$®y the bias correction approach
implemented in the segmentation step of SPM12 (Astdy and Friston, 2005; Weiskopf et
al., 2011). Finally the maps were scaled by settirgmean WM signal equal to 69 p.u.
(Weiskopf et al., 2013). As the data were not aie@ for R2* signal decay, the final

parameter map was called PD*.

Additionally, we removed the R2* dependency by aeting the TE=0 signal for the T1w

data (as described below for the multi-contrastraggh) and using that instead of the T1w
data averaged over all echoes in the aforementiapgdoach. The final map was called
standard PD.

Estimation of multi-contrast PD maps
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Figure 1 shows the workflow for the estimation leé multi-contrast PD maps.

The estimation of the multi-contrast PD was basedhe signal equation of the FLASH
sequence used to acquire the data (Brown et dl4;200lz et al., 2012b):

S = Srgo exp(—TE R;) = PD C RP ST exp(—TE R3) Q)

Where PD is the proton density to be estimatedjsRRe receiver profile sensitivity, C is a
spatially invariant scaling constant and TE is ¢lebo time of the acquired signal. ST is the
steady state term dependent on T1 (=1/R1) relaxatial nominal flip anglexj corrected for
transmit inhomogeneities (B)L Under the approximation for smalland TR R1<<1, ST can
be written as follows (Helms et al., 2008a):

TRR1

ST = aBi ()

+)2
1)/ +TRR1

In case a magnetisation saturation pulse is predenrig the signal acquisition, the g

term is given by (Helms et al., 2008b):

TRR1

STyr = aB;i T

3)

Ir)2/2+MT+TR R1
where MT is the magnetisation transfer saturation.

To remove the R2* relaxation component we computedcl-wise the linear dependence of
the log of the signal intensities for each echcetiosing the model described in Eq (4):

In(S) =In(Srgo)-TER, +e= XB+¢ (4)
" Surren) (VX1) Sur(re1) (VXn)T 1 0 0 —TE;
Sur(ree)(VX1) Sur(ree)(VXn) 0 ' —TE6
Sppre1) (VX1) Sppre1) (VXn) 0 -TE;

S = : : ' X : :
Spp(TES) (vx1) SPD(TEB)(Vxn) —TEg
St1cren) (VX1) St1ren) (Vxy) 1 . _T_El

| St1(rE8) (VX1) St1(rEs)(VXn) | 1 —TEgl
[n(Syr(rroy (vX1)) In(Syr(reo) (Vxn )]
g = I In(Spp(reo) (vx1)) In(Spp(rEo) (vxy)) I
In(St1(rE0) (vx1)) In(Sr1(rE0) (vxp ))J
R3(vxy) R3(vxy )
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Where S is the matrix concatenating the signal of the egistered MTw, PDw and T1lw
dataset acquired at different echo times for ewemxel (v, VX2 ..., VX)), X is the design
matrix whose elements are the contrast-specificessgrs and the echo time dependeficy,
contains the contrast-specific estimates of theoliotipe signal intensities at TE=0{g) and
the R2* estimate, and represents the model residual. This model assuaedono-
exponential signal decay with TE and that R&s common between the different image
contrasts. The fitting procedure was performed etl&b2015 as a robust fit with a bisquare
weighting function (robustfit.m), using a similgs@oach to that employed by Weiskopf and

colleagues (Weiskopf et al., 2014).

Then, the $&oimage of the Tlw and PDw contrasts was divided koxge by the ST term
calculated according to Eq. (2), using the R1 ahtiBaps, while the §oimage of the MTw
contrast was divided by the @ifterm computed according to Eq. (3) using the R1, and

B1" maps. The R1 and MT maps were estimated as dedcripeviously in section

Estimation of R1 and MT maps.

After this step we obtained three images, one &@hecontrast, corresponding to the product
of PD, RP and C terms (see Eq. 1 and Figure 1)tlamckfore differing only in stochastic

noise in case of an accurate fit to the data. Sime€C and RP terms are common to the three
images derived from each contrast set, we avertdgesg ones to increase the stability of the

final PD values.

The RP was determined from the mean image applyiaghon-parametric bias estimation
provided by the N4ITK approach available in the ambted normalisation tools (ANTS,
http://stnava.github.io/ANTs/) (Tustison et al.,12). N4ITK was applied with default

settings on the skull-stripped images iterativeghetimes. The number of N4ITK iterations

was optimised using a root mean square (RMS) asaigscribed in section Assessment and

optimisation of RP correction using N4ITK. Skulhreval was performed to improve the RP

estimation accuracy by applying the Brain Extractibool (Smith, 2002) from FMRIB
Software Library v5.0 (http://fsl.fmrib.ox.ac.ukiffsiwiki/) on the MT images using default

settings.

In order to obtain PD values between 0 and 10Q tha.RP corrected map was divided by
the median intensity of the plastic tube filled witd solution and multiplied by 100, under
the assumption that the solution had PD valuesO6fd.u.. The reproducibility of the map

10
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scaling with respect to the position of externdibcation was tested in a separate experiment

reported in Appendix A.

Assessment and optimisation of RP correction uSiiy K

Aiming at optimising the number of iterations rega for the RP removal, and the
robustness of this process across different exgatiah set-ups, we scanned three healthy
controls using a 64 and 20 channel head receivier@wing to the higher density of the 64
channel coil this has an RP with a higher spatejdency and therefore is more challenging
for bias field correction methods. We applied dedént number, from one to ten, of N4ITK
iterations to estimate the RP correction and themegated multi-contrast PD maps. Firstly,
we assessed the stability of the RP removal foh eaml by estimating voxel-wise the
difference between PD maps computed with n and iethations of N4ITK (where
n=1,2,...9) for the RP correction for each subjeecddly, we calculated the root mean
square (RMS) value within voxels belonging to thaim mask for each difference map.
Finally, we quantified the voxel-wise PD value ches across the two receiver coils for each
number of N4ITK iterations and we estimated the RM&b within voxels belonging to the

brain mask.

For the following analyses we used the data acdquiih the 64channel receiver coil and

n=8 iterations.

Estimation of one-contrast PD map

In order to test the applicability of our methode absence of MTw contrast, we computed
the PD map for one subject using only the PDw imatjee R1 and Bimaps. We applied
the model described by Eq. 1, estimating thg, ®r the PDw dataset, and we removed the
ST term computed using Eq. 2. The final image wadl-stripped, corrected for the RP by
applying N4ITK iteratively eight times with defaustettings and scaled using the same
procedure described in the section Estimation dfirnantrast PD maps.

Homogeneity of PD maps

Then we assessed the intensity homogeneity of thig-contrast PD, PD* and standard PD
maps by using the Shannon’s entropy as a meastine aftensity distribution scattering, and
the variance as an estimator of the distributioeag (Mangin, 2000). Entropy and variance

were estimated within cerebrospinal fluid (CSF)jteematter (WM) and grey matter (GM)

11
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separately. Subject-specific tissue masks werevelbrirom tissue probability maps (voxel
with GM or WM probability >0.9) estimated from th®IT maps using the SPM12
segmentation approach (Ashburner and Friston, 200% Wilcoxon test was applied to
compare entropy and variance across PD estimatethads within tissue class, statistical

significance was set to p<0.05.

To evaluate the effect of using three contrastdhensignal variability, we computed the
variance and entropy within each tissue classhfeiRD*, multi-contrast and one-contrast PD

maps.

Voxel-wise statistical comparison of PD values

To identify systematic PD value differences andedwutine their spatial distribution we
compared voxel-wise the multi-contrast PD with PRnd the multi-contrast PD with the
standard PD in the brain. The maps were spatiallystered to standard MNI space using
subject-specific diffeomorphic estimates (Ashbuyri2d07), derived for the MT images,
without scaling by the Jacobian determinants. A lwoed tissue probability weighting and
Gaussian smoothing procedure (Draganski et al.1P0is used with a 6 mm FWHM
isotropic smoothing kernel. Statistical compariseas performed applying a paired t-test

with threshold at p<0.05 after family-wise errofNE) correction.

In vivo experiment: focal epilepsy and porenceghedintricle dilation

To demonstrate the applicability of the new mutirttast PD mapping approach, we
scanned an 11-year old patient with focal epilepéizures and a porencephalic dilation of
the right ventricle. Written informed consent wdstained prior to study according to the

approval requirements of the UK National Researtthck Service.

The MRI acquisition protocol and the estimationRid* and multi-contrast PD maps were
identical to the experiment performed on the hgattntrols.

Post-mortem experiment: post-mortem foetus

Post-mortem MRI (PM-MRI) as part of minimally invas autopsy is an increasingly
important clinical application of MRI (Arthurs ek a2015a; Arthurs et al., 2015b; Griffiths et
al., 2005; Norman et al., 2016; Papadopoulou e8ll6; Shelmerdine et al., 2017) where
guantitative mapping could be useful e.g. in theemheination of autolysis. To demonstrate
the general applicability of the new multi-contr&f mapping approach, we scanned a 24

12
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week gestation foetus who underwent PM-MRI at amntie. Written informed consent was
obtained for clinical pre-autopsy PM-MRI as partanfr institution’s clinical post-mortem

assessment. The foetus was stored in a mortuaCatfor PM-MR it was positioned in the
64 channel head coil in the supine position, andpyed in insulating material to aid

temperature stability.

The entire foetus was scanned with similar settangs acquisition protocol described above
for the healthy subjects, except for the use of ritan filter set to medium and no partial
Fourier sampling. These two protocol changes wetreduced for decreasing Gibbs ringing

artefacts due to high intensity changes in neighhguissues.

The PD map estimation was performed over the wfodaus body applying the previously
described processing steps with the exceptioneo$kill-stripping for the RP correction. The
RP estimation was based on the N4ITK algorithm iadpbnly on voxel belonging to the
head, body and plastic tube.

We could not compute the PD* map due to the absefoeither brain or whole body

anatomical information about tissue distributioguieed by the SPM RP estimation.

Results

On visual inspection the multi-contrast approacbvjgled homogeneous PD maps over the
whole brain of the healthy volunteers and focalegggy patient, and over the whole body of

the post-mortem foetus, as shown in Figure 2.

Effects of receiver coil and number of N4ITK iteosis

To evaluate the stability of the PD maps estimatgith RP correction obtained using
different numbers of N4ITK iterations, we quantifithe RMS PD value changes with
successive iterations. This was performed for thgaskts acquired with the 20 and 64
channel receiver coils. We observed that afterdiglt N4ITK iteration the PD changes
between successive number of iterations were snthle 2% (see Fig. 3b), and there was
minimal RMS variation for the multi-contrast mapimated with the 20 channel coil data

(see Fig. 3f). For the multi-contrast maps obtaingth the 64 channel coil data, we found

13
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PD variations smaller than 2% between iteration megligible RMS change after the eight
iteration (see Fig. 3d,Q).

Aiming at assessing the effectiveness of RP rembyalcomparing data acquired with
different bias fields, we calculated voxel-wise tliference between the multi-contrast PD
maps obtained with the 20 channel coil and thelghiel coil for each N4ITK iteration. We
found that the differences between maps were ggeiat¢he occipital and frontal regions (see
Fig. 3e), but were stable after the forth iterasmmeasured by the RMS displayed on Figure
3h and by visual inspection of the spatial datRigure 3e.

The results of the following analyses were baseddata acquired with the 64channel

receiver coil and n=8 iterations.

Homogeneity of PD maps

The signal entropy and variance estimated for ¢@she class (WM, GM, and CSF) were
used as summary measures of the PD map histogieondisentangle the effects of R2*
signal decay, RP correction method and number otrasts employed in the PD map
estimation on the homogeneity of the intensity ridbstion, we performed comparison of
variance and entropy between the PD* and multivesttPD maps, multi-contrast PD and

standard PD maps, multi-contrast PD and one-cdr®asones.

Comparison of multi-contrast PD vs PD* maps

Significantly higher entropy was found in PD* comg to multi-contrast PD within the
CSF, while similar values were observed acrosswienethods in WM and GM, as reported
on Table 1 and Figure 4a. Significantly higher aade was found in multi-contrast PD
compared to PD* maps in WM and GM, while signifitdower values were observed in

CSF for the multi-contrast PD maps, as reportedaiie 1 and Figure 4b.

Comparison of multi-contrast PD vs standard PD maps

To remove the R2* effect on the intensity homogsneive compared the entropy and
variance of the multi-contrast PD with the ones patad for standard PD maps. Significant
lower entropy and variance were observed in thetiroohtrast PD when compared to the

standard PD within the CSF, as reported on Tabbn@ Figure 4c,d. Significant lower
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entropy and variance were found for the standardcBmpared to the multi-contrast PD

within the WM, as reported on Table 2 and Figurgl4c

Effect of the number of weighted contrast datase¢sl to calculate PD

To assess the effect on the map homogeneity aiuheber of contrasts employed in the PD
estimation, we estimated the tissue class spee#iance and entropy for the PD*, one-
contrast, and multi-contrast PD maps. We found togr@ropy and variance for the multi-
contrast PD with respect to the one-contrast mapallotissue classes in a single subject
analysis, as shown on Table 3 and Fig. 6b in thgplsmentary material. Moreover we
observed lower entropy for all tissue classes anet variance within the CSF for the multi-

contrast PD with respect to the PD* maps.

Voxel-wise statistical comparison of PD values

The voxel-wise comparison, performed on GM and Wapasately, showed regional
intensity differences between the multi-contrast & PD* maps, and between the multi-

contrast PD and standard PD ones.

Multi-contrast PD vs PD* maps

Significantly higher PD values were found in theula and along visual and sensory-motor
tracks for PD* compared to multi-contrast PD mapse(Fig. 5a, b and Table 4). Higher
values were found in pallidum, brain stem and cergallosum for multi-contrast PD maps

compared to PD* (see Fig. 5¢, d and Table 4).

Multi-contrast PD vs standard PD maps

Significantly higher PD values were found in thepees callosum and in the posterior region
of the brain stem for the multi-contrast maps wibkpect to standard ones (see Fig. 5f and
Table 4). Moreover significantly higher PD value®rer observed in the right nucleus
lateroponderalis of the thalamus and right cauftatehe multi-contrast maps compared to

the standard ones, as reported on Fig. 5e and %able

In vivo experiment: focal epilepsy and porenceghedintricle dilation

Figure 2b shows a coronal slice from the datasgieed on the patient with focal epilepsy

and porencephalic ventricle dilation. The right Iegghere porencephalic cyst is enclosed by
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a thin cortical layer (in the lateral and front@ighbouring regions) and by white matter (in
the posterior and inferior neighbouring regionsho3e grey and white matter regions are
accurately delineated on the multi-contrast PD nwéule the PD* fails to provide correct
tissue contrast. This is due to the different behavof the RP estimation methods in the
presence of a severe anatomical abnormality. WKMIETK employed by the multi-contrast
PD map, does not make any assumption on the vageibdition across tissue classes, the

bias estimation used for PD* calculation is hamgdrg the inaccurate tissue segmentation.

Post-mortem experiment: post-mortem foetus

Figure 2c illustrates a single slice for the muattihtrast PD map estimated on the post-
mortem foetus. Although strong susceptibility aate$ are visible around the heart due to the
presence of air, the map shows homogeneous PDsvalg the whole body illustrating that
the method described allows PD mapping in variqudieations. The potential to produce
PD maps in the absence of anatomical informatioganding tissue distribution was
demonstrated by the PM foetus MRI dataset, for lvkie PD* maps are not available due to

their requirement for the a-priori information.

Discussion

In this study, we propose a framework for PD estiombased on minimal anatomical
information, suitable for multiple applications Iading healthy and diseased brains with
widespread pathology. To achieve this, the RP oet&tion was based on a non-parametric
algorithm for the correction of the intensity nonHormity, while the scaling factor was
based on an external calibration object. Additiomgberiments were carried out to test the
PD values reproducibility with respect to the positof the calibration object, the receiver
coil employed for acquiring the data and the nuntfeiterations of the N4ITK bias field
correction. Aiming to fully correct the PD map fibansverse relaxation effects and decrease
the PD value variability, we employed all the acgdidata points using a well-established
multi-contrast VFA protocol. Nonetheless we alsstad the applicability of our method in

the absence of MTw contrast.

We evaluated the PD values and homogeneity sepgréte main effects of R2* signal
decay, RP correction method and number of contr&stslly, we demonstrated the wide
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applicability of the new multi-contrast PD mappiog a severely damaged brain and on a

post-mortem foetus.

RP estimation with N4ITK

The RP sensitivity for the multi-contrast PD wagimneated using information about the
volume of interest and a B-spline interpolationtté intensity distribution. In the following
section the different factors affecting the RPreation are discussed along with their impact

on the resulting homogeneity of the PD maps.
Motion effects

The presence of motion during the scan acquisitoaold induce the variation of RP
sensitivity between the different image contrastsis has been corrected previously using
repeated RP measurements (Papp et al., 2015) glthtbase are limited by the assumption
of B1'/B1 reciprocity. To address this case the N4ITK biagexction could be applied to
each contrast after the removal of the ST oi:S€rm and any differences, due to movement

between each weighted image acquisition, couldbected.
Effects of receiver coil and number of N4ITK itévas

The spatial variability of the RP for a particuRF coil could impact the accuracy of the PD
maps. To account for those effects we acquired ddta different receiver coils and we

compared the resulting multi-contrast PD maps.

To evaluate the effectiveness of RP correctioma eare obtained using 20 and 64 channel
receiver head coils. We estimated the multi-coh®&» maps using data acquired with the 20
and 64 channel coils, and tested the effect oédfit numbers of N4ITK iterations. PD map
differences estimated within the same coil shovirad low density coils required less N4ITK
iterations to remove the bulk of RP sensitivityfpeowith respect to the maps obtained from
higher number of channels. This is expected dubddact that higher density RF coils have
more localised sensitivity profiles leading to aR Rith increased spatial variation. However
the same number of iterations was required for buei20 and 64 channel multi-contrast PD
maps in order to obtain negligible RP changes. diffe RP correction should reduce
changes in PD maps estimated with different RFscdihe systematic PD value differences
between receiver coils suggest that N4ITK proviglésss robust RP correction when a larger

number of receiver channels or more highly locdliseils are used.
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Comparison between multi-contrast PD and an estadddi PD mapping method

In the following sections we discuss the factorstgbuting to the homogeneity and PD
value differences between methods. The homogewaityassessed using tissue class specific
entropy and variance, while PD value comparison peaformed using voxel-wise statistical

analysis.
Effects of R2*: Comparison of multi-contrast PDRIB* maps

The presence of R2* dependency could modify thevldes distribution, affecting the

homogeneity assessment across different RP estimaiethods. To analyse the main effect
of R2* on the PD maps estimation we compared vadand entropy between the PD* and
multi-contrast PD maps. The increased variancersbdein GM for the multi-contrast PD

maps was mainly driven by voxels in brain regiortsere high susceptibility-related static
magnetic field gradients are present (e.g. tempgmylas and orbitofrontal regions) leading to
the rapid local R2* decay and poor model fit. To@ld be improved by increasing image

spatial resolution or improved fit regularisation.

The main effects of R2* dependency on voxel-wisegarison were the reduced PD values
in the deep brain structures and the increasedsallong the visual and motor tracks when
comparing the PD* maps to the multi-contrast PDsofdde results in the deep GM regions
can be explained by the presence of high iron cor{gquino et al., 2009; Langkammer et

al., 2010; Ordidge et al., 1994), that decreasesirttensity of the PD* maps. While the

results along the visual and motor tracks coulds®ibed to the presence of tightly packed
and heavily myelinated tracts leading to a formaofsotropy and residual R2* contrast
dependency related to the fibre orientation witspeet to the main magnetic field (Bender
and Klose, 2010; Cherubini et al., 2009; Denk gt2411).

Effects of RP correction and scaling method: corigmer multi-contrast vs standard PD

maps

Aiming to assess the effect of the RP estimatiothot we compared entropy and variance
across the multi-contrast PD and standard PD (Ridrected for R2* effects) maps. The PD
values homogeneity and accuracy, measured thrdweghrtropy and variance, for the multi-
contrast technique within CSF were increased beybad obtained using state-of-the-art

SPM12. As PD mapping can be used for the estimatiohe water volume fraction in tissue
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property models and g-ratio (Berman et al., 201éz&f et al., 2013), obtaining CSF values
around 100 p.u. indicates reliable measurementprargeded by the PD map to characterise
the percentage of observed water protons (Mezeal.et2016). Moreover the correct

delineation of CSF from PD map could benefit adeahdiffusion approaches where

accounting for the presence of water compartmesatiddin and free water volume fraction is
important for accurately modelling diffusion in f@ifent micro-structural compartments

(Kaden et al., 2016; Zhang et al., 2012).

As expected, in healthy controls the WM homogenétythe standard PD was increased
compared to the multi-contrast PD. This is dueht® RP estimation for PD* maps being
based on SPM unified bias-field/tissue segmentatibat explicitly minimises the signal
variability in those tissue classes, although stegularization and boundary conditions are
used to preserve structural variability (Ashburaed Friston, 2005; Weiskopf et al., 2011).
Additionally, the scaling factor used in the PD* psawas based on the mean WM signal,
which further decreases the intensity variability this tissue class between subjects.
However, the standard PD approach for the RP alonl and the map scaling excludes the
possibility of biological signal variability withiWM that can occur in brain development
and in pathology (Gracien et al., 2016; Mezer et 2013; Shah et al., 2008) leading to
scaling errors that could potentially result inoeous GM PD differences.

The main effects of the RP correction method aradirsg factor on the PD values were the
increased intensity of the multi-contrast PD wispect to both standard PD and PD* maps
in the corpus callosum and pons nuclei. This mightmainly driven by different methods
applied to estimate the RP. While SPM bias comactinimises the intensity variation over
each tissue class, N4ITK reduces the intensityidigion over the whole volume of interest
leading to potential inaccurate RP estimation igiaes where RP inhomogeneities are

stronger.
Effect of the number of weighted contrast datase¢sl to calculate PD

Finally, the use of a different number of contrastald alter the variability of PD values with
the expectation that PD variability should be restlby using a greater amount of data for its
calculation. To assess the effect of the numbeoafrasts employed in the PD estimation on
the map homogeneity, we estimated the tissue $pe@fiance and entropy for the one-
contrast, and multi-contrast PD maps. The obsdedr entropy and variance for the multi-
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contrast PD for all tissue classes indicates tlsigumore images with differing tissue
contrast decreases the signal variability, andemees the accuracy of the PD estimates. This
decrease in variance also indicates that the mosetl is sufficient to remove contrast
effects.

PD estimation in pathology

While correcting the PD* map for R2* signal decasoypdes a suitable approach for
estimating free water content in healthy braingoitild be inaccurate in case of abnormal
tissue property changes happening in brain devetopror pathological conditions. We
demonstrated that our multi-contrast PD maps imguldissue delineation in the presence of
abnormal anatomical structures, such as ventriddiah due to a porencephalic cist. This
improvement was mainly due to the approach usedherRC profile estimation and the
external probe employed for scaling. However, itned that the cist CSF delineation
provided by both the multi-contrast PD and PD* m&gs hampered by the presence of Gibbs

artefacts.

The multi-contrast approach enabled the PD mapnatitn for the whole body of a post-
mortem foetus. Although our primary interest wasPB mapping within the brain, this
example was used to highlight how this method camiore generally applied. There is an
increased role of post-mortem MRI for autopsy whaan provide information regarding
cause of death or major pathology, but can alsaidesl to advance medical research and
knowledge in answering specific ante mortem quasti{@hayyil et al., 2013). In this regard,

guantitative imaging such as PD measurements may draimportant role to play.

Limitations and outlook

The majority of the existing techniques (Abbaslet2014; Mezer et al., 2016; Volz et al.,
2012b; Wang et al., 2018) employ two main contréstsstimate PD and the voxel-wise R1
required for the PD mapping. As we showed withdhe-contrast PD map, the PD mapping
approach described in this work can be applied kdtare multiple contrasts are available
and where only Tlw and PDw images are presenttifeomulti-echo VFA images obtained

for multi-parameter mapping, utilising all datasetgproves the PD maps by reducing their
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variance within tissue class. This is importanthbfuir robustness against motion artefacts
(Weiskopf et al., 2014) and for fast data acquisitmethods using partial k-space sampling,
such as partial Fourier, parallel acquisition anpoessed sensing, that can reduce SNR in the
raw images (Bilgic et al., 2011; Griswold et al002; Johnson, 2017; Lustig et al., 2007,

Vasanawala et al., 2010).

Despite the neurobiological and anatomical platigibof our findings, there are certain
methodological limitations of note. Most importantthe assumption of a mono-exponential
signal decay described by Renay be violated in some brain areas, particuléiyse
suffering from susceptibility artefacts (Neeb et, &006). In those regions the mono-
exponential fit is potentially unstable and camsigantly increase the noise level (Neeb et
al., 2006). However, high spatial resolution (hérent was used) reduces the effects of
susceptibility artefacts on the signal decay dueateseduced within voxel spin phase
coherence loss (Weiskopf et al., 2007). Despitesiptes limitations related to the R2*
estimation in regions with susceptibility artefactee observe that our method provides PD
values in deep brain structures unaffected by @rerBaxation effects.

The RP correction method employed in this studyvadlthe PD mapping estimation pipeline
to be more generally applied across different apfibns, albeit the robustness of the bias
correction is influenced by the number of chanpeésent in the receiver coil. In the brain, a
relatively small effect of channel count was fowrdthe PD values when comparing a 20
and 64 channel head/neck receiver array. The usecefver coils with very strong spatial
variations or comparisons made between PD mapsiradqwith different RF coils could

therefore be biased by inaccurate RP estimation.

PD is an important parameter for mapping water m@ufraction during lifespan and in
different pathologies. The procedure presented akboevs the delineation of both local and
global changes making PD suitable for charactegibirain maturation, aging and pathology
both in the brain and beyond (Ayata and Ropper22@aierl et al., 1988; Blystad et al.,
2017; Hagiwara et al., 2017; Jurcoane et al., 20a8Allister et al., 2017; Mezer et al.,
2013). Our results are particularly relevant foudsts focusing on PD mapping in the
presence of pronounced pathologies that causeatlueef of tissue segmentation algorithms
or hamper the correct fit between PD and T1. Ngtatle RP correction and the scaling
method used in this study are independent fromsthgect’'s anatomy and can be used for
any organs.
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Appendix A

To assess the stability of the PD map scaling waipect to the location of the external
calibration object, we scanned the same subjectiptaultimes with the external object
located at different positions. The scanning prota@nd the calibration object were those

described in section Data acquisition. As we uséd ahannel receiver coil and the tube of

water was 10 cm long, we could place the refer@fgect in a limited number of positions
close to the skull while preserving the subjecteméort. We performed two data
acquisitions, placing the external calibration cbjen the left temple, and then placing it on
the right one.

To estimate the multi-contrast PD map for eachsgateve followed the steps described in the
Estimation of multi-contrast PD maps.
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We observed the same PD value distribution in Gl \AfM voxel for both positions of the
calibration objects, as shown on Fig 7. WM and G be distinguished clearly, with peaks
at about 70% (WM) and 83% (GM) for the calibratmject placed on the right temple (red),
and on the left one (blue).

To quantify the spatial distribution of the inteysichanges across the position of the
calibration object, we coregistered the two muttrizast PD maps and computed the voxel-
wise difference. The difference map was dividedh®/ mean values of the two PD maps in
order to obtain percentage variations. The PD vah#snges across position of the calibration

object were smaller than 5% within the GM and Wh&tie, and they ranged between -10%
and 10% within CSF tissue.
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Tables
Entropy Variance
Tci;’;e i conl\t/lrl:atzlt:i -PD Wilcoxon Pb* conl\{lrlillstti -PD Wilcoxon
EntSr(I)Dpyi Entropyz SD t\ﬁupe' VariSche + Varisagce + t\ilt upe-

CSF 6.45+0.13 5.70+0.90 0.007 385+ 151 209.72+77.5 0.009
GM 545+0.14 5.46+0.18 0.367 18.2+1.94 38.68648  0.008

WM 6.01+0.4 5.96+0.49 0.242 428+0.25 11.24+1.20 0.008

Table 1: Tissue-specific entropy and variance estimatedhfer?D* maps and multi-contrast
PD in subjects native space within the cerebro$ima (CSF), grey matter (GM) and white
matter (WM). The measures were statistically cormparsing the Wilcoxon ranked test.

Entropy Variance
, Multi- Multi-contrast
Tissue PDst contrast PD _ PDst PD _
class Wilcoxon Wilcoxon test
Entropy+ Entropy+ SD test p-value Variance + Variance + SD p-value
SD SD
CSF 6.53+0.19 5.70+0.90 0.007 309+ 113 209.72£ 77.5 0.009
GM 535+0.22 5.46+0.18 0.1 39.1+11.7 38.68 #48.6 0.2
WM 5.37£0.43 5.96 +0.49 0.004 459+3.1 11.24 +1.20 0.007

Table 2: Tissue-specific entropy and variance estimatedttier standard PD (PDst) and
multi-contrast PD maps in subjects’ native spaciiwithe cerebrospinal fluid (CSF), grey

matter (GM) and white matter (WM). The measuresenaatistically compared using the
Wilcoxon ranked test.
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Entropy Variance
Tissuedass PD* One- Multi- PD* One- Multi-
contrast PD  contrast PD contrast PD  contrast PD
CSF 6.47 6.22 6.17 440 320 300
GM 5.57 5.68 5.37 20 70 50
WM 6.28 6.16 6.1 4 14 10

Table 3: Tissue-specific entropy and variance estimatediferPD* maps, and one-contrast
and multi-contrast PD within the cerebrospinal dI{CSF), grey matter (GM) and white
matter (WM) for a single healthy control.
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Analysis Region C)(()Ol’dl n;t% (mm) T-value
Left motor cortex -33  -18 42 23
oM Right motor cortex -32 18 5 22
Left insula -38 -2 8 21
PD*> M ulti- Right insula 44 18 -3 18
contrast PD Left motor track -25  -34 46 19
WM Right motor track 30 -35 41 13
Left visual track -36  -56 14 13
Right visual track 41 -53 17 12
Left globus pallidus -15 -3 0 14
Right globus pallidus 23 -6 -3 23
Left orbitofrontal cortex -17 42 -30 20
oM Right orbitofrontal cortex 9 27  -24 15
Multi-contrast PD Left substantia nigra -10  -17  -12 10
> PD* Right substantia nigra 8 -18  -17 12
Left inferior temporal pole -59 23 -27 17
Right inferior temporal pole 44  -30 -27 12
WM Corpus callosum 2 6 23 27
Pons nuclei 2 -32  -26 13
GM Ial?e?g:)grljgleerﬁis 12 6 14 15
Multi-contrast PD Right caudate 6 13 -3 22
> standard PD WM Corpus callosum 5 8 24 30
Pons nuclei 2 -30  -17 20

Table4: Summary of the main differences relative to theMtbrain voxel-wise comparison
between the multi-contrast PD and PD* maps, anddxt Multi-contrast PD and standard
PD. Coordinates are reported in MNI standard space.
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Figure 1. Workflow and signal equation for multi-contrast BBEtimation. The signal (S) of FLASH multi-echo PDvtw, and MTw images

was combined and corrected for R2* relaxation. fidsailting PDw and T1w images were corrected foaRd inhomogeneity in the transmit
magnetic field (B1) by computing voxel-wise the steady state (SThteMTw images were corrected for rTcomputed using the
magnetisation saturation (MT) term. This led t@thmaps representing the signal amplitude commtretthree FLASH datasets. The mean of

the three images was corrected for the receivdil@(®P) using N4ITK, and scaled using the medimmal of the external calibration object

(©).
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In-vivo healthy subject

Multi-
contrast
PD map

Multi-
contrast
PD map

Multi-
contrast
PD map

Figure 2: Examples of effective proton density (PD*) mapd anulti-contrast PD map. (a)
Maps computed for a healthy subject. (b) Maps cdetptor a paediatric patient with a
porencephalic dilation of right frontal lateral va@dle. The magnification shows the grey and
white matter regions where the PD* map fails tovpte homogenous RP correction resulting
in blurred tissue contrast, while the same regamescorrectly delineated on the multi-
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contrast PD. (c) Whole body example of multi-cosit®@D map obtained from a post-mortem

unfixed foetus.
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Figure 3: Multi-contrast PD maps estimated using data aeduvith the 20 and 64 channel
(ch) receiver coils using different numbers of NKliterations for RP removal. (a) Example
of multi-contrast PD map estimated using data aequwith 20 channel coil. Each row
displays the PD map corrected for RP sensitivitingisa different number of N4ITK

consecutive iterations (one to ten). (b) PD chargssveen different numbers of N4ITK

iterations for the 20 channel dataset. Each rowplays the spatial changes between
consecutive numbers of iterations. (c) Example oftircontrast PD map estimated using
data acquired with 64 channel coil and differenhber of N4ITK iterations. (d) PD changes
between different numbers of consecutive N4ITKatens for the 64 channel dataset. (e)

Difference between the multi-contrast PD maps aeqguwith the 20 and 64 channel coils for
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each number of N4ITK iterations used for the RPaeah (f) Root mean square (RMS) of
the PD changes between different numbers of cotisect4ITK iterations for the 20
channel coil data in three healthy subjects. (g)SRM the PD changes between different
numbers of consecutive N4ITK iterations for the @#annel coil data of three healthy
subjects. (h) RMS of the PD changes between thehdfnel coil dataset and the 64 channel

coil one for each iteration of N4ITK in three héglsubjects.
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Entropv of multi-contrast PD and standard PD maps

Figure 4: Assessment of intensity uniformity for the effeetiproton density (PD*), multi-
contrast PD and standard PD (PDst) maps within gratger (GM), white matter (WM), and
cerebrospinal fluid (CSF) for in-vivo data. (a) Bty estimated within GM, WM and CSF
for the multi-contrast and PD and PD* maps. Sigaiffitly (*) higher entropy was found in
PD* compared to multi-contrast PD over CSF. (b) fdcbntrast and PD and PD* median
and variance estimated within GM, WM and CSF. Sigantly (*) higher variance was
found in multi-contrast PD compared to PD* over GMM and CSF. (c) Entropy estimated
within GM, WM and CSF for the multi-contrast PD astdndard PD maps. Significantly (*)
higher entropy was found in standard PD compareuttidi-contrast PD over CSF, and in the
multi-contrast PD over WM. (d) Multi-contrast an® Rnd standard PD median and variance
estimated within GM, WM and CSF. Significantly ()gher variance was found in multi-

contrast PD compared to standard PD over WM and CSF
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PD*> multi-contrast PD PD*< multi-contrast PD ; standard PD < multi-contrast PD

2

Figure 5: Voxel-wise comparison of effective in-vivo protatensity (PD*) with multi-
contrast PD maps, and between standard PD andcoultiast PD maps in grey matter (GM)
and white matter (WM). The statistical maps of @dit-test at statistical threshold giyp <
0.05 are displayed on T1w image in standard MNtspéa) Higher PD* values compared to
multi-contrast PD in GM. (b) Higher PD* values caan@d to multi-contrast PD in WM. (c)
Higher multi-contrast PD values compared to PD*GM. (d) Higher multi-contrast PD
values compared to PD* in WM. (e) Higher multi-a@st PD values compared to standard
PD in GM. (f) Higher multi-contrast PD values comgxato standard PD in WM.
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Supplementary material

a) In-vivo healthy subject

One-contrast
PD map

Multi-contrast
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b) Intensity of PD maps
140 I T T T T 1 T T T
130 | — _ ]
1 1 1
' 1 1
120 | : : P
' 1 1
1 1 1
110 , . -
' 1 1
Z _ -
‘s 100 i 1 .
= 1 1
w —_— 1 1
€ 90 ! : : .
- 1 1
g 1 1 1
80 i 1 [ ] - T : : : T
[ [ 1 JR— ' ' ! [ [
70 -t 1 1 ! 1 1 _
R : : :
. — 1 ' 1 . o
60 an R DR 1
50 1 1 1 1 1 1 1 1 1
GM GM GM WM WM WM CSF CSF CSF
PD* 3contrasts lcontrast PD* 3contrasts 1contrast PD* 3contrasts contrast
PD PD PD PD PD PD

Figure 6: Single subject comparison of effective proton dgn@D*), multi-contrast and
one-contrast PD map. (a) Example of the three rfaps healthy volunteer. (b) Assessment
of intensity variability for the PD*, multi-contrasnd one-contrast PD maps within GM,
WM and CSF.
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Multi-contrast PD
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Figure 7: Left: Multi-contrast PD maps for a single subject scanplading the calibration
object on the left temple (top row) and on the tighe (middle row). The bottom row shows
the spatial distribution of the PD value differesitetween the two acquisitions. Right:
histogram of the PD values within GM and WM tissiesses.
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