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Abstract:

Genetic analysis of late-onset Alzheimer’s disease risk has previously identified a
network of largely microglial genes that form a transcriptional network. In
transgenic mouse models of amyloid deposition we have previously shown that
the expression of many of the mouse orthologs of these genes are co-ordinately
up-regulated by amyloid deposition. Here we investigate whether systematic
analysis of other members of this mouse amyloid-responsive network predicts
other Alzheimer’s risk loci. This statistical comparison of the mouse amyloid-
response network with Alzheimer’s disease genome-wide association studies
identifies 5 other genetic risk loci for the disease (0AS1, CXCL10, LAPTMS5, ITGAM
and LILRB4). This work suggests that genetic variability in the microglial

response to amyloid deposition is a major determinant for Alzheimer’s risk.

One Sentence Summary:

Identification of 5 new risk loci for Alzheimer’s by statistical comparison of

mouse Af3 microglial response with gene-based SNPs from human GWAS
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Main Text:

All the mutations in the genes causing early-onset Alzheimer’s disease (AD) alter
APP processing such that amyloid deposition becomes more likely (1). In
contrast, with the exception of some rare variants in APP processing enzymes (2-
5), the majority of the risk in late-onset disease has been shown to be due to
sequence variability in genes expressed in the innate immune system (largely
microglial) and lipid metabolism (6). When we identified the microglial gene
TREM?Z (7) as a potent risk gene for late-onset disease, we confirmed earlier
reports that its expression was strongly increased by amyloid deposition in APP
transgenic mice (7-10). In a genome-wide expression study of transgenic
APP/PSEN1 mice during pathology development, we noted that TremZ2 was one
of the genes whose expression was up-regulated the most in relation to amyloid
deposition and that TremZ2 expression showed a strong correlation with an
entire network of genes co-expressed in the innate immune system. This
immune module of genes showed a remarkable correlation to amyloid pathology
and contained orthologs of other established Alzheimer’s risk genes such as
Abca7 and Ms4a6d (correlation = 0.87; p = 6e-32)(9, 11). Notably, the two AD risk
loci for ABI3 and PLCGZ identified subsequent to our study were also present in
this network (12), suggesting that this amyloid-responsive immune network may

predict future risk genes for AD.

An important outstanding question is whether late-onset AD is mostly due to an
inadequate cellular response to rising Af and its deposition, particularly due to
sequence and expression variability in genes expressed by the innate immune
system and/or involved in lipid processing. This hypothesis is difficult to study
in human post-mortem tissue because after an extended period of disease the
proportion of cell types in the brain have changed and the remaining cells show
extensive compensatory changes in gene expression. With these questions in
mind, we determined whether surveying the gene expression network that
responds robustly to amyloid pathology could be used to identify further AD risk
loci. Although amyloid mouse models have clear limitations in that they do not
show tau tangles or neuronal loss, they allow us to study the time-course

response of a healthy innate immune system reacting to Af3, in which the innate
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immune cells have the ability to ultimately prevent A killing neurons. Our
previous expression network was constructed using expression arrays (9).
Because these microarrays are limited by their probe content and have a limited
dynamic range, we have now sequenced the transcriptome using RNA-seq and
reconstructed a higher resolution expression network. The new full microglial
module of genes shows a dramatic correlation with Af pathology (correlation =
0.94; p < 3e41), and contains the mouse orthologs of existing GWAS loci TREMZ,
ABI3, CD33, INPP5D, MS4A6D, SPI1, PLCG2, RIN3, HLA and APOE (Table S1). The
genes showing the tightest expression correlation/AB-response within the
module form the network shown in Fig. 1 and Table S2 (top 147 genes from a
total of 1,584 genes with up-regulated expression as part of the immune module
based on the topological overlap measure, TOM, see Methods). This network is
broadly similar to the network derived from the analysis of the same RNA by
microarray methods (9), and importantly closely resembles microglial networks
published by other groups using different amyloid mouse models (13-17),
suggesting this is a conserved network of genes that can be reliably identified
using different methodologies. TremZ2 forms a hub gene in our network
indicating that Trem?2 expression is highly correlated to many other genes in the
network, and may drive the expression response of this network. In line with this
idea, TremZ2 has been shown to regulate at least part of this immune module (13,
14, 16). The network we identified also is broadly similar to a human network of
immune genes containing TYROBP, TREMZ2, MS4A family genes, C1Q members
and CD33, identified from human pathology tissue bearing in mind the caveats
discussed above (18, 19), suggesting this mouse Af3-response gene network

behaves similarly in humans.

Within our mouse immune network, we first confirmed that several members
were orthologs of AD loci variants using the data from the Alzheimer’s disease
genetic consortium (11, 20)(Table 1). We then asked whether the other members
of the mouse microglial amyloid-response network overlapped with individual
human genes containing multiple SNPs associated with AD by cross-referencing
gene-based statistical approaches (20). Overall, we found there was an
enrichment of human genes with significant AD-associated SNPs within this

amyloid-responsive network. This enrichment was more than would be
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expected by chance alone, even after the established GWAS loci were excluded (p
= 1.91x10 for highly connected network genes, Fig. 1, top 147 genes, versus p =
7.32x10-* for the entire module of 1,584 genes, Table S1). As a comparison to the
mouse amyloid-responsive network, the mouse tau-responsive immune network
was not significantly enriched for human genes with AD-associated SNPs when
the central portion of the tau network containing the highly connected genes
were considered, after the established GWAS loci were excluded as before (p =
0.92), although Apoe is part of this module (Fig. S1, top 137 genes from a total of
2,299 genes in the immune module based on the TOM). When the entire module
of tau-responsive immune genes (2,299 genes) was considered there was a
significant enrichment, p = 4.63x10-%, suggesting that a proportion of AD-
associated SNPs appear in microglial genes that have mouse orthologs, but are
less responsive to tau pathology compared to amyloid pathology. The amyloid
network analyses identified 5 genes within the mouse microglial network whose
human orthologes contained SNPs significantly associated with AD, counting the
genes within 0.5 Mb as one locus (see Methods, 20). These 5 genes, 0AS1,
CXCL10, LAPTM5, ITGAM and LILRB4, have not been previously reported as
having variants significantly associated with AD using traditional GWAS
approaches (Table 1, Fig. S2-4). Indeed the amyloid-responsive sub-network of
these 5 novel genes with the established GWAS loci TREMZ2, ABI3, CD33, INPP5D,
SPI1 and MS4A6D (Fig. 1) is not highly connected in an innate immune gene
network associated with tau pathology (Fig. S1), suggesting this sub-network is
more responsive to amyloid pathology than other pathologies. Furthermore, in
common with the existing 6 known GWAS-associated genes, the 5 novel genes
we identify respond very early to A deposition, with gene expression increasing

from 4 months of age in the homozygous APP/PSEN1 mice (Fig. S5).

Aspects of the amyloid-responsive network we identify in our analysis
containing the 5 new genes with the existing 6 GWAS loci are broadly similar to
microglial networks we and others have previously identified in human brain
analyses. Zhang and colleagues identified an AD-relevant network centered on
TYROBP and TREMZ which contained ITGAM and LAPTM5 (18) and we described
a human microglial network containing LAPTM5, ITGAM and LILRB4 (19). We

then determined whether these novel Alzheimer’s risk loci, derived from a
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156 mouse AB-response network were present in independent datasets of human
157  brain co-expression networks. Cross referencing the network (see Methods)
158  with the data from the ROS/MAP project (21, 22), and BRAINEAC (23) datasets
159 revealed that LAPTMS5, ITGAM and LILRB4 clustered together in the same

160 network in the ROSMAP based co-expression networks, together with many of
161  the GWAS risk genes for AD, and with SPI1, the myeloid cell transcription factor
162  (24)(Fig. S6; Fisher’s Exact test Bonferroni corrected p = 1.34x10-13 for AD). We
163  confirmed these module memberships in the BRAINEAC data for control brains
164  generated in our own lab and found essentially the same results (data not

165 shown). Interestingly, we found that SPI1 was bound to the regulatory regions of
166  Laptmb5 and Itgam, along with binding to established AD risk gene orthologs
167  Trem2, Abi3, Inpp5d, Ms4a6d and Spi1 itself, by searching data from a chromatin
168 immunoprecipitation experiment against SPI1 in mouse microglial-like BV-2
169  cells (25). This finding was supported by mining for regulatory features and cis-
170  regulatory modules in the amyloid-response network genes using i-cisTarget
171  thatuses a vast library of regulatory data (26). Together, these findings suggest
172  thata number of the predicted and established AD risk genes may be regulated
173 by SPI1, which itself alters AD risk by coordinating a program of microglial-

174  expressed genes (24).

175  Since most GWAS loci are thought to operate by regulating the expression of
176  neighboring genes (24, 27, 28), for each of the 5 potential AD-associated genes
177  we performed a colocalisation analysis to test the association between AD loci
178  located within these genes and loci regulating these genes’ expression (eQTLs;
179  (29).eQTLs were obtained from two previously published datasets using

180 baseline and stimulated human-derived monocytes and iPSC-derived

181 macrophages (30, 31). In these studies, macrophages and monocytes were

182  stimulated with various immunostimulants to activate distinct, well-

183  characterised immune signaling pathways, including those broadly associated
184  with bacterial and viral responses. Interestingly, we identified 3 colocalisations
185 between AD loci and eQTLs regulating OAS1 gene expression, all of which were
186 identified in stimulated states, suggesting that this association is only active in

187  certain environmental conditions (Fig. 2 and Fig. S7-8), in particular those
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designed to model monocyte/macrophage priming or more chronic

inflammation.

Surveying the literature on our genes of interest revealed that 0AS1 (2-prime,5-
prime oligoadenylate synthetase 1) is involved in the regulation of cytokine
expression (32). OAS1 is induced by interferons (33), which supports our eQTL
analysis showing that the best SNP we identified for OAS1 appears in a locus
which acts as an eQTL in response to interferon-y (IFNy; Fig. 2 and Fig. S7-8).
0AS1 can additionally activate Ribonuclease L which degrades viral RNA and
inhibits viral replication (33). CXCL10 (IP-10; chemokine, CXC motif, ligand 10) is
a proinflammatory cytokine that has been reported to have increased
concentrations in the AD-brain, particularly associated with amyloid plaques
(34), and CXCL10 increases plaque pathology in APP/PSEN1 transgenic mice (35).
CXCL10 was found to increase in older people and in AD, and correlated with
cognitive decline (36). LAPTM5 (lysosome-associated protein, transmembrane 5)
is associated with amyloid pathology in transgenic mice (17), and LILRB4
(leukocyte immunoglobulin-like receptor, subfamily B, member 4), has also been
shown to be increased with amyloid pathology and specifically associated with
amyloid plaques (15, 37, 38). The functions of LAPTM5 and LILRB4 have not been
well characterized, but are thought to suppress the activation of a variety of
immune cells. ITGAM (alpha-chain subunit of the heterodimeric integrin
complement receptor alpha-M-beta-2, also known as CD11b or CR3A), is a cell
surface receptor involved in activation, migration and phagocytosis of immune
cells, so much so that ITGAM is used as a marker of activated microglia (37, 39,
40), and is involved in systemic lupus (41). ITGAM was highlighted in recent
genetic and functional analyses as being a likely AD risk gene, whose expression
was driven by SPI1, and related to amyloid pathology in mice and humans (17,

18,24, 37,42, 43).

The importance of this work is two fold. First, by identifying more genetic loci
involved in pathogenesis, we derive a more complete insight into the cellular
processes and molecular mechanisms underlying the disease. In this regard this
work is complementary to that of Huang and colleagues (24), showing that

microglial SPI1-driven transcription is a common feature of many Alzheimer’s
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loci. These findings are also consistent with previous work on Trem2 (8, 13, 14,
16, 44) and CD33 (27, 28) suggesting these risk genes are crucial in controlling
the microglial response to amyloid-induced damage. Understanding the
mechanisms of function of TREM2 and the amyloid-responsive sub-network
identified here may be useful for leveraging therapeutic opportunities. Second,
and perhaps of greater importance, this work implies that, overall, how well an
individual responds to amyloid deposition at the cellular and gene expression
level plays a large part in determining ones risk of disease, and this may be used
to predict the chances of developing AD before irreversible neurodegeneration

sets in.

URLs of databases used:

Mouseac: www.mouseac.org

Braineac: www.braineac.org

1,000 genomes: http://www.1000genomes.org/ and

http://www.internationalgenome.org/

Coloc: https://github.com/chrilswallace/coloc

Bioconductor: https://bioconductor.org/biocLite.R
ROS/MAP: https://www.synapse.org/#!Synapse:syn3219045

i-CisTarget: https://gbiomed.kuleuven.be/apps/Icb/i-cisTarget/

GTEx V6 gene expression: https://gtexportal.org/home/

Coexp: https://github.com/juanbot/coexp

Methods:

Mouse and transcriptome work

Total RNA was used from the same mice as described in Matarin et al. (9). The
quality and concentration of the total RNA was assessed using capillary
electrophoresis of each sample. RNA-seq library preparation and sequencing was
performed by Eurofins Genomics (strand-specific cDNA libraries with polyA
selection), by Illumina (HiSeq 2500) sequencing (2x 100 bp paired-end;
multiplex 12 samples per lane - 28M reads). Adaptors and low quality base pairs

were removed from FASTQ files using Trim Galore (Babraham Bioinformatics).
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Transcripts were quantified with Salmon (45), using gene annotation from
ENSEMBL GRCm38. Salmon was used because it incorporates GC correction and
accounts for fragment positional bias. To get gene level quantification from the
transcripts, and correct for average transcript length and library size, expressed
as transcripts per million (TPM), the tximport R package was used (46). TPM
values were log2 transformed, and genes were considered expressed when log2
TPM values displayed a mean >1.5 for a given gene for at least one group of mice,
when gene TPM values were averaged for each genotype at each age (resulting in

a total of 18,562 genes expressed).

Weighted co-expression network analyses (WGCNAs) was performed as
described in Matarin et al. (9). Coexpression networks were built using the
WGCNA package in R. Genes with variable expression patterns (coefficient of
variation >5% for wild-type and amyloid mice, or wild-type and tau mice) from
normalized log2 TPM values were selected for network analyses resulting in
13,536 genes for network analyses (47-50). The module of genes with the
highest significant correlation with amyloid or tau pathology was selected for
analysis (amyloid, correlation 0.94, p = 3e-41; tau, correlation 0.82, p =4e-12).
TOM connectivity values were used to plot the network diagrams (TOM > 0.39
for amyloid-responsive module, and TOM > 0.36 for tau-responsive module).
Hub genes were considered to be those with at least 15 connections to other

genes.
Genetic Analysis

The lists of mouse genes were converted to the lists of human genes using

convertMouseGeneList() function, library biomaRt in R downloaded from

https://bioconductor.org/biocLite.R.

The significance of the association of human genes to AD was assessed as
described in (20). Briefly, the IGAP (11) summary statistics calculated for each
SNP in a sample of 17,008 AD cases and 37,154 controls were used to derive the
gene-based p-values. SNPs were assigned to genes if they were located within
the genomic sequence lying between the start of the first and the end of the last

exon of any transcript corresponding to that gene. The chromosome and location
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for all currently known human SNPs along with their assignment to genes were
taken from the dbSNP132 database (build 37.1). If a SNP belongs to more than
one gene, it was assigned to each of these genes. Data from the 1,000 genomes
project (release Dec2010) were used as a reference panel for both (a) SNP
imputation, and (b) calculation of LD between markers (51). An approximate
statistical approach (52) which controls for LD and different number of markers
per gene, was used to derive the gene-based p-values. Prior to the gene-based

analyses all individual SNP p-values were corrected for genomic control.

We calculated the significance of the excess number of genes attaining the
specified thresholds (0.05, 0.01 and 0.001) based upon the assumption that,
under the null hypothesis of no association, the number of significant genes at a
significance level of a in a scan is distributed as a binomial (N, a), where N is the
total number of genes, assuming that genes are independent. Genes within 0.5Mb
of each other are counted as one signal when calculating the observed number of
significant genes. This prevents significance being inflated by LD between genes,
where a single association signal gives rise to several significantly-associated
genes. The over-representation p-value was calculated using a Z-test comparing
the number of observed independent significant genes with the expected
number of significant genes with corresponding variance (=N*a *(1- a ), where N
is the total number of independent genes in the network, and a is the significance
threshold). We report the genes at the gene-based p-value threshold 0.01, where

the excess of observed significant genes was the highest.
Human sample co-expression network construction and annotation

We generated co-expression networks from RNA-seq based gene expression
profiling of 635 pre-frontal cortex samples from the ROS/MAP project (21, 22,
53). We used cognitive decline as a covariate to construct four networks: all
samples network, not AD, probable AD and AD. We used WGCNA (50) with an
optimization for constructing more biologically meaningful co-expression
networks (54). We corrected for batch effects using ComBAT (55), obtained
unknown hidden effect covariates with SVA (56), and used the residuals

obtained by regressing the gene expression with SVA covariates, age and gender.

10
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Then we annotated the network modules for enrichment of Gene Ontology,

REACTOME (57), and KEGG (58) pathways using gProfileR (59).

Colocalisation with monocyte eQTL data sets

We applied coloc (version 3.1, see URLSs) to test for colocalisation between AD
loci surrounding the five novel identified genes (0OAS1, CXCL10, LAPTMS5, ITGAM,
and LILRB4) and eQTLs (29). While no microglial eQTL datasets exist to date,
eQTL analyses have been performed using monocytes and iPSC-derived
macrophages (at rest and stimulated with various immunostimulants, such as
IFN-y)(30, 31). We ran coloc using default parameters and priors on all SNPs
that: 1) had eQTLs tagging one of the 5 novel genes (this included all tested SNP-
gene associations, including non-significant eQTLs); and 2) had overlapping
SNPs in the AD GWAS. We excluded all loci in which PP3 + PP4 < 0.8, to exclude
loci where we were underpowered to detect colocalisation. Loci with PP4/PP3 2
2 were considered colocalised due to a single shared causal variant (PP4), as

opposed to two distinct causal variants (PP3).

11
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Fig. 1. Amyloid-responsive immune network of genes featuring several
orthologs of established GWAS variants associated with AD, predicts the
importance of five new genes that may influence the risk of developing AD.
Network plot using VisANT reveals key drivers of an immune module from RNA-
seq derived gene expression from the hippocampus of wild-type and amyloid
mice. Red circles show established GWAS genes associated with AD including
Trem2, Cd33, Abi3 and Spil. Blue underline shows genes predicted to confer
increased risk of AD by overlapping strongly amyloid-responsive gene
expression data in amyloid mice with analyses identifying combinations of
adjacent human SNPs within individual genes showing significant associations
with AD (see Methods, 20). Genes shown in this network display up-regulated
expression in response to amyloid deposition. Larger red spheres represent “hub
genes,” those showing the greatest number of connections to other genes in the
network, and include Trem2, Tryobp, Lilrb4a, P2ry13, Ctss, Ctsz, Mpeg1 and Plek,

which are likely to play important roles in driving microglial function.

Fig. 2. Colocalisation of AD GWAS loci with eQTLs derived from baseline
and stimulated iPSC-derived macrophages. Colocalisation of AD loci and
eQTLs targeting OAS1 in baseline and stimulated states (IFNy and Salmonella, 18
and 5 hours respectively). In the eQTL panels, grey and red data points represent
macrophages at baseline or stimulated with both [FNy and Salmonella,
respectively. The best AD locus in OAS1,rs1131454 (p-value = 3.92 x 10-5), is
highlighted with the black line. IFNy, interferon-y. Numerical results are

reported in Table S3.

Table 1. The genes predicted to contain SNP variants associated with AD
together with established loci associated with AD from GWAS. Genes
predicted to confer increased risk of AD by overlapping strongly amyloid-
responsive gene expression data in amyloid mice (Fig. 1) with analyses
identifying combinations of adjacent human SNPs within individual genes
showing significant associations with AD (see Methods; 20). The SNP positions
are provided for build 37, assembly Hg19, as in IGAP study (11). The SNP with

12
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the most significant p-value within each gene is denoted as ‘Best SNP,’ from the

IGAP stage 1 dataset. The effect size (coefficient of the logistic regression) is

provided for the best reported SNP from IGAP data; a positive number indicates

that the allele increases risk of AD, and so a negative number indicates the allele

is protective. The allele frequency from the IGAP study is also provided. The

established genes altering risk for AD from GWAS are given for comparison.
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Mouse Human
symbol symbol
(MGl) (HGNC)

NCBI
ID

Predicted genes
Laptmb LAPTM5 7805
Cxcl10 CXcL10 3627

Oas1a OAST1 4938

Itgam ITGAM 3684

Lilrb4a LILRB4 11006
Established GWAS genes

H2-Ob HLA-DOB 3112
Trem2 TREM2 54209

Spi1 SPI1 6688
Ms4abd  MS4A6A 64231
Abi3 ABI3 51225
Cd33 CD33 945

Human
Chromosome

1
4
12
16
19

6
6
11
11
17
19

Start
Location

31205315
76942271
113344739
31271288
55174124

32780540
41126246
47376409
59939080
47287589
51728335

End
Location

31230683
76944650
113357712
31344213
55179848

32784825
41130922
47400127
59950674
47300587
51743274

Number
of SNPs

45

17
151
22

35
1
47
22
37
23

Gene p-

value (adj

for GC)

0.00285
0.00227
0.000388
0.00571
0.00666

0.00354
0.00258
1.34E-06
3.07E-10
0.00228
1.95E-06

Best SNP

rs1623695
rs8878
rs1131454
rs9928397
rs731170

rs2070121
rs7748513
rs10437655
rs7935829
rs2158512
rs12459419

Best SNP
Location

31210852
76942300
113348870
31320901
55176262

32781554
41127972
47391948
59942815
47290253
51728477

Best
SNP p-
value

0.000764
0.00144
3.92E-05
0.000671
0.000272

0.00138
0.00182
1.99E-06
1.64E-10
9.22E-07
6.49E-08

Effect
size

-0.0817
0.0508
0.1004
0.1079
0.0683

0.0931
-0.1293
0.0759
0.1011
0.154
-0.0945

Risk
Allele

> 4 > >» 4

A
A
A
A
T
T

Frequency

0.2065
0.4657
0.5655
0.0894
0.3054

0.0796
0.9633
0.4037
0.5989
0.726
0.3102

Table 1. The genes predicted to contain SNP variants associated with AD together with established loci associated with AD from GWAS.
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