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Abstract 

We propose lithium metal cells employing LiCF3SO3-tetraethylene glycol dimethy ether 

(TEGDME) electrolyte solution with LiFePO4 and LiMn0.5Fe0.5PO4 cathodes. The electrolyte is selected 

due to its non-flammability, herein demonstrated, and considered as a key requirement for application 

cells employing high energy lithium metal anode. The selected olivine cathodes, i.e., stable materials 

prepared by solvothermal pathway, have regular submicrometrical morphology suitable for cell operation 

and homogeneous composition, as confirmed by electron microscopy and energy dispersive X-ray 
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spectroscopy. The electrochemical tests reveal promising cycling performances in terms of delivered 

capacity, stability and rate capability. The Li/LiCF3SO3-TEGDME/LiFePO4 cell operates at 3.5 V with 

capacity ranging from 150 mAh g−1 at C/10 to 110 mAh g−1 at 2C, while the Li/LiCF3SO3-

TEGDME/LiFe0.5Mn0.5PO4 cell performs following two plateaus at 4.1 V and 3.5 V with capacity 

ranging from 160 mAh g−1 at C/10 to 75 mAh g−1 at 2C. Hence, the results demonstrate the suitability of 

TEGDME-based electrolytes in combination with LiFePO4 and LiFe0.5Mn0.5PO4 cathodes for high 

performances lithium metal battery. 

Introduction 

Most of the recent developments in energy storage technology have been focused on Li-ion 

battery, involving improvements of chemistry and composition of the electrode materials [1], being the 

LiPF6-alkyl carbonate solution the principal choice for the electrolyte [2]. Therefore, the present Li-ion 

technology, employing a transition metal compound-based cathode and a carbon-based anode, allows 

reversible energy storage with mitigation of the drawbacks related to the use of metallic lithium [3]. Cells 

exploiting lithium metal are generally limited to primary, non-rechargeable configuration, due to possible 

dendrite formation throughout lithium deposition/stripping at anode side, which may lead to internal 

short circuit and associated risks upon prolonged cycling in flammable organic electrolytes [4–6]. 

Nevertheless, metallic lithium has ideal theoretical features, such as high theoretical specific capacity 

(3860 mAh g−1), low density (0.59 g cm−3), and the lowest electrochemical potential (−3.040 V vs. the 

standard hydrogen electrode) [4]. Rechargeable lithium metal batteries have been proposed by exploiting 

electrolytes of relevant safety, such as those basing on polymer or solid state configurations [4]. Among 

them, polyethylene oxide (PEO) [7], and glass type (LISICON, NASICON) [8] electrolytes represent the 

most suitable media. Hence, an effective approach to increase safety level and reliability of rechargeable 

cells employing lithium metal anode may be the use of stable and non-flammable electrolyte solutions. 
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Poly(ethylene glycol)dialkyl ethers (i.e., R1O(CH2CH2O)nR2), known as end-capped glymes, are 

characterized by a high flash point and suitable features as aprotic solvents for lithium salts [9]. However, 

glyme-based electrolytes have revealed poor electrode passivation properties, which limit their 

application in rechargeable Li-battery due to continuous solvent decomposition by cell operation [10,11]. 

This issue has been mitigated by using film forming additives, e.g., lithium nitrate (LiNO3), which 

improve the passivating film on the electrode surface [12–14]. Hence, electrolyte solutions based on 

glymes have been extensively studied in Li-S [15–19] and Li-O2 batteries [20–24], while only few papers 

reported application with insertion cathodes [25–27]. In particular, a previous work demonstrated that 

LiNO3 addition to a glyme-based electrolyte solution leads to stable solid electrolyte interface (SEI) 

formation over the electrode surface, thus allowing proper operation of a lithium cell employing LiFePO4 

cathode [27]. Olivine materials based on Fe and Mn are characterized by remarkable stability of the 

polyanionic framework [28,29] and have working voltage below 4.5 V vs. Li+/Li [30,31], i.e., suitable 

features for application in cells using lithium metal anode and ether-based electrolyte [18]. Therefore, 

the electrochemical study of LiFe1−αMnαPO4 olivines in glyme-based solutions is expected to effectively 

contribute to the development of rechargeable lithium cells.  

Several synthetic approaches have been studied in order to achieve olivine cathodes with 

controlled morphology and proper particle size for ensuring efficient electrochemical process with 

limited electrolyte decomposition [32–39]. The use of alternative electrolytes designed for lithium metal 

cell, such as those basing on end-capped glyme solvents, may lead to a narrow voltage window with 

respect to conventional carbonate-based solutions [27]. This choice reasonably requires further careful 

morphology optimization of the LiFe1−αMnαPO4 cathode. Indeed the particle size plays a crucial role for 

allowing fast Li+ insertion/deinsertion at the high rates and contemporary ensures limited parasitic 

processes at low current [40,41].  
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Accordingly, we employ morphologically optimized LiFePO4 and LiMn0.5Fe0.5PO4 olivine 

materials [42] in lithium metal cells using a solution of lithium triflate (LiCF3SO3) in tetraethylene glycol 

dimethyl ether (TEGDME) as electrolyte. This particular electrolyte formulation has already shown 

suitable characteristics in terms of thermal properties, lithium ion conductivity, and electrochemical 

stability window [18]. Additional, ad hoc designed test demonstrate herein a complete non-flammability 

of this promising electrolyte. The morphology and atomic composition of the olivine cathodes are studied 

by scanning electron microscopy (SEM), transmission electron microscopy (TEM), and energy-

dispersive X-ray spectroscopy (EDS). Hence, the electrochemical performances of the Li/LiCF3SO3-

TEGDME/LiFe1−αMnαPO4 (α = 0, 0.5) cells are evaluated by galvanostatic cycling at several current 

rates. To the best of our knowledge, the results herein reported demonstrate for the first time the 

applicability of LiCF3SO3-LiNO3-TEGDME with LiFePO4 and LiMn0.5Fe0.5PO4 cathodes and lithium 

metal anode. 

Experimental 

C-coated LiFePO4 and LiMn0.5Fe0.5PO4 powders (C content of about 5 wt. %) with olivine 

structure were synthesized by using a solvothermal pathway followed by high-temperature annealing in 

Ar atmosphere as previously reported [29,42]. Sample morphology was investigated by scanning electron 

microscopy (SEM) and transmission electron microscopy (TEM). SEM images were acquired by using 

a Zeiss EVO 40 microscope, equipped with a LaB6 thermo-ionic electron gun. The atomic composition 

of the samples was studied by SEM-energy dispersive X-ray spectroscopy (EDS), by using a X-ACT, 

Cambridge Instruments analyzer. TEM images were taken by a Zeiss EM 910 microscope, equipped with 

a tungsten thermo-ionic electron gun operating at 100 kV. The samples were suspended in water, 

sonicated, and deposited onto a Formvar® support film applied to Cu grid for TEM. 
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The electrolyte solution was prepared in Ar-filled glovebox by dissolving lithium 

trifluoromethanesulfonate (lithium triflate, LiCF3SO3, Sigma-Aldrich) and lithium nitrate (LiNO3, 

Sigma-Aldrich) in tetraethylene glycol dimethyl ether (TEGDME, Sigma-Aldrich) solvent; both salts 

were used in 1 mol kg−1 concentration with respect to the solvent. Prior to electrolyte preparation, the 

salts were dried under vacuum at 100 °C for 24 h and TEGDME was dried under molecular sieves. The 

final water content in TEGDME was below 10 ppm by Karl Fisher titration (831 Karl Fisher Coulometr, 

Metrohm).  

The cathode slurries were prepared by mixing active material (LiFePO4, LiMn0.5Fe0.5PO4), 

poly(vinylidene fluoride-hexafluoropropylene) (PVdF-HFP copolymer, Kynar Flex 2801) binder, and 

Super P Carbon (Timcal) conductive additive in the ratio 80:10:10% w/w. Tetrahydrofuran (THF, Sigma-

Aldrich) was used as solvent for the electrode slurries. The slurries were deposited on carbon-cloth 

current collector by doctor blade, casted, dried overnight under vacuum at 110 °C, and cut in the form of 

10 mm diameter disks. The electrode mass loading was about 4 mg cm−2. Additional LiFePO4 electrodes 

were prepared using Al foil, in order to evaluate the effect of the current collector (see the Supplementary 

Information). T-type cells were assembled in Ar-filled glovebox by stacking cathode, glass fiber 

separator (Whatman) soaked in the electrolyte solution (LiCF3SO3-LiNO3-TEGDME), and lithium metal 

anode. Benchmark electrolyte solution, i.e., 1 M LiPF6 in ethylene carbonate (EC):dimethyl carbonate 

(DMC) 1:1 w/w, was used for flammability tests and Li/LiFePO4 reference cells (see the Supplementary 

Information). The cell case had three stainless steel cylinders as current collectors and polypropylene 

holder; the cell was sealed by polypropylene screws. The flammability tests were carried out on the 

electrolytes just taken out from the glovebox. 

Rate capability tests on two-electrodes lithium cells were performed by galvanostatic cycling at 

C/10, C/5, C/3, C/2, 1C, and 2C rates (1C = 170 mAh g−1), within the 2 – 4 V and 2 – 4.3 V voltage 

ranges for LiFePO4 and LiMn0.5Fe0.5PO4, respectively. Galvanostatic cycling tests using a single current 
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rate were performed at C/5, C/3, and 2C rates. All the cells using glyme-based electrolyte were activated 

by 4 galvanostatic cycles at C/5 rate; the first discharge was performed by decreasing the voltage below 

2 V and limiting the time to 5.15 h, according to a previously reported procedure [27] suitable for the 

formation of a stable SEI layer at the electrode surface (see the Supplementary Information). All the 

cycling tests were carried out at room temperature through a Maccor 4000 series Battery Test System. 

Results and discussion 

The employment of glyme and olivine electrode may actually hinder the safety issues related to 

the use of lithium metal anode, owing to the high thermal stability of both electrolyte [18] and cathode 

[29]. A relevant proof of the electrolyte suitability even under hazardous conditions is represented by the 

flammability test in reported in Fig. 1, carried out on the LiCF3SO3-LiNO3-TEGDME solution and, for 

comparison, on conventional carbonate-based electrolyte. Fig. 1a shows that flame exposure leads to fast 

ignition of the conventional LiPF6-EC-DMC electrolyte, followed by combustion up to almost full 

electrolyte consumption. Instead, the LiCF3SO3-LiNO3-TEGDME solution shows a remarkable stability 

and a complete absence of fire evolution, even towards prolonged flame exposure, as confirmed by Fig. 

1b. The flash points of TEGDME, EC, and DMC may account for the observed enhanced stability of the 

proposed electrolyte with respect to standard carbonate-based solutions. Indeed, despite the flash point 

of TEGDME is 141 °C, which is slightly lower than that of EC (143 °C), the volatile DMC has a flash 

point as low as 16 °C. Therefore, 1:1 mixtures of EC and DMC, allowing proper ion conduction and 

commonly used in lithium-ion batteries, suffers by flammability issue mainly due to low flash point of 

DMC [43]. On the other hand, the LiCF3SO3-LiNO3-TEGDME solution is stable upon flame exposure 

by the experimental setup adopted in this work, as shown by Fig. 1, due to the relatively high flash point 

of TEGDME. Despite the non-flammability of the electrolyte in its pristine state, i.e., prior to cell 

assembly, possible formation of new side species during cycling that may alter the flammability of the 
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whole system, i.e., the battery composed of electrodes, electrolytes as well as decomposition products. 

The evaluation of such as complex system requires ad hoc extended study, including cell nailing and 

heating tests, as well as calorimetric, thermo-gravimetric and chemical detection techniques, e.g. as mass 

spectroscopy, upon cell operation such as that reported in literature for polymer cell [44]. This study 

exceeds the aim of the present work; however, we may reasonably expect the non-flammability of the 

pristine glyme-based electrolyte (Fig. 1b) to remarkably increase the safety level of the cell with respect 

to the flammable carbonate-based electrolyte reported in Fig. 1a.      

Figure 1. Flammability tests carried out on (a, top panels) conventional 1 M LiPF6 in EC:DMC 1:1 w/w 

and (b, bottom panels) 1 mol kg−1 LiCF3SO3, 1 mol kg−1 LiNO3 in TEGDME. 

LiFePO4 and LiMn0.5Fe0.5PO4 cathodes have been prepared by a simple solvothermal synthesis 

optimized in our laboratory, which leads to crystalline LiFe1−αMnαPO4 powders able to operate reversibly 

in lithium and lithium-ion cells [29,42]. Further careful characterization of the LiFePO4 (Fig. 2a-c) and 

LiMn0.5Fe0.5PO4 (Fig. 2d-f) materials has been carried out herein by SEM (panels a, d), SEM-EDS 
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(panels b, e), and TEM (panels c, f) considering the expected influence of sample morphology in 

controlling the electrochemical behavior of the electrode in glyme-based lithium cell. Fig. 2a, b reveals 

that the LiFePO4 sample is homogeneously formed by sub-micrometric platelet-like particles, having 

uniform distribution of Fe and P in the 1:1 atomic ratio. The LiFePO4 particles have elongated shape 

with maximum size of about 500 nm, as further shown by TEM (Fig. 2c). The LiMn0.5Fe0.5PO4 material 

has comparable morphology, characterized by diamond-shaped platelets with maximum size of about 

500 nm (see SEM of Fig. 2d and TEM of Fig. 2f). The EDS analysis reveals homogeneous distribution 

of Mn, Fe, and P over the LiMn0.5Fe0.5PO4 grains, and quantification confirms sample stoichiometry (see 

corresponding EDS spectrum of Fig. S1 in the Supplementary Information). The particle size shown in 

Fig. 2 is considered suitable both for allowing a fast Li+ transport through the one-dimensional olivine 

channels, and for limiting the decomposition of LiCF3SO3-TEGDME-based solution during cell 

operation. Indeed, particle size reduction down to few tens of nanometers significantly enhances the 

electrochemical performances of LiFe1−αMnαPO4 cathodes, particularly at the higher Mn contents 

[31,41,45], however it contemporary favors electrolyte decomposition, interfacial resistance increase, 

and cell failure due to the deterioration of the electrode/electrolyte interface [40,41]. This aspect appears 

particularly relevant in view of the narrow oxidative stability windows of TEGDME–LiCF3SO3 solution 

(i.e., 4.5 V vs. Li+/Li) [18] with respect to conventional LiPF6-carbonate electrolytes (above 4.7 V vs. 

Li+/Li) [46]. Therefore, we have selected these particular cathode materials, characterized by sub-

micrometric particles, for study in LiCF3SO3-LiNO3-TEGDME electrolyte. As shown below, the cathode 

powders demonstrate suitable performances in the new electrolyte formulation without requiring further 

synthesis optimization. 
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Figure 2. Electron microscopy analyses of (top, a–c) LiFePO4 and (bottom, d–f) LiMn0.5Fe0.5PO4 in 

terms of: (a, d) SEM images (magnification in inset); (b, e) SEM-EDS maps of (blue) Mn, (red) Fe, and 

(green) P over the sample powders (overlapped maps in the main panel; single maps in inset); (c, f) 

TEM images (magnification in inset). 

Despite the relatively low dielectric constant of TEGDME and the large size of the LiCF3SO3 

anion, we have demonstrated in our previous study that the combination of TEGDME and LiCF3SO3 

leads to an electrolyte characterized by a conductivity ranging from 10−3 S cm−1 at room temperature to 

a value exceeding 10−4 S cm−1 at a temperature as low as −10 °C[47]. These conductivity values, slightly 

lower than those expected for carbonate based electrolytes [48–50], are considered suitable for lithium 

cell application; however, they might partially limit the rate capability of the cell using LiFePO4 at the 

lower temperatures. Furthermore, the TEGDME–LiCF3SO3 electrolyte has been herein added by LiNO3 

as film forming agent that allows a further stabilization of the SEI at the electrodes surface, as reported 

in a previous paper demonstrating the possible use in lithium cell with LiFePO4 cathode of the electrolyte 

solution formed by dissolving LiCF3SO3 and LiNO3 salts in high molecular weight glyme, i.e., 

polyethylene glycol dimethyl ether (PEG500DME) [27]. Electrochemical activation procedure has been 

proposed to form suitable electrode/electrolyte interface by LiNO3 reaction. Accordingly, the cycling 
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tests herein reported have been carried out after performing 3 activation cycles reported in Fig. S2 in the 

Supplementary Information (see the experimental section for further details). The PEG500DME-based 

formulation proposed by the above mentioned paper [27] advantageously revealed low vapor pressure 

and high stability up to 400 °C, thus suggesting suitability for application at the higher temperatures; 

indeed, the electrolyte has shown lower ionic conductivity values at room temperature (4 × 10−4 S cm−1) 

with respect to short-chain glyme (about 10−3 S cm−1) and freezing point at 5 °C [18]. The LiCF3SO3-

LiNO3-PEG500DME electrolyte allowed proper room temperature galvanostatic cycling of a Li/LiFePO4 

cell at C/5 rate (1C = 170 mAh g−1) [27]. On the other and, the TEGDME-based electrolyte herein 

proposed has thermal stability ranging from – 49 °C to 200 °C and ionic conductivity of about 1 × 10−3 

S cm−1 at room temperature [18]; therefore, it is expected to ensure suitable performances in Li/LiFePO4 

cell at higher current rates and lower temperatures than PEG500DME. The high-rate performances have 

been herein demonstrated up to 2C rate (1C = 170 mAh g−1) for Li/LiFePO4 and Li/LiMn0.5Fe0.5PO4 

cells, as following reported. Rate capability of the Li/LiCF3SO3-LiNO3-TEGDME/LiFePO4 cell has been 

evaluated by galvanostatic cycling at several current rates, as shown in Fig. 3. The voltage profiles (Fig. 

3a) reveal plateaus centered at about 3.45 V, which indicate reversible two-phase reaction of LiFePO4 

[30]. The cell exhibits flat voltage profiles and low polarization (about 0.05 V) at slow rates; as expected, 

the rise of C-rate to 2C (1C = 170 mA g−1) produces slope of the voltage profile, polarization increase, 

and lower capacity. Indeed, the cell delivers reversible capacity of 152, 150, 145, 138, 125, and 112 mAh 

g−1 at C/10, C/5, C/3, C/2, 1C, and 2C (1C = 170 mA g−1), respectively (see Fig. 3b). These results 

demonstrate the full suitability of the LiCF3SO3-LiNO3-TEGDME electrolyte in lithium cells that use 

LiFePO4 cathode. This cathode has been widely investigated over the last few years, leading to its current 

commercial use in cells [51]. In particular, recent literature works [52–55] reported LiFePO4 powders 

prepared by solvothermal pathways characterized by excellent electrochemical performances in standard 

carbonate-based electrolyte. Hence, we compared the cycling results of lithium cells using LiCF3SO3-
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LiNO3-TEGDME and a common carbonate-based electrolyte, with the LiFePO4 sample synthesized in 

our laboratory [29,42] (Fig. S3 in the Supplementary Information). In particular, Fig. S3 in the 

Supplementary Information shows the galvanostatic cycling performances at C/3 rate (1C = 170 mAh 

g−1) of LiFePO4 in 1 M LiPF6 EC:DMC 1:1 w/w standard electrolyte and in the new LiCF3SO3-LiNO3-

TEGDME formulation. The cell using standard carbonate-based electrolyte delivers reversible capacity 

of 114 mAh g−1 at the 1st cycle, which increases to 121 mAh g−1 after 10 cycles due to cathode structural 

reorganization already observed for similar olivine materials [29,38,42]; at the 30th cycle the capacity 

slight decreases to 117 mAh g−1, i.e., 103 % and 97 % with respect to the 1st cycle and 10th cycle values, 

respectively. The glyme-based electrolyte ensures capacity of 124 mAh g−1 and 126 mAh g−1 at the 1st 

and 10th cycles, respectively; at the 30th cycle the capacity is 120 mAh g−1, i.e., 97 % and 95 % with 

respect to the 1st cycle and 10th cycle values, respectively. Therefore, these results further demonstrate 

the applicability of TEGDME-based electrolyte in Li/LiFePO4 cell: indeed, the cells employing 

TEGDME-based electrolyte exhibit comparable electrochemical behavior with higher capacity with 

respect to the conventional carbonate-based electrolyte. This observation has been confirmed by several 

tests in lithium cell. However, the cell using glyme suffers more capacity fading, which may be ascribed 

to not fully optimized LiFePO4/electrolyte interface. This issue could be addressed by further tuning of 

the electrochemical activation procedure, which is expected to improve the SEI films attributed to nitrate 

reaction [27]. It is noteworthy that the first attempts to employ LiCF3SO3-glyme solutions in lithium cells 

with insertion cathodes revealed very poor electrochemical stability, which has been remarkably 

improved by LiNO3 addition, as shown by Fig. S3. The figure also reveals the beneficial effect on the 

cell performances of C-cloth support with respect to standard Al foil as well. In particular, we have 

compared the cycling behavior at C/3 rate (1C = 170 mAh g−1) of two Li/ LiCF3SO3-LiNO3-

TEGDME/LiFePO4 cells only differing in the current collector.  
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Figure 3. Rate capability test of the Li/LiCF3SO3-LiNO3-TEGDME/LiFePO4 cell in terms of (a) voltage 

profiles and (b) cycling behavior, performed by galvanostatic cycling at C/10, C/5, C/3, C/2, 1C, and 2C 

rates (1C = 170 mAh g−1) within the 2 – 4 V voltage range; test performed after electrochemical activation 

[27] of the cell (see the experimental section and Fig. S2 in the Supplementary Information); room 

temperature (25 °C). 
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Fig. S3 clearly shows a capacity improvement due to C-cloth from 126 mAh g−1 to 139 mAh g−1, 

which is likely related to the higher surface area of the electrode support with respect to Al disk. This 

particular current collector morphology enhances the electric contact between olivine particles and 

current collector and increases the effective cathode/electrolyte interface (see schematic representation 

of the electrodes morphology in Fig S4). Furthermore, additional polarization ascribed to the 

Li/electrolyte interface may be possibly excluded by the cycling test of the lithium anode in symmetrical 

Li/ LiCF3SO3 (-LiNO3)-TEGDME/Li cell reported the supplementary information section, Fig. S5. 

Fig. 4 shows the galvanostatic cycling performances of the Li/LiCF3SO3-LiNO3-

TEGDME/LiFePO4 cell at C/3 (panels a, b) and 2C rates (panels c, d; 1C = 170 mA g−1) upon 100 cycles. 

The Li/LiFePO4 cell cycled at C/3 rate exhibits flat plateaus with limited polarization, which slight evolve 

throughout cycling (see Fig. 4). This phenomenon may be related to irreversible processes leading to 

coulombic efficiency of 97%, and it is reflected into capacity fading from about 140 mAh g−1 at the first 

cycles to 110 mAh g−1 at the 100th cycle (see Fig. 4b). Low coulombic efficiency values and capacity 

fading are likely attributed to a not fully optimized LiFePO4/electrolyte interface, as well as to the 

reactive lithium metal interface and the adopted T-cell configuration, which is commonly used for short-

time cycling. Indeed, previous reports on lithium-sulfur cells demonstrated that LiNO3 addition to glyme-

based electrolytes leads to formation of a stable lithium/electrolyte interface [12–14,56]. This approach 

may also be useful for allowing reversible operation of lithium cells using insertion cathodes, which form 

very poor electrode/electrolyte interface with pristine LiCF3SO3-glyme solution [27]. Nevertheless, the 

results of Fig. 4 suggest further work aimed at fully understanding and possibly improving the 

LiFePO4/electrolyte as well as the lithium/electrolyte interfaces. Accordingly, deep characterization of 

the electrochemical activation process, currently in progress in our laboratory, might lead to 

electrode/electrolyte interface enhancement for prolonged cycling in coin-cell configuration; however, 

this is beyond the scope of our paper, which indeed demonstrates reversible operation at of Li/LiFePO4 
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cells using LiCF3SO3-TEGDME electrolyte. Higher efficiency values, i.e., of about 99%, are obtained 

by rising the C-rate to 2C, thus allowing enhanced cycling stability with reversible capacity of 100 mAh 

g−1 (Fig. 4d) and expected cell polarization increases (Fig. 4c). The improvement of stability at high C-

rate is likely related to decreased magnitude of parasitic reactions at the electrode/electrolyte interface. 

 

Figure 4. Galvanostatic tests of Li/LiCF3SO3-LiNO3-TEGDME/LiFePO4 cells in terms of (a, c) voltage 

profiles and (b, d) cycling behavior within the 2 – 4 V voltage range at two C-rates: (a, b) C/3, and (c, 

d) 2C rates (1C = 170 mAh g−1); test performed after electrochemical activation [27] of the cell (see the 

experimental section and Fig. S2 in the Supplementary Information); room temperature (25 °C). 

Fig. 5 reports a rate capability test of the LiMn0.5Fe0.5PO4 cathode in the LiCF3SO3-LiNO3-

TEGDME electrolyte. The voltage profiles (Fig. 5a) clearly evidence the electrochemical fingerprints of 

the Fe3+/Fe2+ [30] and Mn3+/Mn2+ [31] couples at the various rates. Fig. 5b shows reversible capacity 
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values of 166, 148, 130, 120, 99, and 73 mAh g−1 at C/10, C/5, C/3, C/2, 1C, and 2C (1C = 170 mA g−1), 

respectively.  

 

 

Figure 5. Rate capability test of the Li/LiCF3SO3-LiNO3-TEGDME/LiMn0.5Fe0.5PO4 cell in terms of (a) 

voltage profiles and (b) cycling behavior, performed by galvanostatic cycling at C/10, C/5, C/3, C/2, 1C, 

and 2C rates (1C = 170 mAh g−1) within the 2 – 4.3 V voltage range; test performed after electrochemical 
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activation [27] of the cell (see the experimental section and Fig. S2 in the Supplementary Information); 

room temperature (25 °C). 

It is noteworthy that the Li/LiCF3SO3-LiNO3-TEGDME/LiMn0.5Fe0.5PO4 cell exhibits lower 

performance at high rates with respect to the cell using LiFePO4 (compare Fig. 3 and Fig. 5), owing to 

the well-known kinetic hindrance to Li+ insertion/deinsertion of LiFe1−αMnαPO4 phases [42]. The rate 

capability test of the Li/LiCF3SO3-LiNO3-TEGDME/LiMn0.5Fe0.5PO4 cell suggests the system 

particularly suitable for application at the lower currents. Therefore, we have studied the galvanostatic 

performances over 100 cycles using C/5 rate (1C = 170 mA g−1).  

Fig. 6 demonstrates reversible operation of the Li/LiCF3SO3-LiNO3-TEGDME/LiMn0.5Fe0.5PO4 

cell, with relatively stable voltage profile upon cycling (Fig. 6a) and reversible capacity of about 125 

mAh g−1. However, the cell exhibits coulombic efficiency values of about 95% and capacity fading to 94 

mAh g−1 at the 100th cycle, i.e., a cycling performance less remarkable than that one of the Li/LiCF3SO3-

LiNO3-TEGDME/LiFePO4 cell. As already reported in Fig. 4 discussion, we partially attribute this 

drawback to not fully optimized cathode/electrolyte interface. Furthermore, the higher working voltage 

of LiMn0.5Fe0.5PO4 with respect to LiFePO4 may account for the observed cell performance. Indeed, the 

higher voltage cutoff used for the Li/LiCF3SO3-LiNO3-TEGDME/LiMn0.5Fe0.5PO4 cell allows proper 

operation at the Mn3+/Mn2+ potential, but contemporary induces a concomitant electrolyte 

decomposition. Accordingly, a previous work revealed that the electrolyte undergoes oxidation at about 

4.5 V vs. Li+/Li [18], which is close to the voltage cutoff used herein. In addition, comparison of Fig. 5 

and Fig. 6 reveals higher capacity values at the higher currents with respect to the galvanostatic cycling 

at single rate, similarly to the trend observed for the lithium cell using LiFePO4 by comparing Fig. 3 and 

Fig. 4. Accordingly, further optimization of electrolyte composition and electrochemical activation 

procedure might address these issues. 
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Figure 6. Galvanostatic cycling tests of Li/LiCF3SO3-LiNO3-TEGDME/LiMn0.5Fe0.5PO4 cells in terms 

of (a) voltage profiles and (b) cycling behavior at C/5 rate (1C = 170 mAh g−1) within the 2 – 4.3 V 

voltage range; test performed after electrochemical activation [27] of the cell (see the experimental 

section and Fig. S2 in the Supplementary Information); temperature = 25 °C. 
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Conclusion  

The present study revealed a possible strategy to employ high energy lithium metal in safe and 

high energy rechargeable batteries. LiFePO4 and LiMn0.5Fe0.5PO4 olivine cathodes were studied in 

lithium cells with a glyme-based electrolyte solution having composition 1 mol kg−1 LiCF3SO3, 1 mol 

kg−1 LiNO3 in TEGDME. Flammability tests demonstrated the electrolyte stability under hazardous 

conditions, thus suggesting possible applicability in combination with lithium metal anode. Scanning and 

transmission electron microscopies, as well as X-ray energy dispersive analysis of the olivine powders, 

evidenced submicrometrical particles with homogenous atomic distribution. This morphology allowed 

proper operation of the lithium cell using TEGDME-based electrolyte, as demonstrated by galvanostatic 

cycling tests. In particular, Li/LiCF3SO3-LiNO3-TEGDME/LiFePO4 and Li/LiCF3SO3-LiNO3-

TEGDME/LiMn0.5Fe0.5PO4 cells exhibit promising rate performances and stable cycling trends, thus 

actually suggesting the suitability of the proposed combination as promising energy storage systems. 
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