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Abstract. Previous studies [1, 2] have shown that slow variations in
the cardiac cycle are coupled with signal changes in the blood-oxygen
level dependent (BOLD) contrast. The detection of neurophysiological
hemodynamic changes, driven by neuronal activity, is hampered by such
physiological noise. It is therefore of great importance to model and
remove these physiological artifacts. The cardiac cycle causes pulsatile
arterial blood flow. This pulsation is translated into brain tissue and flu-
ids bounded by the cranial cavity [3]. We exploit this pulsality effect in
BOLD fMRI volumes to build a reliable cardio surrogate estimate. We
propose a Gaussian Process (GP) heart rate model to build physiological
noise regressors for the General Linear Model (GLM) used in fMRI anal-
ysis. The proposed model can also incorporate information from phys-
iological recordings such as photoplethysmogram or electrocardiogram,
and is able to learn the temporal interdependence of individual modali-
ties.

1 Introduction

The complex interplay of neurophysiological quantities and neuronal activity
determines cerebral blood flow (CBF). The ratio between oxygenated and de-
oxygenated hemoglobin of venous cerebral blood indirectly reflects the degree of
neuronal activity in the surrounding tissue. The magnetic resonance (MR) signal
is sensitive to blood oxygen level dependent (BOLD) changes due to the distort-
ing effect of paramagnetic deoxygenated hemoglobin on the homogeneity of the
magnetic field. The functional integrity of the brain depends on precise control of
CBF. Differences in the hemodynamic response between normal and abnormal
cerebrovascular regulation provide important insights for the understanding of
brain dysfunction and disease. It is therefore important to track physiological
characteristics of the CBF. The cardiac cycle produces pulsality artifacts [3] that
interfere with the MR signal, impeding the correct estimation of the hemody-
namic response. Pulse oximetry provides a quantitative means to record cardiac
cycle during scanning. However, recordings from pulse oximetry sensors can ex-
hibit poor signal quality due to subject motion, are usually not synchronized
to scanner triggers, or are regarded as unimportant for fMRI analysis within
a clinical setting. Many data-driven methodologies have been proposed when



physiological recordings are not available [4]. However, to the best of our knowl-
edge, none of them utilize physiology-derived information. In consequence, we
want to directly extract and model a cardiac surrogate from the actual scan. The
cardiac surrogate signal can be used as a noise regressor in large clinical cohorts
in which physiological monitoring was not available. The cardiac surrogate sig-
nal can also be used to supplement physiological recordings within our proposed
model. First, we show in highly sampled BOLD-fMRI images with sagittal ori-
entation that areas affected by cardiac and respiratory cycle spatially correlate
with areas of high signal variance. We therefore compute an average slice-wise
signal with respect to slice ordering and BOLD signal standard deviation. The
power spectrum of this cardiac surrogate signal resembles the power spectrum
of the signal obtained from pulse oximetry (pulse ox.). We learn the degree of
correlation between cardiac surrogate signal and pulse oximetry signal with a
Multi-Task Gaussian Process (MTGP) model. Last, we show that this Gaussian
Process CARdio Estimation (GPCARE) model produces robust estimates of the
cardiac cycle and can also be used to fill in periods of measurement failure.

2 A Multi-Task Gaussian Process Model for Cardiac
Cycle Estimation

Prior knowledge of the behavior of an examined system can be expressed within a
Gaussian Process model. Furthermore, by formulating our problem in a Bayesian
framework, we can infer the probabilities of our model parameters in the presence
of noise, measurement failure and incompleteness of data, as often occurs within
a clinical setting [5, 6].

Gaussian Process Regression Model We consider our cardiac cycle estima-
tion as a supervised learning problem. We detect peaks in the cardiac signals,
and use the obtained time stamps x = {xi|i = 1, ..., n} as well as the period
between adjacent time stamps y = {yi|i = 1, ..., n} as our training data. This
data is used to learn a generative model y = f(x) + ε with latent function f(x)
and noise ε ∼ N (0, σ2). For given test time stamps x∗ = {x∗i |i = 1, ..., k}, i.e. at
every slice acquisition time, we want to predict estimates of the unknown heart
rate y∗ = {y∗i |i = 1, ..., k}. We describe the latent function f(x) with probability
distributions over functions [7] given by

f ∼ GP (µ,Σ) , (1)

so that the behavior of the function is completely specified by its mean µ and
covariance Σ. We encode our prior knowledge about the cardiac signal behavior
with a squared-exponential (SE) covariance function kSE(x, x′) and constant
mean function µ(x) = c, assuming that during rest the heart rate fluctuates
slowly around a mean frequency with standard deviation [1] (hyperparameter
θ2A) and autocorrelation (hyperparameter θL), given by



2× kSE(x,x′) = θ2A exp

[
− (x− x′)2

2θ2L

]
(2)

The individual elements of the covariance matrix Σ(x,x) for a vector x ∈ Rn
are given by evaluating the covariance function at kSE(x, x′). Prediction on
the test time stamps x∗ can be made by averaging over all possible parameter
values weighted by their posterior probability. The predictive distribution for
f∗

.
= f(x∗) at x∗ is computed using the posterior distribution

p(y∗|x∗,x,y) ∼ N (m(y∗), var(y∗)) (3)

with meanm(y∗) = µ(x∗)+Σ(x,x∗)TΣ(x,x)−1(y−µ(x)) and variance var(y∗) =
Σ(x∗,x∗)−Σ(x,x∗)TΣ(x,x)−1Σ(x,x∗). The hyperparameters are optimized by
minimizing the negative log marginal likelihood (NLML) defined as

− log p(y|x, θ) =
1

2
log |Σ|+ 1

2
yTΣ−1y +

n

2
log 2π . (4)

Bayesian inference reduces to computing mean and covariance parameters of a
multivariate Gaussian posterior distribution.

Multi-Task Gaussian Process Regression Models While one could train
several GP models for each individual cardiac modality, one would ideally want
to model m modalities simultaneously and exploit the correlation between them.
Therefore, we used a Multi-Task Gaussian Process (MTGP) model as proposed
in Dürichen et al. [6]. Our training data set extends to X = {xji |i = 1, ..., nj}
and Y = {yji |i = 1, ..., nj}, in which modality j has nj number of training data.
Furthermore, we require an index lj as an additional input to identify individual
modalities. The covariance function modeling correlation between modalities is
given by kCORR(l, l′). We assume independence between kCORR and our indi-
vidual modality covariance function kSE [6] and combine them in

1× kMTGP(x,x′, l, l′) = kCORR(l, l′)× kSE(x,x′) . (5)

We rewrite the covariance matrix Σ as the Kronecker product of ΣCORR and
ΣSE assuming nj = n for j = 1, ...,m without loss of generality, resulting in

ΣMTGP(X, l, θCORR, θSE) = ΣCORR(l, θCORR)⊗ΣSE(X, θSE) . (6)

Predictions for test indices x∗, l∗ are computed using the posterior distribution
p(y∗|x∗, l∗,x, l,y) similar to an individual GP model [6].

3 Experiments

Cardiac Surrogate Signal We acquired five sagittal slices with high temporal
resolution using a Multi-Echo BOLD-weighted Echo Planar Imaging (EPI) se-
quence with echo times (TE) 8.3, 21.4 and 34ms and repetition time (TR) 300ms



on a Siemens Trio scanner. Recordings from pulse oximetry and respiration belt
were used to build RETROICOR regressors [8].
Physiological respiration and cardiac cycle components can be approximated by
their low-order Fourier series expansion as given by

yδ =

M∑
m=1

ac
mcos(mφc) + bc

msin(mφc) + ar
mcos(mφr) + br

msin(mφr) (7)

where ac
m,b

c
m and ar

m,b
r
m are the coefficients for cardiac and respiratory func-

tion respectively, and φc(t) and φr(t) are the phases in the respective cardiac
and respiratory cycles at time t.
Fig. 1 shows the physiological coefficient estimates from RETROICOR regres-
sors from one of the acquired slices. Pulsation artifacts due to the cardiac cycle
are mostly pronounced in approximate locations of large vasculature such as or-
bitofrontal, callosomarginal and pericallosal arteries. Effects from respiration on
the MR signal are pronounced in the Superior Sagittal Sinus and at its crossing
with the Transverse Sinus. Fig. 1 also shows the large effect physiology has on
the strength of variation in the BOLD time courses. The short repetition time
used to acquire the five sagittal slices is not applicable for full brain coverage in
BOLD fMRI imaging. The cardiac cycle is thus under-sampled in whole brain
fMRI images producing low-frequency aliasing artifacts in BOLD time courses.
Therefore, there is a great need to obtain information about heart rate spectrum
and variation. We exploit the pulsality effect the cardiac cycle has on brain tissue
and brain fluids, such as CSF, to build a cardiac surrogate. We have made the
following observations in our test data. First, the power spectrum of this cardiac
surrogate resembled the complete power spectrum of the cardiac cycle during
the scan. Second, the cardiac surrogate can be used with or without physiologi-
cal recordings to compute cardiac regressors with RETROICOR [8] or nuisance
regressors for variations in heart rate [1, 2, 9]. And third, correlation between
cardiac surrogate signal and actual physiological recordings can be learned to
account for measurement failure as shown in the following section.

Cardiac Cycle We tested our method on a large fMRI data set that com-
prises 61 fMRI sessions (cohort comprises healthy adults and adults that were
born preterm, with average age 19 years) acquired with a Philips 3T Achieva
(TR 3000ms, TE 30 ms, flip angle 80◦, voxel size 2.5× 2.5× 3mm3, field of view
(FoV) 240 mm2, 50 oblique transverse slices, slice order descending). From the 61
data sets, 7 fMRI scans were discarded for corrupted physiological recording files
and 3 for strong head movement. Motion correction was performed on all scans.
BOLD time courses were corrected for polynomial trends and z-transformed.
Slices were reordered with respect to their slice acquisition timing. The sagit-
tal FoV was cropped to have an approximate equal contribution of brain tissue
and cerebral fluids for each slice. The cardiac surrogate signal was obtained by
computing the standard-deviation weighted average in each slice resulting in a
signal sampled every TR/(number of slices). The high sampling rate captured



Fig. 1. The middle sagittal slice of the acquisition depicts the large influence of phys-
iology on the MR signal. Most variance in the vicinity of large blood vessels can be
explained with the RETROICOR cardiac (A) and respiratory (B) regressors. The re-
gions influenced by physiology are also the regions with the greatest standard deviation
in BOLD time courses (C).

the entire spectrum of the heart rate. The obtained signal was very noisy due
to averaging from slices with different tissue compositions, which resulted in
heteroscedasticity. A bandpass filter (0.6Hz − 2.0Hz) was applied to isolate the
cardiac frequency spectrum. The frequency with the greatest power in this band
was peak filtered (Gaussian filter) with a bandwidth of 0.5Hz. The same signal
processing was applied to pulse oximetry signals acquired from the Philips phys-
iological monitoring unit. Peak times were extracted from cardiac surrogate and
pulse oximetry signal. The individual effects of signal processing are depicted in
Fig. 2.1 for scan 19. Individual GPs (covariance function kSE) and the MTGP
model (covariance function kMTGP ) were learned on cardio surrogate and pulse
ox. peaks depicted in Fig. 2.2. and 2.3, respectively. To simulate missing data,
we removed peaks within time interval (84 s, 164 s). The MTGP model coped
with missing data using the learned information from the correlation covariance
matrix ΣCORR. The MTGP pulse ox. GP follows the cardiac surrogate GP in
the period of missing peaks (Fig. 2.5A) whereas the individual pulse ox. GP goes
to the signal mean (Fig. 2.4A). Cardiac pulsation effects are mostly pronounced
at the ventricle borders as well as in large vasculature, i.e. the transversal sinus
as shown in the statistical parametric mapping of cardiac surrogate GP (indi-
vidual GP framework) in Fig. 2.6.
We also acquired 3 fMRI sessions with a Siemens Trio 3T (two with TR 2060
ms, multi-echo TEs 8.3, 21.4 and 34 ms, flip angle 90◦, voxel size 3 mm3, FoV
192 mm2, 36 oblique transverse slices, slice order descending, one with TR 2060
ms, single echo TE 30 ms, flip angle 90◦, voxel size 3 mm3, FoV 192 mm2, 36
oblique transverse slices, slice order interleaved). Our proposed cardiac surrogate
signal was also found in these scans, providing evidence towards applicability to
multiple scanner models.

Individual GPs vs MTGP We computed the difference between the fre-
quency with the greatest power in the cardiac surrogate signal and pulse ox.
signal. The spectral similarity between both signals was very high in all sub-



Fig. 2. The influence of signal processing on cardiac surrogate as well as final pulse ox.
signal for scan 19 of 61 (1). Individual GPs (2) and MTGP model GPs (3) trained on
peaks in cardiac surrogate and pulse oximetry signal. Individual GPs (4) and MTGP
model GPs (5) simulating measurement failure in interval (84 s, 164 s). Increased
uncertainty of the processes in the period of missing measurements(4A and 5A). The
statistical parametric mapping (p-value ≤ 0.05) for variance explained by the cardiac
surrogate GP of the MTGP model. Coefficients from low in red to high in white (6).



jects (median 0.01, 25th percentile 0.008, 75th percentile 0.078, outliers 4). We
computed the difference at slice acquisition times between cardiac surrogate GP
and pulse ox. GP within the individual GP framework and in the MTGP frame-
work as depicted in Fig. 3A. We sorted subjects by quality of their pulse ox.
power spectrum from left (good) to right (noisy). We computed the frame-wise
displacement from the motion realignment parameters of the rigid-body registra-
tion for each subject [4]. Some of the subjects that exhibited large head motion
also showed a noisy power spectrum of the pulse ox. signal. It was thus assumed
that noisy pulse ox. signals resulted mainly from subject motion but also from
poor sensor connection or detachment. Nonetheless, some subjects with minor
head movement where also found to have noisy pulse ox. signal. Subjects 1-29
had a Gaussian-shaped power spectrum. The pulse ox. recording of subjects 30-
51 had a very wide and noisy or bimodal Gaussian-shaped cardiac bandwidth.
Large variations in the heart rate are very unusual during rest. The bimodal
Gaussian-shaped power spectrum of pulse ox. signals might be due to subjects
falling asleep during the scan. The second quartile of differences between GPs in
the individual GP framework (Fig. 3A) is below 0.05 Hz for good recordings 1-29
and below 0.1 Hz for most of the noisy recordings 30-51. The MTGP model was
able to cope with missing data periods resulting in low errors between MTGP
pulse ox. GP (full data) and MTGP pulse ox. GP (missing data) in time interval
(84 s, 164 s) as depicted in Fig. 3B.

Fig. 3. The boxplots show the distribution of differences of cardiac surrogate GP and
pulse ox. GP at slice acquisition times in the individual GP model (A) and in the
MTGP model (B). The blue frame boxes are the 25th percentile to 75th percentile.
Outliers are indicated in red dots.

4 Conclusion

The correlation between surrogate signal and pulse oximetry signal was learned
within a MTGP model that produces more robust estimates of the cardiac cy-



cle than individual signals on their own. The cardiac surrogate signal is thus
supposed to be used in addition to physiological recordings such as from pulse
oximetry. However, there are large clinical fMRI cohorts in which physiolog-
ical monitoring was not used. For these cohorts, heart rate variation can be
extracted from BOLD scans directly using the cardiac surrogate signal. The
proposed model presents significant advantages when compared to current data-
driven techniques [4] by providing a more realistic joint biophysical noise model
of physiologic signals.
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