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Abstract— The role of Anomaly Detection in X-ray security 

imaging, as a supplement to targeted threat detection, is described; 

and a taxonomy of anomalies types in this domain is presented. 

Algorithms are described for detecting appearance anomalies, of 

shape, texture and density; and semantic anomalies of object 

category presence. The anomalies are detected on the basis of 

representations extracted from a convolutional neural network 

pre-trained to identify object categories in photographs: from the 

final pooling layer for appearance anomalies, and from the logit 

layer for semantic anomalies. The distribution of representations 

in normal data are modelled using high-dimensional, full-

covariance, Gaussians; and anomalies are scored according to 

their likelihood relative to those models. The algorithms are tested 

on X-ray parcel images using stream-of-commerce data as the 

normal class, and parcels with firearms present as examples of 

anomalies to be detected. Despite the representations being learnt 

for photographic images, and the varied contents of stream-of-

commerce parcels; the system, trained on stream-of-commerce 

images only, is able to detect 90% of firearms as anomalies, while 

raising false alarms on 18% of stream-of-commerce. 

 

 
Index Terms— anomaly detection; object categorization; 

security imaging; threat detection; x-ray imaging. 

 

I. INTRODUCTION 

nexpected item in bagging area’, the too familiar refrain 

of supermarket self-service checkouts [1], neatly 

expresses the aim of this research: to determine when an 

X-ray imaged bag or parcel has unusual contents.  

A. Automation in X-ray security imaging 

X-ray imaging is used to inspect luggage, mail and vehicles 

to detect and discourage transport of illegal or dangerous items 

[2]; such as Improvised Explosive Devices (IEDs) within 

baggage [3], ivory within cargo [4], and firearms within parcels 

[5]. X-ray security scanners have become more sophisticated 

over recent decades, adopting multi-view systems that allow 

3-D structure to be interrogated [6]; and multi-energy 

acquisition, allowing false colouring for material 

discrimination [7]. By our analysis, trained image inspectors 

use up to four modes of inspection, depending on the scenario: 

Threat Detection (TD) - looking for specific classes of item 

e.g. IEDs. 

Semantic Analysis (SA) - assessing broad attributes of the 

scanned contents, such as illegality, danger and high 
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value. These attributes align with the over-arching goals 

of the screening process, and could be present even 

though the specific scanned items were not present in a 

watch list of threat items. 

Manifest Verification (MV) - confirming that contents match 

a declaration. For cargo containers these are expressed 

in terms of HS codes [8]. 

Anomaly Detection (AD) - looking for deviations from 

normal that may indicate concealment or subterfuge. 

These are complex operations, and so the inspection process 

remains error-prone, costly and time-consuming [9]. If they 

could be automated there would be benefits in cost, speed, 

consistency, and reduced opportunities for corruption [10]. 

Automated systems are typically used to reduce the number of 

items that require visual or manual inspection by an operator. 

However, since human inspectors operate several inspection 

modes in parallel (e.g. SA & AD while doing TD), it may be 

necessary to achieve automation of multiple modes, so that 

security effectiveness is not impacted. 

Automation in the X-ray security domain area has focused on 

TD. Systems have been described that target a particular class 

of objects (e.g. cars [11], firearms [12-14], laptops [15]), and 

have demonstrated performance comparable to humans when 

using a convolutional neural network (CNN) [16]. Algorithms 

for MV are less well developed but include [17, 18]; while 

algorithms for SA of X-ray security images have not yet been 

described. As well as technical challenge, sourcing the data 

needed for the development, training and testing of SA and MV 

algorithms is clearly a major obstacle. The focus of the current 

work is AD, which in images has been extensively treated for 

satellite imagery (e.g [19-21]), less commonly in video (e.g. 

[22-24]), and rarely in security X-ray [25-28]. 

B. Anomaly Detection in X-ray security imaging 

Automated AD has been proposed as a useful function in 

many domains. In some applications the aim is to detect 

anomalies (instances, events or states) that can be considered 

low probability extremes of normal variation [29]; in other 

applications, including X-ray security, the anomalies to be 

detected arise when a different generating process takes over 

from the normal one [30], in particular when an adversary is 

attempting a damaging or illegal action [31].  

We propose the following taxonomy of anomaly types in 

X-ray security. Major types: 
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Appearance – an unusual shape, texture or density e.g. due 

to an explosive in powder form [32]. 

Semantic – an unusual category of object. The appearance 

of unfamiliar objects is less well-known to image 

inspectors, so they afford great opportunity for 

concealment e.g. a recent IED concealed within a meat 

mincer [33]. 

Appearance-given-Semantics – IEDs have been concealed 

amongst the components of complex objects (e.g. 

electronic devices), or by replacing components with 

imitations. Done well this will not disrupt the 

recognisability of the object, but close inspection may 

reveal subtle differences from normal for that category. 

Minor types: 

Relative-appearance – a subset of items appearing different 

from the others e.g. one pallet of lemons in a cargo 

looking different because they conceal narcotics [34]. 

Arrangement – Unusual packing or voids 

indicating concealment. 

Low-level – A malformed image indicating that rescanning 

is required. 

Co-occurrence – An unusual collection of objects to 

see together. 

Passenger/route-relative – Unusual to see on that flight 

route, or associated with that profile of passenger. 

In this work we are concerned with Appearance Anomalies 

and Semantic Anomalies. 

C. Approaches to Anomaly Detection 

Any approach to AD has two main parts: a representation for 

the data; and a method, making use of that representation, for 

scoring the outlier status of a test item relative to a sample of 

normal data. A broad conclusion from our previous work in 

Anomaly Detection [26, 27] is that the choice of representation 

is the more critical component. 

1) Data Representation 

The challenge of representation in Anomaly Detection is that 

a meagre representation may not clearly express the features 

that make an anomaly unusual, while a too generous 

representation risks making every datum unique, and anomalies 

not any more unique. Three approaches to data representation 

can be distinguished: raw, engineered or learned. 

Even in TD the raw data representation is often ineffective 

because the discriminative features of the data are non-linear 

combinations of dimensions, masked by irrelevant dimensions. 

Regularization methods can help with this by, for example, 

preferring sparse representations, but their effect needs 

balancing against performance, which cannot be evaluated in 

AD at training time. 

Engineered representations can bring out the important 

features of the data and suppress the irrelevant. Such 

engineering is viable in TD, when training data can guide the 

process, but is well-known to be difficult, with no guaranteed 

recipe for success. In AD engineering an effective 

representation is even more difficult as little or nothing is 

known about the anomaly class.  

Learned representations, such as computed by convolutional 

neural networks, are the state-of-the-art for TD, and can be 

extremely effective when sufficient data is available to 

constrain the learning. No simple equivalent of these methods 

is available for AD, because it is precisely the performance at 

predicting the training data labels that drives the learning. 

In previous work we have used two methods for learning 

representations for AD: auto-encoders and internal labels. 

We trained auto-encoder networks [35] on normal data, and 

used as representations the pattern of reconstruction errors of a 

datum and/or the hidden layer activations of the network. This 

had some success for detecting firearms concealed within the 

fabric of empty cargo containers, since the auto-encoder was 

able to capture the limited variability of the normal class in this 

case [27]. However, the auto-encoder approach has little 

prospect of coping with the variability of the data within bags 

and parcels. Our experience with firearms within empty cargo 

containers supports that, as does the finding that a class (e.g. 1) 

of MNIST digits were only detected as anomalies relative to a 

normal set of the other digit classes (0-9) with an average area-

under the ROC curve (AUC) of 73% using anomaly detection 

based on a variational autoencoder [36]. 

As an exemplar of the internal labels approach, we 

subdivided a large gallery of male face photos into subsets 

according to the identity of the subject, and trained a network 

to judge whether a pair of images showed the same or different 

people. We then used the final layer activations of that network 

as a representation of face photos. Using these representations 

we were able to spot female faces as anomalous relative to a 

normal class of male faces [26]. Such an internal labels 

approach to learning representations for anomaly detection is 

very attractive but is inapplicable to the current bag/parcel 

problem as we do not have a rich set of labels on normal parcels 

to use to drive the representation learning. 

The new approach we pursue in this work is related to the 

internal labels approach; but rather than train on normal data, 

for which internal labels are unavailable, we train on a related 

dataset for which they are, hence a type of transfer learning [26, 

37]. The related dataset is photographic (i.e. non X-ray) images 

with semantic content labels. In fact, since semantic 

classification in photographs is a well-studied problem [16, 38], 

we have no need to assemble a dataset and train a new network, 

we can instead use one pre-trained on a large amount of data. 

We hypothesise that this approach will have some degree of 

success as X-ray images and photographic images have much 

in common – even an untrained viewer can recognize some 

objects in security images. 

2) Outlier Detection 

Methods for detecting outliers (anomalies), relative to a 

sample of a normal population, have been proposed based on: 

boundaries, trees, distances, and densities.  

One-class SVM methods encircle the normal samples with a 

boundary beyond which a test datum is classified as anomalous 

[39]. Isolation Forests compute an anomaly score for a test 

datum as the average number of sequential threshold tests that 

need to be applied to separate it from the normal data; where 

threshold dimensions are chosen randomly, and threshold 

values are chosen uniformly from the range of data that has not 
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yet been split off [40]. Distance-based measures use the mean 

distance to the k-nearest normal data items [41], or compare that 

value to the local average [42]. 

In density methods a test data is scored by its likelihood 

according to an estimate of the density of the normal 

population. The density estimate can be arrived at by fitting a 

parametric form [43], or by kernel-density-estimation (kde) 

[44]. Parametric fitting will only be effective if the true 

population has the fitted form; whereas 

kernel-density-estimation requires bandwidth selection, 

possibly spatially-varying and anisotropic, which is known to 

be a difficult problem [45]. 

Specialized methods exist for estimating the density of a 

population of binary vectors. If it can be assumed that the 

distribution is dimension-separable then a product of Bernoulli 

distributions (naïve Bayes) is the ideal approach, and can still 

be effective when the assumption is violated [46, 47]. When 

independence is not assumed, a variety of approaches have been 

suggested. 

 Extensions of naïve Bayes that remove correlated 

dimensions give inconsistent performance [48]. 

 The quadratic exponential model assumes that 

log-likelihoods are a linear function of the dimensions of a 

vector and all its pairwise products [49]. In principle the 

weights that model a sample can be determined by 

maximum likelihood (ML) estimation, but the computation 

is impractical for large dimensional data. 

 Neural networks that learn an estimate of the distribution 

have been proposed [50]. 

 Dichotomization of a multivariate gaussian by passing 

each dimension of a random variate through a Heaviside 

function, will generate binary vector data [51]. In principle 

the mean and covariance of the Gaussian could be set by 

ML-estimation, though this seems a very difficult 

computation. 

 Modelling the distribution as a multivariate Gaussian, 

ignoring its binary nature [52]. 

In this work we will use parametric density estimation 

approaches for anomaly detection, since they handle high-

dimension well, and we will show that our data is close to 

parametric form. For semantic anomalies, the scalar-valued 

vector representations we use make the distribution of normal 

data well-modelled by a multivariate Gaussian. For appearance 

anomalies, the binary vector representations we use are crudely 

modelled by a multivariate Gaussian, but we propose an 

adjusted variance computation that improves the modelling. 

D. The proposed approach 

We present approaches to detection of Appearance 

Anomalies and to detection of Semantic Anomalies. As a test 

problem we use X-ray images of parcels. The normal set are 

UK stream-of-commerce (SoC) parcels containing diverse 

contents (but not firearms). The anomaly set are staged-threat 

(threat) parcels containing normal contents plus a firearm. We 

stress that we are using this as a test problem for AD, and are 

not suggesting that firearms are not better detected by a TD 

method trained on firearms data. We propose that performance 

at this task will give an indication of performance at detecting 

other objects that are absent from the SoC. 

Our approach to AD makes use of representations computed 

by a CNN classifier trained to categorize a wide range of objects 

in photographic images. We use a representation based on the 

final pooling layer of the CNN for detecting appearance 

anomalies, and a different representation based on the final logit 

layer for detecting semantic anomalies. For both types of 

anomaly we detect outliers by using likelihoods computed 

according to a Gaussian model of the density of SoC data. The 

details of the Gaussian models are different for the two types 

of anomaly. 

In section II we describe the image datasets. In III we 

describe the representations. In IV we describe TD, of firearms, 

using these representations. These results allow us to establish 

that the representations used have the potential to detect 

firearms as anomalies. In V we present the details of our 

methods for AD, and give results for appearance anomalies, 

semantic anomalies, and combined anomalies of either type. In 

VI we summarize and conclude. 

II. DATASETS 

We use an image dataset assembled and constructed by the 

Centre for Applied Science & Technology (CAST), part of the 

Home Office of the UK Government. The data was prepared for 

development and testing of TD algorithms. 

The data consists of X-ray images of parcels, in two sets (Fig 

1). The stream-of-commerce (SoC) set shows 5000 parcels 

collected from a UK parcel distribution centre. In a fraction of 

these images objects, such as machine and computer parts, 

clothing and footwear, can be recognized, but in the majority 

the contents are less obvious. The staged-threat (threat) set 

shows 234 parcels, each packed with benign objects, selected 

as usual for parcel contents, plus a firearm of pistol, carbine or 

rifle type, in some cases partially disassembled. 

All parcel images are dual-view (i.e. a pair of images), 

acquired from roughly perpendicular directions, and 

false-coloured based on dual-energy imaging. Images are 764 

pixels high; SoC images have a median width of 676 pixels 

(IQR = [507, 906]), while threat images have a tendency to be 

larger, with a median width of 990 pixels (IQR = [515, 1161]). 

The model and make of scanner used was not disclosed by 

CAST for reasons of commercial neutrality, but are presumed 

to be tunnel scanners as seen in airports and large mailrooms.  

It is unclear whether the two datasets were collected using the 

same scanner, but nothing in the images suggests they were not. 

The firearms within the threat parcels vary in how difficult 

they are to recognize, dependent on their size and how they lie 

relative to the other parcel contents. Subjective assessment by 

the authors categorized the firearms as being easily seen in 81% 

of parcels, difficult to see in 15%, and unrecognizable in 3%. 

The diversity of SoC parcels and the range of firearm 

visibilities in threat parcels is illustrated in Fig. 1. 
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As a pre-processing step all images were first automatically 

cropped to remove air around the parcel based on thresholding 

and connected components analysis (parameters tuned by 

experimentation). Next, each was reduced to an unstructured set 

of 224×224 pixel patches using a stride of 112 or less so that 

both images in a dual-view pair were uniformly covered, 

extending into the corners (see Fig. 2. An average of 26 patches 

were produced for each dual-view SoC image. 

 

 

Fig. 2.  Example dual-view SoC parcel image. Black rectangles show the full 

extent of the image. Red rectangles show the automatically identified cropping 

boundaries removing air around the parcel. Green squares show the size of 
patches that the cropped areas are reduced to. Patches overlapped by 50% or 

more in each dimension. 

 

III. REPRESENTATIONS 

We compute representations of the image appearance and 

semantic content using the Wolfram ImageIdentify CNN 

included as part of Mathematica (v11.1) [53]. We examine the 

effect of using alternative CNNs in section V.F. This CNN 

takes a 224×224 RGB image as input and produces a vector of 

classification confidences for 4315 semantic categories. The 

CNN is very similar in architecture to Inception V3 [54] but 

was chosen for its larger number of semantic categories. It has 

232 layers, ~15M parameters, and a trained size of 65MB. After 

multiple layers of convolution, pooling, batch normalization 

and RELU non-linearity; the activations of a final 1024-D 

pooling layer expressing presences of image-wide appearance 

features; then the activations of a 4315-D logit layer express 

evidence for semantic categories, computed as linear functions 

of the pooling layer activations; and a final softmax layer 

compresses the logit layer activations into a unit-sum histogram 

of positive confidences over the 4315 semantic categories. 

Figure 3 illustrates how we intercept the computations of the 

Wolfram Image Identify CNN to extract appearance and 

semantic vectors for use in anomaly detection. 

 

 

Fig. 3.  Extraction of vector representations suitable for anomaly detection from 
a generic object identification CNN. 

 

A. Appearance 

The appearance representation is based on the 1024 

activations of the final pooling layer of the network. These 

activations are non-negative values that can be interpreted as 

signaling the degree of presence of a complex structure within 

the image. For CNNs in general, understanding what the 

responses at later layers of the network signal has proved 

Fig. 1.  Example parcel images. In all cases the more informative of the dual views is shown. In staged threats (bottom row) the firearms vary in visibility, as 

indicated by the grey bar along the bottom. The examples shown roughly correspond to the visibilities indicated by the tick marks above the bar. 
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difficult, but some at least indicate particular textures, while 

others particular shapes (e.g. faces) [55]. 

We have a couple of expectations about how appearance 

anomalies will manifest in the images which we use to guide 

the design of our processing pipeline, hopefully without biasing 

the anomaly detection away from generality. First is that 

appearance anomalies will be localised rather than diffusely 

present. Second is that their presence may be signaled not just 

by high activations in particular dimensions of the appearance 

representation, but by a pattern of high and low activations. 

These expectations motivate our choice to compute separate 

representations for each image patch, and maintain these as 

separate elements in an unstructured set; rather than, say, 

forming a single representation which is the maximum 

activation for each dimension, over the patches of an image; or 

by reducing the resolution of the image so that it can be input 

into the CNN in its entirety. 

Looking at the activations in bulk, across the patches of the 

SoC dataset, reveals that the distributions of values in each 

dimension are qualitatively similar (Fig. 4 left and centre). Each 

has a substantial fraction of zero-valued activations, with the 

remainder distributed approximately exponentially. They differ 

quantitatively though: the fraction of non-zero activations 

varies, as does their mean (Fig. 4 right). 

 

 

Fig. 4.  Illustrates the distribution of values in the final pooling layer of the 
Wolfram ImageIdentify Net applied to patches from the stream-of-commerce 

data. Left and Centre: the distributions of values for two example dimensions; 

variation in the fraction of non-zero values, and their mean, is apparent. The 
threshold value used for binarization is indicated in the plots. Right: one plot 

point for each of the 1024 dimensions showing how their distributions vary; the 

point corresponding to the left and centre histograms are marked more darkly. 

 

 
The distributions of activations from the pooling layer are a 

hybrid of a categorical variable (zero vs. non-zero) and a 

continuous (if non-zero). This is very far from Gaussian, which 

is our preferred model for the distribution of SoC data. To make 

the data more approximately normal we binarize all activations 

by thresholding (below threshold maps to 0, above to 1). We 

use a common threshold for all dimensions; reasoning that they 

can be considered roughly commensurate as they all feed into 

the same linear-weighted logit functions in the next layer of 

the network. 

To choose the binarization threshold, we consider how 

extreme are the binary distributions that result. More extreme 

distributions (i.e. mostly 0s or mostly 1s) are approximated less 

well by gaussians e.g. if a binarized channel is 80% 0s and 20% 

1s, then a Gaussian approximation will have mean 0.2 and 

standard deviation 0.4; for this Gaussian, the ratio of the 

probabilities of a 0 and a 1 is 6.5, not much bigger than 

4.0=80/20; whereas for a 90%/10% split the ratio becomes 85.1, 

much larger than 9.0=90/10. We find that a threshold of 0.065 

(marked in Fig. 4 left and centre) best avoids extreme binary 

distributions at either end of the range. We evaluate the 

sensitivity of this choice in section V.E. 

To summarize: as a representation of appearance we use a 

1024-D binary vector for each image patch, computed by 

thresholding the final pooling layer activations from the 

Wolfram ImageIdentify Net. The appearance representation of 

a parcel is the unstructured set of representations of patches 

from both views. 

B. Semantic 

We base a semantic representation for each image on the 

4315 activations of the logit layer of the network. Each 

activation expresses the evidence for a different semantic 

category. In the softmax layer that follows, these activations are 

competed against each other to sharpen the response towards 

the largest ones for an image, but in this layer they are 

independent assessments. The categories consist of 19 famous 

buildings, 47 fictional characters and 4249 concrete concepts. 

Of the concrete concepts we have manually identified 996 as 

being parcel-plausible, the others being too large (e.g. 

snowdrift), living (e.g. red snapper) or food items (e.g. 

hamburger). The concrete subset contains 12 categories which 

are a type of barrelled projectile weapon (gun for short), of 

which 7 are in the parcel-plausible subset (Table I). 

 
TABLE I 

GUN CATEGORIES 

bullet-firing gun 

assault rifle automatic pistol 

Bren gun carbine 

Luger machine pistol 

other gun paintball gun  

shell-firing gun 

bazooka Bofors gun 

cannon field artillery 

howitzer  

The 12 categories of gun among the 4315 semantic categories that WolframNet 

classifies into. Only the five shell-firing guns are considered parcel-implausible 
 

 

In contrast to our approach for appearance, for the semantic 

representation we use a maximum-over-patches operation to 

form a single representation for an entire image rather than a 

per-patch representation. This is because we expect semantic 

anomalies to be manifest as larger-than-normal activations in 

single dimensions, and so there is no advantage in maintaining 

separate patch representations. We still process the image by 

patches, rather than downsampled as a single input, as we 

consider the patches are reasonably well-matched to typical 

object sizes in parcels. 

The logit layer activations are real values which, when 

examined in bulk across the SoC dataset, are well approximated 

as Gaussian distributions in each dimension (Fig. 5). The mean 

and standard deviation of the distributions vary, with a tendency 

for standard deviation to increase with mean, which we model 

by a linear relation between mean and log standard 

deviation (Fig. 5). 
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Fig. 5.  Illustrates the distribution of values in the logit layer of the Wolfram 

ImageIdentify Net (maxed over patches in an image). Each histogram shows 
the distribution for a single logit layer node, which corresponds to a particular 

semantic category: Colosseum, sacred ibis and sundew in the examples shown. 

Logit layer values show the evidence the CNN has found for a particular 
category (large values = more evidence). In the next softmax layer the values 

are exponentiated and competed across categories to produce confidences in the 

range [0,1], but it is the raw logit values that are used for anomaly detection. 
The three example distributions were chosen to illustrate the range of closeness 

to Gaussian form of the distributions (respectively worst, median and best). 

Although the distributions are always close to Gaussian form they vary in the 
means and standard deviations, with some correlation between the two as 

shown by the bottom right plot. Note the log scale for the standard deviation in 

this plot. 

 

 

For each image we have determined the category with the 

highest activation. Table II shows the most common categories 

that result. It can be seen that these bear little relation to what 

we expect parcels to contain; parcel-implausible ones are often 

selected; and while guns do register in the threat dataset they 

are picked much less frequently than they are in fact present. 

This shows that the Wolfram ImageIdentify Net applied to 

X-ray parcel images performs very poorly in the normal mode 

of usage, not surprising given how different most objects appear 

in X-rays compared to the photographic images on which the 

net was trained. 
TABLE II 

GUN CATEGORIES 

stream-of-commerce staged-threat 

rule 7.3% rule 5.9% 

envelope 6.1% volleyball net 4.2% 

stratus 3.6% envelope 3.3% 
fluorescent lamp 2.5% compass 3.3% 

long sleeve 2.2% graffiti 2.9% 

snowdrift 2.0% file folder 2.2% 

dune 1.9% awning 2.0% 

art 1.9% windshield wiper 2.0% 

map 1.6% circuitry 2.0% 
compass 1.6% art 2.0% 

volleyball net 1.6% shopping cart 1.6% 

file folder 1.5% ridge rope 1.5% 
organdie 1.4% dish rack 1.4% 

herringbone pattern 1.3% goalpost 1.4% 

graffiti 1.3% slide rule 1.4% 
bookmark 1.2% fluorescent lamp 1.3% 

ocean 1.1% map 1.2% 

toothpick 1.0% automatic pistol 1.2% 

Most frequent categories chosen as the most confident by the Wolfram 

ImageIdentify Net for patches from parcel images. Percentages indicate how 

often chosen. Bolded categories are in the parcel-implausible subset. The most 

frequently chosen gun category is italicized. 

IV. THREAT DETECTION 

Before presenting our methods and results for unsupervised 

AD, we first assess how well our representations support 

supervised TD. This will determine an upper bound for AD 

performance: in simple terms whether the representations 

capture what is needed to distinguish the particular examples of 

anomaly that we test with (firearms) from SoC parcel contents. 

We note that this repeats previous work that has used the 

representations from object-in-photo CNNs for threat detection 

e.g. [14]. 

A. Appearance 

To use the appearance representation (1024-D binary vectors 

per patch) for supervised TD, we trained a regularized logistic 

classifier using all patches from the same number of SoC 

images and threat images. For testing, the classifier was 

evaluated on a disjoint set of SoC and threat images. To produce 

a threat detection score for an image, the classifier was run for 

each patch separately, and the individual scores were averaged. 

Performance was quantified by AUC, which is the frequency 

with which a threat test image was given a higher score than a 

SoC test image. We prefer the AUC measure in this context as 

it makes no assumptions about what the rate of threats or 

anomalies will be, and does not require a detection threshold to 

be established. We report the mean AUC over repeated, 

random, train/test splits. Fig. 6 shows the mean performance as 

a function of the amount of training data. It shows that mean 

performance reached 99.6% (95% CI [99.5, 99.8]) when 128 

SoC and 128 threat images were used for training. Higher 

performance looks likely if a larger training set was used, but 

we were limited by the 234 staged-threat images available. This 

confirms that the appearance representation is adequate for AD 

with the particular anomaly examples we are testing with. 

 
Fig. 6.  Mean performance of supervised threat detection using the appearance 

representation, as a function of the training set size.  

 

 

B. Semantics 

A supervised threat detection scheme based on the semantic 

representation (a 4315-D real-valued vector per image) can be 

constructed in the same manner as with the appearance 
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representations. This has a performance of 99.5% when trained 

on 128 each of SoC and threat images, almost the same as the 

99.6% for appearance. The slight shortfall can be attributed to 

the semantic layer being tuned to the appearance of firearms in 

photographs rather than X-ray images. 

A different approach to using the semantic representation for 

TD of firearms is to exploit its known alignment to the threats 

that need to be detected: as listed in Table I, twelve of the 

dimensions are aligned to categories of gun. 

Fig. 7 shows the means and standard deviations of the 

activations for different dimensions of the semantic 

representation for SoC and threat images. The figure shows that 

the representation values for threat images tend to have higher 

values than for SoC images (i.e. above the diagonal line) for all 

dimensions. For non-gun dimensions, this is possibly due to a 

tendency for the threat images to be slightly larger and busier. 

For gun dimensions, the elevation in values for threat images 

compared to SoC is clear, due to the presence of firearms in 

these images. The figure makes clear the challenge of semantic 

anomaly detection – while the presence of the anomalous 

categories is clear in a bulk comparison of threats to SoC 

images, per image these higher activations have to be detected 

in amongst the fluctuations of all the other categories. 

A simple way to turn the elevated response to gun categories 

into a TD scheme is to score each image according to its 

maximum activity across the 12 gun categories. This gives an 

AUC of 93.7%, quite respectable for an out-of-the-box 

approach that has not been trained on, or fine-tuned for, X-ray 

images. 

 

 

 
Fig. 7.  Compares logit layer activations in SoC and threat images. A point 
marker for each of the 4315 dimensions marks the mean value within the 

datasets, its bars show the standard deviations. All 4315 dimensions are shown 

with light grey markers; on top of these, darker grey markers show for the 
parcel-plausible dimensions; on top of these, black markers show for 

gun categories. 

V. ANOMALY DETECTION 

 

Figure 8 gives an overview of the AD approaches we will 

describe in this section. The steps are: (i) representations are 

computed for patches of dual-view SoC images. (ii) for 

appearance anomalies the representations of patches within an 

image are kept separate, for semantic anomalies they are 

aggregated by a per-dimension maximum operation. (iii) a 

multinormal approximation of the distribution of SoC 

representations is constructed. (iv) the abnormality of a test 

image is assessed by computing the Mahalanobis distance of its 

representation(s) relative to that multinormal. (v) for 

appearance the most abnormal patch determines the 

abnormality of the image; for semantics the abnormality of the 

single maximum-aggregated representation is used. 

 

 
Fig. 8.  Schematic overview of our approaches to Anomaly Detection. Left: 

training sets of dual-view SoC images. Centre: multinormal models of the 
distribution of SoC representations. Right: processing of a test image. 

 

 

Before looking at our main AD approaches we establish 

baseline performance using simple engineered features (Table 

III). All perform above chance (50%). Size, measured in pixels, 

because the threat parcels tend to be larger than the SoC. 

Attenuation, computed by converting images to greyscale and 

summing the resulting values subtracted from the maximum 

value of 255, because the high density mass of the firearm tends 

to make threat images darker than SoC. Busyness, the sum of 

greyscale squared deviations from the mean, because inclusion 

of the firearm adds variation. Although all are above chance, 

the best performing achieves only 72.8%, showing that AD is 

not possible in this problem through simple approaches. 

 
TABLE III 

PERFORMANCE OF BASELINE FEATURES 

feature AUC 

size 67.5% 

attenuation 69.0% 

busyness 72.3% 

 

 

In the remainder of this section, in A we describe our 

approach for detection of appearance anomalies and give results 

when using 4096 SoC images as the normal class and the 

remaining SoC images and all threats images for testing; then 

the same for semantic anomalies (section B), and then for a 
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combination of the two schemes to test whether they detect 

different things (C). We then present results on how 

performance of these schemes varies with the size of the normal 

data set (D), and the sensitivity of performance to the value of 

three hyper-parameters used in the schemes (E). In section F we 

report the effect of varying the pre-trained CNN used. In G we 

describe the processing times for this approach. In H we assess 

the use of a Generative Adversarial Network as an alternative 

to our principal way of modelling the distribution of 

normal data. 

 

A. Appearance 

Recall that the appearance representation is a 1024-D binary 

vector for each image patch. We model the distribution of these 

for SoC data using a multivariate Gaussian. The centre of this 

distribution is simply the mean of the appearance vectors for the 

training dataset. For the covariance of the distribution, a naïve 

approach would be to use the sample covariance, but this 

ignores that we are using a Gaussian to model the distribution 

of binary, rather than scalar, values. As noted in section III.A, 

naïve Gaussian approximations of binary variables do not give 

the correct ratio between the probabilities of a 0 and a 1. 

If in the training samples the fraction of 1s in some dimension 

is p  then the naïve Gaussian approximation will have mean 

p   and variance  1v p p   . The ratio of the likelihoods 

that it assigns to a 1 and to a 0 is  

1
2

1

p

p p
e




  different from the ratio 

 
1

1p p


  in the sample. If the variance is determined instead 

according to      1
1

2 ln 1v p p p


      then the correct 

ratio results. Fig. 8 (left) shows the naïve and adjusted variances 

as a function of p. It shows that larger variances are set by the 

adjusted formula when p is close to 0 or 1 – recall though that 

the binarization threshold we use avoids values very close to 

these extremes. Fig. 8 (right) shows the naïve and adjusted 

gaussians when p=0.75 (also marked at the left). 

 

 
Fig. 8.  Compares the naïve (solid) and adjusted (dotted) Gaussians used to 

model distributions of binary values. Left: variance of the modelling Gaussian 

as a function of the sample mean. Right: the modelling Gaussians (curves) for 
a distribution (grey bars) of binary values with mean 0.75. The bars coincide 

with the adjusted Gaussian at variate values 0 and 1. 

 

 

The adjusted variance allows us to compute the modelling 

variance per dimension, but this gives only the diagonal values 

of the full covariance matrix ( Σ ). We compute the covariance 

matrix from the correlation matrix ( C ) and the vector of 

adjusted variances ( )V   by    : diag V diag V Σ C . This 

covariance matrix, along with the vector of dimension means (

 ) specifies the multivariate Gaussian we use to model the 

distribution of SoC appearance vectors. When assessing the 

abnormality of a test datum with representation r   we can avoid 

computing its likelihood relative to that Gaussian, which is 

numerically problematic because of its high dimension, by 

instead computing the log-likelihood and ignoring the constant 

term. Hence the score is    
T 1r r  Σ  (i.e. a 

Mahalanobis distance) with larger values signalling anomalies. 

We compute the anomaly score for an image, as the maximum 

of the anomaly scores for its patches i.e. an image is as 

anomalous as its most anomalous patch. 

We have evaluated this AD scheme by splitting off a random 

subset of 4096 SoC images as training (from our pool of 5000 

images), computing a multivariate Gaussian model for the 

distribution of patch representations for this data, and 

evaluating the anomaly scores of the remaining SoC images and 

all 234 threat images. We compute an AUC value from these 

scores. We repeat the training and testing multiple times using 

different random splits of the SoC into train and test sets, until 

the uncertainty of the mean has a 95% confidence less than 1% 

wide; and report the mean performance. 

To assess whether all aspects of our scheme deliver improved 

performance we also compute AUC scores using a diagonal 

rather than a full covariance for the Gaussian model, and 

without using the variance adjustment. The variant when we use 

the adjusted variance with a diagonal covariance is noteworthy. 

This is equivalent to a naïve Bayes scheme, where the 

likelihood of a datum is computed as the product of its 

likelihood in each dimension, computed as straightforward 

Bernoulli probabilities. This equivalence holds because the 

adjusted variance ensures that the probability of a 0 and 1 in 

each dimension are proportional to their rates in the training 

sample. We have confirmed that we do indeed get equal results 

if we compute the naïve Bayes scheme in a direct manner 

without use of Gaussian models. 

Results are shown in Fig. 9: full covariance outperforms 

diagonal covariance, whether naïve or adjusted variance is 

used; adjusted variance outperforms naïve variance, whether 

full or diagonal covariance is used. The AUC for the main 

scheme – full covariance, adjusted variance – is 92.5%. The 

±1.6% error bar shown in the figure (solid) is the 95% 

confidence of this estimate of performance given the finite size 

of the SoC and, particularly, the threat datasets. This was 

evaluated using multiple bootstrap re-samplings of the data, 

ensuring that multiple copies of an image were not split across 

train and test. The hollow error bars for the variant schemes 

show the uncertainty of their performance relative to the full 

scheme. Again this was evaluated using bootstrap resampling, 

with the difference between the performance of the variant and 

full schemes being computed for each re-sampling. None of 

these hollow error bars cross the performance level for the full 

scheme, demonstrating that their lower performance is 

significant at a 95% confidence level, rather than a quirk of the 

particular datasets we use. 
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Fig. 9.  Performance of different approaches to AD based on binarized 

appearance vectors. In all cases, the normal population was 4096 SoC parcels, 
and testing was on staged-threat parcels and held-out SoC parcels. Wide grey 

bars show mean performance using different random training and test sets with 

95% confidence intervals (not shown) of less than ±1%. The best method 
(‘adjusted full Gaussian’) is shown with a darker bar and a 95% confidence 

interval showing the uncertainty of its absolute performance given the finite 

pool of training and test data. The other hollow error bars shows the 95% 
confidence interval of the relative performances of the sub-optimal methods 

compared to the best method; none cross the dashed line indicating that they 

are significantly worse. 

 

B. Semantics 

Recall that the appearance representation is a 4315-D 

real-valued vector for each image. As with appearance, we form 

a full covariance Gaussian model of the distribution of these. 

Since the vectors are real- rather than binary-valued there is no 

need to use a variance adjustment, but there are three 

non-standard changes we do make for this problem. 

We consider only the subset of 996 parcel-plausible 

dimensions rather than the full 4315; because we can rule out 

as impossible anomalous appearance of these other categories 

(such as ‘giant redwood’). 

We estimate the variance of each dimension from its sample 

mean and the fitted relationship shown in Fig. 4, rather than 

directly from the sample data. 

For each test datum, when computing its likelihood relative 

to the model distribution, we consider only the n largest 

excursions away from the mean, rather than all excursions; 

where excursion is quantified by signed z-value. Smaller 

excursions in  1 r    are zeroed. We do this because we 

expect semantic anomalies to manifest as a positive increase in 

a small number of dimensions, tuned to categories similar to the 

anomalous object, rather than a diffuse pattern of increases and 

decreases across many dimensions. For a ball-park estimate of 

how many semantic dimensions might be co-activated for a 

typical semantic anomaly, we note that there are 12 categories 

of gun within the full 4315 (see Table I), so we set n to 12. 

We evaluate detection of semantic anomalies using the 

protocol described for appearance. Results are shown in Fig. 10 

for the full and variant schemes. The full scheme achieves an 

AUC performance of 88.2%, higher than the variants. Of the 

variants, using all semantic dimensions rather than the 

parcel-plausible subset has the greatest negative impact, while 

diagonal rather than full covariance has the least. The higher 

performance of the full scheme is statistically significant, as 

shown by none of the hollow error bars (showing the 95% 

confidence intervals of the variant scheme performance relative 

to the full scheme) crossing the dotted line. The absolute 

uncertainty of the full scheme is shown by the solid ±2.3% error 

bar which indicates its 95% confidence interval. All error bars 

were computed using bootstrap resampling with the same 

precautions used for appearance anomalies. 

 

 
Fig. 10.  Performance of different approaches to anomaly detection based on 

real-valued semantic vectors. Same details as Fig. 9. 

 

 

C. Combined 

Although we have defined appearance and semantic 

anomalies differently, it is not self-evident that our approaches 

will detect different things. After all, a pattern of activations in 

the final pooling layer of the ImageIdentify net (which give rise 

to an appearance representation) can be considered a direction 

in appearance space, and the logit layer nodes (the activations 

of which are a semantic representation) also each correspond to 

a direction in that space. On the other hand, while the approach 

for detecting appearance anomalies requires all directions in 

this space to be equally monitored for unusual excursions from 

the mean; the approach for detecting semantic anomalies is 

provided with guidance on which directions correspond to 

semantically coherent categories, allowing it to closely monitor 

selected directions while ignoring others. 

To test whether they do detect different things we combine 

the schemes, and see if the performance is improved. We 

combine the appearance anomaly score and the semantic 

anomaly score as a weighted sum. Since both scores are log 

probabilities, and so commensurate, we use an inverse-variance 

weighting scheme, which minimizes the variance of the 

weighted sum. The variances for this are determined from the 

spread of scores on the SoC training data. We determine them 
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on the fly for each random set of training data, but they tend to 

around 0.92 for appearance and 0.08 for semantic i.e. a weight 

ratio of 11.5. 

Results of the combined scheme, using 4096 SoC training 

images, are given in Fig. 11 along with comparison to the 

individual schemes. As with earlier results of this form, the 

error bars show 95% confidence intervals given the finite train 

and test datasets used; with the solid bar showing absolute 

performance, and the hollow bars showing performance relative 

to the combined scheme. Neither hollow error bar crosses the 

dashed line, so the combined performance of 93.4% is 

significantly higher than the individual performances of 92.5% 

for appearance and 88.2% for semantics. Thus we conclude that 

there is a small but significant non-overlap in what the 

appearance anomalies and semantic anomalies schemes detect. 

 

 
Fig. 11. Performance of combined vs. individual approaches to anomaly 

detection. Same details as Fig. 9. 

 

 

The output of the combined scheme is illustrated in Fig. 12. 

The scatter plot shows appearance and semantic anomaly scores 

for the SoC data and the threat data, while the histograms show 

the combined score. For the combined score we have calculated 

the threshold value above which 90% of the staged threat scores 

lie, and displayed these in the two plots (green lines). This 90% 

detection scheme with a hard threshold gives a false alarm rate 

of 18% on the SoC data. The example images in the lower part 

of the figure show SoC images (top two rows) and staged-threat 

images (bottom two rows) with a range of combined scores. 

Which of these images have scores above and below the 90% 

detection threshold is indicated by the green polyline. Roughly 

reflecting the overall performance of the hard threshold, one of 

the ten threat images fails to register as an anomaly, and two of 

the ten SoC images do. It is noteable that the missed threat is 

less unusual looking than the others; and the false-alarm SoC 

images are more unusual looking. 

D. Training set size 

Our main results (Fig. 9-11) are computed with a training set 

of 4096 SoC images. This is large enough so that the covariance 

matrices used for the Gaussian models of the normal population 

AD are full rank, so invertible. With smaller training set sizes 

this is not the case. Using the pseudoinverse, rather than 

inverse, avoids this problem but causes performance to reduce 

sharply with decreasing training set size. Instead, we add a 

small multiple of the identity matrix to the sample covariance, 

to ensure invertiblity. With an appropriate weight, performance 

decreases smoothly and slowly with reduced training set size, 

and does not alter performance at the largest size. 

Results of varying the size of the SoC training set are shown 

in fig 13. For all sizes, especially smaller ones, performance is 

averaged over multiple random splits of the SoC dataset into 

train and test portions. 

The left plot shows the varying performance of appearance 

AD, and compares when full or diagonal covariance is used (in 

both cases using the adjusted variance calculation). It shows 

that diagonal covariance is superior for smaller training sets, 

and full covariance for larger. Additionally the performance for 

diagonal covariance plateaus earlier than for full covariance. 

All these observations are consistent with the greater number of 

parameters of the full covariance, supporting a more accurate 

model of the normal population density, but requiring extra data 

to reliably estimate. 

The right plot compares appearance, semantics and 

combined anomalies. Appearance anomaly performance is seen 

to plateau in performance from 500 training images; while 

semantic anomaly performance plateaus from 2000 images. 

The combined appearance plus semantics scheme does not 

outperform appearance alone until 1000 images, and plateaus 

from 2000 images. We explain the failure of the combined 

scheme to outperform appearance at smaller training set sizes 

as due either to semantics not having anything to add to 

appearance until its performance is near maximum, or to a 

failure of the inverse-variance weighting scheme to identify 

effective score combination weights. 

 

 
Fig. 13.  Effect of training set size on performance. Left plot compares two 
schemes for appearance anomalies. Right plot compares individual and 

combined anomaly detection schemes. 
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Fig. 12.  Illustration of the combined scheme for anomaly detection. In all panels the green line marks the same hard threshold, images below this threshold ‘pass’, 

images above are considered ‘anomalies’. The threshold is set to catch 90% of the staged-threat images, but triggers false alarms for 18% of SoC images. Top-left: 
appearance scores vs. semantic scores for SoC (grey) and threat (pink) images. Top-right: histograms of the combined scores, same colour scheme as left. Bottom 

four rows: example SoC and threat images. Letters labelling each image correspond to locations in the top row plots. 
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E. Hyper-Parameter Sensitivity 

The anomaly detection methods have three 

hyper-parameters: the binarization threshold used to convert 

pooling layer activations into binary-valued appearance vector 

representations; the number of (largest) excursions from the 

mean considered in computing a semantic anomaly score; and 

the ratio between the weights used to combine appearance and 

semantic scores in the combined scheme. In supervised 

learning, the value of these would be set by tuning the 

performance score, using cross-validation to prevent 

over-fitting. In AD it is invalid to use anomalies ahead of test 

evaluation. Instead, in previous sections, we justified the 

particular values used. It is informative to compute the impact 

on performance had we used different values. 

Fig. 14 shows the effect of varying the hyper-parameters. In 

all cases the full schemes (dark grey bars in Fig. 9-11) were 

trained on 4096 images. The hyper-parameter values used in the 

main results are indicated by vertical lines. The grey zone marks 

the range of values that give performance within 0.5% of the 

optimum, in all cases the used value lies within the grey zone. 

For the binarization threshold, the grey zone demarks a 6-fold 

range of threshold (i.e. 0.04 to 0.24); for the number of 

excursions from the mean a 5-fold range (i.e. 3 to 15); and for 

the combination weight ratio an 8-fold range (i.e. 8 to 64). So 

in all cases, the argued for values have been near optimum, and 

there is a useful latitude in the values of these hyper-parameters 

that achieve near peak performance. 

 

 
Fig. 14.  Effect of hyper-parameters on performance. Left: appearance anomaly 
detection as a function of the binarization threshold. Middle: semantic anomaly 

detection as a function of the number of excursions from the mean. Right: 

combined anomaly performance as a function of the ratio of weights applied to 
the appearance and semantic scores. 

 

F. Choice of CNN 

The results presented were based on the Wolfram Image 

Identify (v11.1) CNN, chosen because of (i) its similarity to 

Inception V3 which is close to the state-of-the-art on ImageNet 

[56], and (ii) its large number of semantic categories. To assess 

the effect of this choice we have evaluated two alternative 

CNNs: ResNet-152 [57] and VGG-19 [58]. Data on these 

networks and their AD performance is presented in Table III. 

The ILSVRC’12 performance (2nd column) gives their rates at 

getting the correct answer as their top category, and within the 

top 5 on ImageNet – the figure given for the WolframNet is for 

Inception V3. The dimensions (3rd column) are of the final 

pooling layer for appearance and the parcel-plausible categories 

within their outputs for semantics. 

 

 

TABLE III 

CNN COMPARISON 

CNN 
ILSVRC ’12 

performance 
Dim. 

Appearance 
Anomalies 

Semantic 
Anomalies 

Wolfram 

Image Identify 

~78.8% / 

~94.4% 

1024 / 
996 

92.5% 88.2% 

ResNet-152 
77.0% / 

93.3% 
2048 / 

458 
91.8% 79.7% 

VGG-19 
75.2% / 

92.5% 

4096 
/458 

84.6% 85.3% 

 

 

The AD scores show that we made a good choice with the 

WolframNet. The pattern of results suggest that low 

dimensionality is desirable for appearance anomalies and high 

for semantic, but is not clear-cut. 
 

G. Computational Cost 

In both training and testing the processing cost is dominated by 

the per-image computations, which can split into inferring the 

cropping boundary, dividing into patches, processing each 

patch by CNN, and thresholding (for appearance) or combining 

by max (for semantic) the extracted vectors, and computing 

Mahalanobis scores. Dual view images are decomposed, on 

average, into 26 patches. Assuming the CNN is pre-loaded, a 

Titan X GPU can run a patch through an Inception V3 CNN in 

4ms. Total per image processing times of a second can be 

readily achieved, and with careful coding half a second should 

be possible on current hardware. 

 

H. An AnoGAN approach 

Instead of modelling the distribution of SoC binary appearance 

vectors as a multinormal distribution, a plausible alternative is 

to use a Generative Adversarial Network (GAN) [59]. A GAN 

is pair of networks - a generator and a discriminator. The 

generator aims to synthesize data instances that appear to be 

drawn from the same population as a training set. The 

discriminator aims to distinguish between this synthetic data 

and real training data. During co-training of the networks, the 

generator is improved as it receives guidance from the 

discriminator on what aspects of the synthesized data need to 

be changed to make them more realistic, and the discriminator 

is improved as it is trained on more realistic synthetic data. 

In [60] an AnoGAN method was presented for detecting 

anomalies in retinal OCT images. It is founded on the fact that 

the generator operates by transforming a latent variate 

(typically with a high-dimensional isotropic multinormal 

distribution) into synthetic data instances. Having trained a 

GAN on normal data, test data is processed by discovering the 

latent variate that best reproduces them when fed into the 

generator. The degree to which that discovered latent variate is 

outside of the normal range of the latent variates works as an 

anomaly score. 

We adapted the AnoGAN method to detect appearance 

anomalies in parcels using, not raw image data, but the binary 

appearance vectors we have used for our main approach. Since 

these vectors do not have a spatial structure we used 

discriminator and generator networks with fully connected, 
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rather than convolutional layers, as in the original GAN paper 

[59]. We experimented in the architecture of the networks using 

a validation subset of our data, settling on a generator network 

that receives a 200-D latent variate input that then passes 

through layers with 128, 256, 512 and 1024 units. The 

discriminator had 128, 256, 512, 1024 and 1 units in its layers. 

We followed [61] for choice of non-linear units, batch 

normalization strategy and training method. 

Other than using per-patch anomaly scores from the GAN, 

our assessment of the approach replicated that used with our 

main multinormal approach (section V.A). The resulting AUC 

was 73.5%, higher than our baseline approaches (Table III) but 

far short of the multinormal approach (92.5%). This is a 

disappointing result given the good performance in [60]. We 

suspect that the difference is the difference in diversity of the 

normal class in the two problems. Possibly an AnoGAN can 

perform well for our problem with its very diverse normal class, 

and it does have the potential to capture dependencies higher-

order than pairwise which the multinormal approach never can, 

but it will require further network architecture engineering to 

achieve this. 

 

VI. SUMMARY & CONCLUSIONS 

We presented approaches for detection of appearance and 

semantic anomalies in X-ray security images. Our approach is 

sophisticated in the representations it uses, and simple in how 

anomalies are detected given those representations. 

For both types of anomaly we used representations extracted 

from layers of an object classification CNN trained on 

photographic images. The anomaly status of test images was 

assessed by computing the likelihoods of their representations 

relative to full covariance multivariate Gaussian models of the 

distribution of representations of normal data. 

The schemes were assessed using parcel images. A stream-

of-commerce dataset was taken as the normal class. A staged-

threat dataset of parcels with normal contents plus a firearm 

were considered as example anomalies.  

Anomaly detection performance increased with the size of 

the training set. For appearance anomalies this plateaued at 500 

images, achieving an AUC score of 92.5%. For semantic 

anomalies, performance plateaued at 2000 training images, at 

which size it achieved an AUC of 88.2%. Combining the 

approaches yielded a slight improvement to an AUC of 93.4%, 

but as this was shown to be statistically significant it was 

confirmed that the two schemes were not detecting identical 

aspects of image structure. The 95% confidence interval of the 

performance of the combined scheme was ±2%, given the finite 

datasets available. 

When implemented with a hard detection threshold, the best 

performing scheme was able to detect 90% of staged firearms 

as anomalies while raising false alarms on 18% of 

stream-of-commerce data. While this is much lower than can 

achieved by direct threat detection of firearms based on 

supervised training it is possibly good enough to find a role 

within screening, or as a supplement to a threat detection system 

(possibly operating with a higher threshold) able to pick-up 

anomalies that do not correspond to a specified list of 

threat items. 

The scheme for detecting Appearance Anomalies has a 

limited capacity for localizing the detections as illustrated in fig 

15. This shows an anomaly score for each pixel computed as 

the average of the scores for the windows containing the pixel. 

Since the windows are large the localization is crude but would 

have some use to an operator. A similar output for semantic 

anomalies has not been attempted as the max operation across 

the vectors for each patch, which is performed before 

computing the anomaly score, makes this difficult. 

 

 
Fig. 15.  Example localization maps for anomaly detection, paired with a view 
from a dual view image. Colours toward red indicate high anomaly scores, 

towards blue low. From left-to-right and top-to-bottom the examples show a 

true negative, a false alarm a failed detection and a true positive. 

 

 

There are five potential avenues for improving performance 

of the system. We consider these in order of their use in the 

algorithms. 

1. Different CNN architecture. New architectures, with 

improved object detection performance are regularly being 

proposed [54, 62]; a better performing network may have 

generally more effective features for appearance 

anomalies, as well as better tuning for semantic anomalies. 

2. X-ray trained CNN. The currently used CNN was trained 

on photographic images and, as can be seen from Table II, 

has only weak object classification performance on X-ray 

images. A CNN trained to do diverse semantic 

classification of X-ray data would be expected to produce 

much more effective semantic representations, but may in 

addition produce better appearance representations as the 

aspects of image structure that support semantic 

classification in X-rays and photographs are likely to have 

some differences.  

3. Different distribution modelling. If the normal population 

distribution is not exactly a multivariate Gaussian, then 

modelling it as such will misrepresent aspects of it. For the 

binary appearance representations, if there are dimensional 

dependencies beyond pairwise the multivariate Gaussian 

model will not represent them. For the real-valued 

semantic representations, the Gaussian form of the 

dimensional marginals does not guarantee that the 

population distribution is Gaussian. A model-free approach 

to modelling the distribution, for example 

kernel-density-estimation, might be able to perform better. 
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4. Outlier detection. Instead of a density modelling approach, 

a boundary-based method of outlier detection could be 

effective. For example 1-SVM for semantics, or isolation 

trees for appearance. 

5. Increased training data. In the current system, 

performance has plateaued before the maximum size of 

training set with which we have worked. However it cannot 

be ruled out that if any of 1-4 above yield improved 

performance, then the system might be able to extract value 

from a larger training dataset. 

Of these options, we rate 3 and 4 as likely to yield only small 

benefit, 1 as moderate benefit, and 2 as high benefit; 5 is 

plausible when any improvement has been made. Although 2 is 

by far the most promising route to improvement, the difficulties 

in this approach need to be appreciated. Assembling massive 

labelled datasets for training photo classifiers is facilitated by 

the ubiquity of cameras and the internet, and has many 

economic drivers. A viable route to creating a comparable 

labelled dataset for X-ray images is not obvious. Potentially this 

blockage can be side-stepped by learning a ‘translation’ 

between photo and x-ray appearance with a smaller ‘parallel 

text’ dataset. 

We conclude that anomaly detection in X-ray security 

images can achieve a useful level of performance by utilizing 

the representational power of photo-appearance object 

classification networks; and that there is good potential to 

achieve much better performance using an X-ray trained 

network, but the data sourcing challenges of this 

are considerable. 
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