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Abstract

The security infrastructure is ill-equipped to detect and deter

the smuggling of non-explosive devices that enable terror at-

tacks such as those recently perpetrated in western Europe.

The detection of so-called “Small Metallic Threats” (SMTs)

in cargo containers currently relies on statistical risk analysis,

intelligence reports, and visual inspection of X-ray images by

security officers. The latter is very slow and unreliable due

to the difficulty of the task: objects potentially spanning less

than 50 pixels have to be detected in images containing more

than 2 million pixels against very complex and cluttered back-

grounds. In this contribution, we demonstrate for the first time

the use of Convolutional Neural Networks (CNNs), a type of

Deep Learning, to automate the detection of SMTs in fullsize

X-ray images of cargo containers. Novel approaches for dataset

augmentation allowed to train CNNs from-scratch despite the

scarcity of data available. We report fewer than 6% false alarms

when detecting 90% SMTs synthetically concealed in stream-

of-commerce images, which corresponds to an improvement

of over an order of magnitude over conventional approaches

such as Bag-of-Words (BoWs). The proposed scheme offers

potentially super-human performance for a fraction of the time

it would take for a security officers to carry out visual inspec-

tion (processing time is approximately 3.5s per container im-

age).

1 Introduction

At the turn of the 21st century, the modus operandi of terrorist

attacks perpetrated in the West often relied on the use of explo-

sives. However, following the 2008 Mumbai attacks, West-

ern governments have become increasingly concerned about

the possibility of “Mumbai-style” attacks. These concerns

have been further compounded by the recent events in Tunisia,
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France, and Belgium. These attacks have shown the devas-

tation possible using only so-called “Small Metallic Threats”

(SMTs)†. It is thus necessary to detect and disrupt the SMT

smuggling routes to prevent such devices from getting into the

hands of would-be terrorists. While airport and aviation secu-

rity is almost total, other routes such as road, rail, and maritime

remains vulnerable to smuggling attempts. Automated detec-

tion of such threats remains an open research endeavor.

Potentially, any one of the hundreds of millions of cargo

containers shipped globally each year could be exploited by

malicious actors to smuggle security threats, such as SMTs,

across borders. Currently, statistical risk analysis and intelli-

gence reports drive targeted inspection efforts [1, 2] but those

measures are unlikely to remain sufficient against increasingly

sophisticated smuggling schemes. Instead, security agencies

are pushing for a significant step-up in non-intrusive inspec-

tion capabilities [3], with transmission X-ray scanners being

the most commonly used imaging modality for cargo contain-

ers [4]. However, current detection capabilities are not ade-

quate to accommodate the increasing volumes of images. In-

deed, the manual inspection of X-ray security imagery is a

painstaking process [5]. Images of cargo containers pose the

most difficult inspection challenge: threats (e.g. SMTs) are of-

ten very small relative to the image size (e.g. 0.1% of pixels in

a 2600×850 pixel image is typical); threats concealed within

legitimate cargo can be almost undetectable to the naked eye

due to complex or dense obscuration; and the diversity of ob-

jects that can be found in a container makes it impossible for

security officers to learn the complete range of appearances of

benign items.

In order to alleviate these issues, we propose the use of

computer vision and machine learning techniques for the au-

tomated detection of SMTs in single-energy single-view X-

ray cargo images. This approach provides multiple advantages

over manual inspection: i) orders of magnitude reductions in

inspection times; ii) improved and potentially super-human de-

tection performance; iii) computing power can be scaled up

to meet the increasing volumes of images to inspect; and iv)

it greatly simplifies scanning logistics by offering consistent

processing times. However, most state-of-the-art computer vi-

sion methods were developed for natural imagery (photogra-

phy) first and foremost, from which X-ray images differ sig-

nificantly due to their translucency, noise levels, clutter, and



skewed perspective [4, 6, 7].

Conventional computer vision methods that rely on “hand-

crafted” features designed for natural images are thus unlikely

to perform optimally when applied to X-ray images. Rather

than adapting existing features, or deriving novel ones, one can

instead use representation-learning methods whereby features

that optimize the separation of different image classes are learnt

directly from training images. Convolutional Neural Networks

(CNNs), part of a family of learning algorithms known as Deep

Learning (DL), are representation-learning methods [8] that

were recently shown to significantly outperform other com-

puter vision approaches [9]. The main barrier to the application

of CNNs to X-ray imagery is the scarcity of training images:

threats are rare in Stream-of-Commerce (SoC) and acquiring

images of staged smuggling attempts is prohibitively costly and

time-consuming. In other fields, this issue was addressed by

augmenting the training dataset through the use of synthetic ex-

amples [10, 11]. In this contribution, we employ a dataset aug-

mentation method where physically-accurate images are syn-

thesised by projection of threats into SoC images [12], enabling

the generation of a very large number of de-novo examples with

very diverse appearance. We also show that log-transforming

input X-ray images significantly improves SMT detection per-

formance.

This paper is structured as follows. First, related research

is discussed in Section 2. The methods used, including data set

augmentation, CNN architectures, and performance evaluation,

are described in Section 3. Our main findings are presented and

discussed in Section 4 before concluding in Section 5.

2 Related work

The urgent need for robust methods to fill the detection capa-

bility gap is not being matched by the current research output

in automated analysis for X-ray cargo images, which was re-

cently throughly documented and reviewed in Ref. [13]. Im-

pressive performance has been reported for the detection of se-

curity threats (including SMTs) [7, 14–16] in baggage X-ray

images, partly made possible by the small dimensions and low

complexity (e.g. constrained packing and low diversity of ob-

jects) of bags, as well as the availability of data-rich and high

resolution imaging modalities, including multi-view and vol-

umetric scanning. In comparison, scenes in cargo container

imagery tend to be much larger and more complex, with little

constraints on how goods are arranged, and a very large and di-

verse space of possible objects (i.e. any object that physically

fits into a cargo container). As such, it is expected that perfor-

mance for cargo images would be in general lower than what

has been reported for baggage imagery.

Two methods for the automated verification of manifest

information based on machine vision algorithms were de-

scribed [6, 17]. Zhang and colleagues [6] developed an ap-

proach for the classification of X-ray cargo images into 22

categories (e.g. grain, tires) based on a Bag-of-Words learnt

from responses to Leung-Malik filters. The categories of 51%

and 78% of images were the top and within the top three cat-

egories predicted by their scheme, respectively. Tuszynski

al. [17] computed a city block distance to measure the simi-

larity between intensity histograms of log-transformed images

and those of training images for each of the 92 categories con-

sidered. Based on this distance, the scheme proposed by the

author was able to verify that a given image was associated

with the correct category with 48% accuracy and a 5% false

alarm rate, which was a significant improvement over chance.

When using the same approach to predict the category of the

imaged container, the category of 31% of the imaged container

was correctly predicted, and it was in the top five predictions

65% of the time.

Approaches were also proposed for empty container veri-

fication, which is useful to avoid unnecessary subsequent pro-

cessing and to detect “false empties” [18, 19]. Rogers et al. [18]

classified cargo container images as empty or non-empty based

on a set of fixed geometric features (oriented Basic Image Fea-

tures), image moments, and the coordinates of sampled win-

dows learnt by a Random Forest classifier. The use of win-

dows coordinates as a feature encouraged the classifier to learn

location-dependent ranges of appearance. The authors reported

99.3% detection with 0.7% false alarms on SoC images, and

90% detection with 0.5% false alarms for synthetic adversarial

examples where objects equivalent to 1L of water were placed

in empty containers. Andrews et al. [19] used anomaly detec-

tion techniques, based on features extracted from the hidden

layer of an auto-encoder, to perform the same task, achieving

99.2% accuracy by training the system solely on down-scaled

images of empty containers and considering non-empty images

as anomalies.

We recently reported on the first use of Deep Learning for

the detection of cars in complex X-ray imagery and showed

that Convolutional Neural Networks (CNNs) significantly out-

performed conventional Bag-Of-Words (BoW) methods with a

100% detection rate and fewer than 1-in-454 false alarms raised

from containers without a car present [20]. The scheme cor-

rectly detected cars in cases where they were almost completely

occluded by other goods. “Small Metallic Threats” (SMTs)

are significantly more challenging to detect than cars: i) small

form factors, ii) very large number of models and manufactur-

ers, iii) appearance close to that of legitimate cargo, and iv)

unrestricted orientation. We previously presented preliminary

results for the detection of SMTs in small 256×256 patches at a

conference, with the additional caveat that the most challenging

cases (dense backgrounds) were left-out of the analysis [21]. In

this contribution, we present results for the automated detection

of SMTs in full-size images and with performance evaluated

across all types of background. In addition, we explore vari-

ous network architectures and compare performance between

pre-trained and trained-from-scratch CNNs.

3 Methods

3.1 Dataset and Data Augmentation

Benign images used for this work were acquired using a

Rapiscan Eagle R©R60 rail scanner equipped with a 6MV linac

source. Images are 16-bit, grayscale, and their size varies



between 1290×850 and 2570×850 pixel for 20 and 40ft

long cargo containers, respectively. The resolution is ≈6mm

pixel−1 in the horizontal direction. The images were randomly

sampled from a Stream-of-Commerce (SoC) dataset acquired

over several weeks and can be empty (≈20% of the dataset)

or contain pallets of commercial cargo, heavy machinery and

industrial equipment, household goods, and bulk materials.

SMT images were acquired separately and are part of a pro-

prietary dataset. In total, approximately 700 instances of SMTs

were available across all types, models, and poses. The original

scans were not used directly, but instead individual instances

were extracted to create a database of SMTs, which in turn was

used to synthesise de-novo examples for training. The synthe-

sis process, based on the multiplicative nature of X-ray trans-

mission image formation, was described elsewhere [18, 21] and

has recently been shown to be indistinguishable from real threat

imagery [12]. In short, a patch containing a single SMT in-

stance was first cropped out of the full-size image. Pixel-wise

segmentation of SMT instances was carried out manually, re-

sulting in a SMT binary mask. Background correction was per-

formed by dividing the cropped patch by the mean intensity of

pixels outside of the SMT binary mask. If unrelated objects

or structures appeared in the patch (e.g. parts of other SMTs

or supporting structures), the corresponding pixels were also

ignored during background correction. The SMT instance can

then be projected into another X-ray image by intensity multi-

plication.

Projecting the same SMT instance into different images re-

sults in vastly different appearances due to the translucency of

X-ray images. The dataset is also made more diverse by the in-

jection of realistic variations such as intensity scaling and SMT

flipping.

In order to train the classification scheme, 1×105 SoC im-

ages were randomly sampled and SMT instances were pro-

jected into half of them. 75% and 25% of the dataset was used

for training and testing, respectively. There was no overlap be-

tween training and testing data, neither in the SoC backgrounds

used, nor in the SMT instances projected.

3.2 Performance evaluation

For performance evaluation, it was assumed that images of

the negative class (i.e. images without SMTs) would gener-

ally produce lower image scores pI than images of the positive

class (i.e. images containing at least one SMT). Various perfor-

mance metrics were computed based on pI scores obtained for

images in the test set, including the area under the Receiver Op-

erating Characteristic (ROC) curve (AUC) and the H-measure.

The latter is a variant of the AUC that addresses issues related

to underlying cost functions [22, 23]. In addition to the AUC

and H-measure, the false positive rate (FPR) was determined

by thresholding pI using the t90 threshold that resulted in a

90% detection rate.

3.3 Classification scheme

The detection of SMTs in X-ray cargo images was imple-

mented as a binary classification task, with benign images (no

SMTs) taken as the negative class and SMT images (at least

one SMT) taken as the positive class. The image classifica-

tion scheme is window-based: i) small windows are densely

sampled with a stride s; ii) windows are classified and given

a score pw,i (the confidence that the i-th window contains a

SMT or part thereof); iii) whole-image score pI is computed as

the maximum score across all windows; iv) image class predic-

tion is obtained by comparing pI with a threshold t90. Training

was thus conducted on a per-window basis, while performance

evaluation was carried out based on full-size scanner images.

i) ii) iii)

Figure 1. Effect of the log-transform on X-ray images of bolt

cutters. Image i) shows a photograph of the imaged bolt cutters,

while ii) and iii) show the raw intensity and log-transformed

images, respectively. Note: bolt cutters are used for illustration,

the SMTs of interest are often much smaller.

For classification by CNNs, the window size was 256×256
pixels and the stride s was 64 pixels. When comparing with

Bag-of-Words (BoW) approaches, the window size was re-

duced to 64×64 pixels and the stride s to 32 pixels to maximize

BoW performance.

Prior to classification, images were preprocessed [18, 21]:

i) black columns produced by faulty detectors or source mis-

fires were removed, ii) source intensity variations were cor-

rected by normalization based on air intensity values, and iii)

salt-and-pepper pixels were replaced by the local median in-

tensity. Raw intensity experiments use preprocessed images as

input. When specified, images were log-transformed prior to

classification; this transform is frequently used to facilitate de-

tection of concealed items by security officers during visual in-

spection (Fig 1) and was also previously applied to automated

classification [17].

In addition to the computation of the image score pI , a

heatmap was generated during classification by mapping the

normalized mean window score at each location (across all

windows overlapping at that location) to pixel values. These

visualizations serve two main purposes: i) clarification of clas-

sification decision by approximately localizing detected SMTs

(or the source of false positive signals), and ii) to serve as a

guide to further action by the security officer (e.g. physical

inspection).
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Figure 2. Trained-from-scratch (TFS) network configurations

evaluated. A. Single channel input images, B. Two channel

input images, and C. Two input images feeding into separate

convolutional layer streams.

3.4 Convolutional Neural Networks

The main type of CNN evaluated in this contribution

were trained-from-scratch (TFS) using the MatConvNet li-

brary [24]. Their architecture is based on very deep networks

first described by Simonyan and Zisserman [25], where mul-

tiple convolutional (CONV) layers with small 3×3 filters are

stacked in-between “max pooling” layers and feed forward

into three fully-connected (FC) layers. 11-layer (8 CONV +

3 FC) and 19-layer (16 CONV + 3 FC) variants were explored.

For both variants, three configurations were evaluated (Fig. 2):

grayscale image input (TFS-A, raw or log-transformed in-

tensities); dual channel image input (TFS-B, raw and log-

transformed intensities); and separate raw and log-transformed

inputs to distinct branches of the network (with no weight shar-

ing) whose features are concatenated after the first FC (TFS-C).

In all cases, the window score pw,i was given by the output of

the softmax layer for the positive class.

Batch normalisation (fixing the mean and variance of input

distributions at each layer) was used for network regularisation

and to speed up training [26]. Weight decay and momentum

were fixed at 10−4 and 0.9, respectively. Learning rate was

decreased from 10−3 to 10−6 over the course of 30 epochs. The

mean image computed across the training set was subtracted

from each input image. In addition, images were also randomly

flipped (horizontally and/or vertically) at training.

In addition to TFS CNNs, pre-trained (PT) networks were

also evaluated. Features were extracted from the FC1 and FC2

layers of a VGG-VD-19 [25] model, whose architecture is very

similar to the 19-layer TFS CNN, trained on ImageNet (dataset

of natural photographic images) and were classified using Ran-

dom Forest classifiers. Input images were resized to 224×224
and the grayscale channel was replicated twice in the third di-

mension to match the expected RGB format. For PT CNNs, the

window score pw,i was computed as the fraction of trees voting

for the positive class.

3.5 Bag-of-Words features

In addition to CNNs, Bag-of-Words (BoW) features were also

evaluated: oriented Basic Image Features (oBIFs) and Pyramid

Histograms Of visual Words (PHOW). BIFs are fixed geomet-

ric features, classifying each pixel of an image into one of seven

Table 1. Performance for the detection of SMTs in X-ray cargo

images. For clarity, some results were omitted from the table.

“+Log” denotes that images were log-transformed prior to clas-

sification. FPR90 is the false positive rate for a 90% detection

rate.
Method AUC H-measure FPR90
oBIFs 0.72 0.19 0.72

oBIFs + Log 0.59 0.04 0.88

PHOW 0.72 0.18 0.75

PHOW + Log 0.73 0.20 0.75

CNN-19-PT-FC1 0.67 0.17 0.86

CNN-19-PT-FC1 + Log 0.61 0.12 0.89

CNN-19-PT-FC2 0.67 0.17 0.85

CNN-11-TFS-A + Log 0.95 0.72 0.13

CNN-11-TFS-B 0.95 0.70 0.15

CNN-19-TFS-A 0.89 0.53 0.47

CNN-19-TFS-A + Log 0.96 0.75 0.09

CNN-19-TFS-B 0.97 0.78 0.06
CNN-19-TFS-C 0.96 0.75 0.10

Figure 3. SMT detection on an empty container using a selec-

tion of the algorithms evaluated. Images have been scaled so

that a value of 1.0 (red) corresponds to a false positive detec-

tion for a 90% true positive rate. The best performing scheme

is marked *.

categories according to local symmetry [27]. For this work, we

used the extended formulation (oBIFs) where the orientation

of rotationally asymmetric features is quantized, resulting in

16 new categories, for a total of 23 [28]. The oBIF computa-

tion was carried out at four scales (σ={0.7, 1.4, 2.8, 5.6}) and

two threshold parameters (γ={0.011, 0.1}). These parameters

were previously shown to be optimal for detection of cars in

cargo containers [20]. The feature vector for a window was

184-dimensional.

PHOW were proposed as a multi-scale extension of dense

SIFT (Scale-Invariant Feature Transform) [29, 30] and are

computed as follows: i) computation of dense SIFT for the im-

age considered at four scales (4, 6, 8, and 10 pixel spatial bins);

ii) learning of a 300 visual word dictionary by k-means cluster-

ing of dense SIFT; and iii) computation of a two-level pyramid

histogram of visual words (2×2 and 4×4 spatial bins). The

resulting feature vector was 6000-dimensional.

Random Forest models were used for classification of im-



Figure 4. SMT detection on a busy container image that does

not contain a SMT using a selection of the algorithms evalu-

ated. Images have been scaled so that a value of 1.0 (red) cor-

responds to a false positive detection for a 90% true positive

rate. The best performing scheme is marked *.

ages based on oBIFs and PHOW features.

4 Results

The SMT detection performance obtained for the different

methods evaluated are presented in Table 1 and summarized in

Table 2. These results highlight the challenging nature of this

classification task. Overall, Bag-of-Words (BoW) methods per-

formed poorly; the best AUC and H-measure was achieved by

PHOW on log-transformed inputs while oBIFs had the lowest

false positive rate for 90% detection rate (FPR90) with 72%.

Interestingly, log-transformed inputs slightly increase perfor-

mance of PHOW but was detrimental to that of oBIFs, poten-

tially due to non-optimal parameter choices.

Pre-trained (PT) CNNs have previously been applied suc-

cessfully to X-ray imagery and delivered robust baseline per-

formance [16, 20]. However, they generally fared worse than

BoW approaches for SMT detection, indicating that generic

features that are optimal for natural image classification, and

that perform reasonably well for the detection of large objects

in X-ray images, are not directly transferable to this task.

In all cases, trained-from-scratch (TFS) CNNs outper-

formed both BoW methods and PT CNNs. It was found that

log-transforming the image was key to achieving improved

performance. For example, log-transforming inputs when us-

ing a single channel input (TFS-A) decreased the FPR90 from

47% down to 9%. A smaller but still significant improve-

ment was obtained by using inputs with both raw and log-

transformed channels (TFS-B), resulting in a further 3% drop

in FPR90 to 6%. Surprisingly, the network architecture that has

two separate streams of convolutional layers for raw and log-

transformed input images did not perform better than just us-

ing a single log-transformed input (TFS-A + Log). One could

expect that encouraging the network to learn channel-specific

features would improve classification given the difference in

appearance between the two channels. Potentially, this could

be explained by the much more complex network over-fitting

the training data. The FPR90 was more than doubled when

using a shallower network (19-TFS-B versus 11-TFS-B), indi-

Figure 5. SMT detection examples using CNN-19-TFS-B.

SMTs are deliberately censored by a red rectangle (the dimen-

sion of the rectangles is identical to that of the SMT). i) to iii)

shows SMTs concealed in the fabric of the container while iv)

and viii) are placed amongst legitimate cargo.

cating that the added complexity did not lead to over-fitting in

this case.

When processing a benign image of an empty container,

the TFS CNNs are the only methods that did not lead to ex-

cessive false positive signals (Fig. 3). Similarly, when given

a benign image of a container loaded with industrial equip-

ment and objects, whose appearance closely resembled that of

SMTs, PT CNNs and to a lesser degree BoW methods gener-

ated very large number of false alarms (Fig. 4). In contrast,

only a few image locations had any kind of signal associated

with them when using TFS CNNs, and in the case of the dual-

channel input variant, no instance was above the threshold to

trigger a false alarm.

Examples of successful detections using CNN-19-TFS-B

are presented in Figure 5. In most cases, the signal is well-

localized and the classification very specific, especially when

projected into empty containers (Fig. 5.i and ii). The examples

where the SMTs are concealed amongst other cargo (Fig. 5.iii-

viii) would be very challenging to detect by visual inspection,

especially under time pressure.

5 Conclusion

We have proposed a Deep Learning scheme for the detection of

“Small Metallic Threats” (SMTs) in X-ray cargo images. By

using a novel method to generate a suitably large and diverse

dataset of physically-realistic synthetic images, Convolutional

Neural Networks (CNNs) could be trained-from-scratch. We

report a 1-in-17 false alarm rate for 90% detection, which sig-

nificantly outperforms other methods evaluated, including clas-

sification based on pre-trained CNNs and Bag-of-Words fea-

tures (Table 2). The processing time using a Titan X GPU was

3.5 second per image in average, which is significantly lower

than the time taken by operators to inspect cargo container im-

ages.



Table 2. Summary of best performance obtained for each ap-

proach (see Table 1)

Method AUC H-measure FPR90
BoW 0.72 0.19 0.72

CNN-PT 0.67 0.17 0.86

CNN-TFS 0.97 0.78 0.06

The scheme described could potentially result in a step

change in SMT detection capability. However, further research

is required before it is ready to be deployed in the field. Due

to the lack of real images containing SMTs concealed amongst

legitimate cargo, we have relied on synthetic images for per-

formance evaluation. While all efforts were made to evaluate

the system in a way that is meaningful and as representative of

real-real world performance as possible (e.g. by using fully dis-

joint datasets for training and testing, for both threats projected

and background patches), it is essential for performance to be

evaluated on images of real SMTs with realistic placement.
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