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Abstract 26 

Stone tool transport leaves long lasting behavioural evidence in the landscape. 27 

However, it remains unknown how large scale patterns of stone distribution 28 

emerge through undirected, short term transport behaviors. One of the longest 29 

studied groups of stone tool using primates are the chimpanzees of the Taï 30 

National Park in Ivory Coast, West-Africa. Using hammerstones left behind at 31 

chimpanzee Panda nut-cracking sites, we tested for a distance-decay effect, in 32 

which the weight of material decreases with increasing distance from raw 33 

material sources. We found that this effect exists over a range of more than 2 km, 34 

despite the fact that observed, short term tool transport does not appear to 35 

involve deliberate movements away from raw material sources. Tools from the 36 

millennia-old Noulo site in the Taï forest fit the same pattern. The fact that 37 

chimpanzees show both complex short term behavioural planning, and yet 38 

produce a landscape-wide pattern over the long term, raises the question of 39 

whether similar processes operate within other stone tool using primates, 40 

including hominins. Where hominin landscapes have discrete material sources, a 41 

distance-decay effect, and increasing use of stone materials away from sources, 42 

the Taï chimpanzees provide a relevant analogy for understanding the formation 43 

of those landscapes. 44 

 45 

 46 

Keywords: chimpanzees, stone tools, transport, distance-decay effect, primate 47 
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Background 51 

Primates regularly move materials from one place to another, mainly for display 52 

[1], foraging [2] and tool use [3,4]. Because the majority of materials involved are 53 

organic, these behaviours are often invisible in the absence of direct observation. 54 

Stone tools, as durable markers of past activity, offer an opportunity to record 55 

the long-term effects of primate behaviour on the landscape. Among the stone-56 

tool-using primates - West African chimpanzees (Pan troglodytes verus) [5], 57 

Burmese long-tailed macaques (Macaca fascicularis aurea) [6], and bearded 58 

capuchin monkeys (Sapajus libidinosus) [7] - stone tool transport is receiving 59 

increasing attention for its role in niche construction [8], site formation [9] and 60 

energetic costs [10]. 61 

 62 

Movement of stone materials has also been instrumental in reconstructing the 63 

ranging patterns of early members of the human lineage, the hominins [11,12]. 64 

Stone transport especially helps with identifying early hominin tool use, when 65 

materials are carried from their original context to a site [13]. A number of 66 

studies have shown that Early Pleistocene hominins were selectively 67 

transporting stone materials that were suitable for the tasks at hand [11,14–19]. 68 

Along with the requirement to bring together suitable stone materials and target 69 

prey in one place [20], tool transport has been suggested to attest to planning or 70 

other cognitive abilities in early hominins [21].  71 

 72 

However, time averaging of the archaeological record – in which multiple 73 

activities occurring in the same place at different times are indistinguishable – 74 

obscures our ability to identify the individual behavioural sequences included 75 
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[22]. One technique used to overcome this limitation and elucidate the stepwise 76 

behavioural patterns behind the archaeological record has been to use agent-77 

based modeling. These models examine how a composite record can result from 78 

a series of unplanned individual movements [23,24]. Their findings suggest that 79 

such tool transport patterns lead to the emergence of a distance-decay effect as a 80 

default when the driving factors behind movements are undirected. 81 

 82 

The distance-decay [25] effect is defined as a negative correlation between the 83 

weight of stone materials at a site, and the site’s distance from the raw material 84 

source, and it has been identified from various Early Stone Age hominin 85 

archaeological sites [25–28]. This effect has been postulated to occur for two 86 

main reasons: (i) heavier stones are energetically more expensive to carry longer 87 

distances, and (ii) stones further from sources have typically been used for 88 

longer and are more completely broken down (either deliberately flaked or 89 

accidentally fractured) as a result [25]. 90 

 91 

Despite the insights that time-averaged archaeological sites and computational 92 

models can provide, they both lack essential information. For the models, the 93 

missing information relates to real world behavioural complexity, and for the 94 

hominin sites it is an understanding of the individual behavioural steps that have 95 

been compressed to form the archaeological record. In this situation, primate 96 

archaeology [29–32] gives us a unique opportunity to record those aspects of the 97 

data that are missing from other approaches. Here, we present the results of the 98 

first study of wild chimpanzee long distance stone tool transport, and its relation 99 
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to stone source distributions, on a landscape scale to assess whether or not non-100 

human primates show a distance-decay effect.  101 

 102 

At Taï National Park, Ivory Coast, chimpanzees use stone hammers and mainly 103 

wooden anvils to crack open different nut species. Most commonly processed are 104 

Coula edulis nuts; these nuts are rather easy to crack and allow chimpanzees to 105 

choose between stone and wooden tools. Another commonly cracked nut species 106 

is Panda oleosa. In contrast to Coula this nut is very hard, requiring greater force, 107 

and can only be cracked with large stone tools that typically weigh several 108 

kilograms [5]. As large stones are rare in this tropical rain forest, chimpanzees 109 

often leave a suitable hammerstone that they have brought to a tree which is 110 

currently producing nuts, frequently re-using this tool for as long as the tree 111 

bears fruit. Over time this leads to the development of intense use-damage to the 112 

hammerstone, in the form of central pits and stone fracture [33].  113 

 114 

To test for the distance-decay effect in wild chimpanzee stone transport at Taï, 115 

we concentrated on granite tools. Taï National Park is located on a Precambrian 116 

granite peneplain, with several isolated granite inselbergs formed from plutonic 117 

intrusions, which made this material the most amenable to studying chimpanzee 118 

stone redistribution. Granite is also a preferred material for chimpanzee when 119 

cracking of Panda nuts. We therefore compared stone availability at the 120 

inselbergs with that of other environments in the home range of the Taï 121 

chimpanzees, predicting that the availability of large granite stones suitable for 122 

cracking the hard Panda nuts would be highest at the inselbergs. 123 

 124 
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We then mapped the location, recorded size and raw material of hammerstones 125 

used at Panda nut-cracking sites throughout the chimpanzee home range. We 126 

additionally recorded the use-wear on each hammerstone, as a means of 127 

assessing the intensity of previous use. Taking use-damage as a proxy for the 128 

length of time that a stone had been used allowed us to determine whether (i) 129 

small hammerstones were being transported further before use, or (ii) stones 130 

became smaller over time through intense re-use, and traveled further due to a 131 

longer latency from the first movement away from the original source. 132 

 133 

Our data are more closely aligned with previous archaeological work than fine-134 

scale ethological observations, in that we collected information on the 135 

palimpsest of stone distribution that has been built up by the chimpanzees over 136 

time. However, we are additionally able to integrate direct observations of 137 

chimpanzees into our analysis to shed light onto the development of stone tool 138 

distribution pattern throughout the landscape.   139 

 140 

2. Methods 141 

The study was conducted in the home range of two chimpanzee communities in 142 

the Taï National Park. The two study groups ranging in this area were fully 143 

habituated to human observers, and focal follows have been determining their 144 

home range since 1985 (North-group) and 2005 (South-group).  145 

 146 

(a) Field data collection  147 

During February and March 2015 we located 25 active Panda nut-cracking sites 148 

(7 in the North-group and 18 in the South-group territory) by revisiting sites 149 
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used by the chimpanzees in the prior 18 months (Figure 1). For each 150 

hammerstone we recorded its GPS position and weight. We consistently found 151 

only one hammerstone per nut cracking site. To determine use-wear of these 152 

hammerstones we produced a 3D model of each hammerstone using a 153 

NextEngine laser scanner. If stones found at one site were clearly broken into 154 

several parts, we combined all parts belonging to a single stone in our 155 

calculations (Table S1).  156 

 157 

On the basis of GPS reference points taken at landmarks within the chimpanzee 158 

home range, we digitized a map of the Taï National Park (originally created by 159 

Organisation mondiale de la Santé) that showed the locations of inselbergs. 160 

Inselbergs are defined as elevated granite outcrops, marked on the map as 161 

polygons. We accounted for the possibility that outcrops without elevation are 162 

missing from the map (see below). On average the inselbergs are rarely larger 163 

than 100 m radius. For each inselberg we determined one coordinate using the 164 

center point of the maximum length and width of the inselberg (Figure 1). For 165 

each hammerstone we calculated the distance to all granite inselbergs (n=55) 166 

located in the two chimpanzee home ranges. In our analysis we excluded 167 

quartzite (South-group N=4) and laterite (North-group N=1) Panda 168 

hammerstones, because they cannot be allocated to a specific location of origin 169 

and therefore we were not able to estimate transport distances.  170 

 171 

To assess the availability of large granite stones, in 2011 we systematically 172 

placed 131 line transects of two meter widths through the North-group and 173 

South-group ranges. We divided the environmental conditions encountered on 174 
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transects into three conditions: forest, inselberg and swamp. Each transect was 175 

500 m in length and ran north-to-south, separated from one another by 500 m 176 

(total transect length= 65.5 km). We counted and measured each stone larger 177 

than 3 cm within a maximum range of 1 m to either side of the transect, and 178 

classified them into one of 10 weight categories (1:0.1-0.25 kg; 2:>0.25-0.5 kg; 179 

3:>0.5-0.75 kg; 4:>0.75-1 kg; 5:>1-2 kg; 6:>2-4 kg; 7:>4-6 kg; 8:>6-8 kg; 9:>8-180 

10 kg; 10:>10 kg). We only included granite material in the analysis.  181 

 182 

(b) Use-wear intensity 183 

Our approach to the use-wear assessment was similar to previous studies that 184 

have pioneered the use of GIS analysis of both archaeological and primate 185 

percussive tools, focusing on hammerstones [34] and stone anvils [35,36] 186 

(Figure 2a). After visually assessing pits on 3D models of all hammerstones, we 187 

exported the models as STL files to Meshlab at a resolution of 0.127 mm, where 188 

we calculated total model volume and isolated and cropped the pitted surfaces. 189 

Cropped 3D surfaces were then oriented so the pitted surface was horizontal 190 

using Nett Fab™ and exported as xyz files. Each xyz file was imported into 191 

ArcGIS® 10.2 and converted to TIN (triangular irregular network) models in 192 

order to subsequently convert the 3D surface to a raster DEM surface.  193 

 194 

The total extent of the pit was derived using a topographic position index (TPI) 195 

calculated with the land facet analysis plugin for ArcGIS® [37], which calculated 196 

the difference in the elevation of each cell against the average elevation of the 197 

surrounding cells in order to identify relative high and low regions of the 3D 198 

surface. We used a circular scale of 25mm to determine the surrounding 199 
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neighbourhood of cells.  We applied contour lines using the TPI raster layer in 200 

order to consistently delimit the extent of the pitted region of the hammer, and 201 

the delimiting contour line was used as a mask in order to extract a DEM raster 202 

of the pit. We calculated the total depth of the pit using the DEM raster layer 203 

from a bounding box layer. Using this methodology, we were able to record the 204 

maximum depth of the pit(s) on each hammerstone.  205 

 206 

(c) Statistical analysis (models):  207 

To investigate whether the weight of granite hammerstones at a given nut-208 

cracking site was influenced by the distance between the site and the closest 209 

inselberg (as the possible origin), we used Linear Models (LM) [38]. Overall we 210 

expected that chimpanzees select a stone source close to a cracking site. For each 211 

hammerstone we determined the distance to the nearest inselberg and included 212 

that as fixed effect in our first model. 213 

 214 

To complement archaeological analysis we added direct observations to the data 215 

set and controlled for the different group that ranged in the designated 216 

territories. To evaluate potential inter-group differences, we investigated 217 

whether the distances between the inselbergs and hammerstone locations 218 

differed between the North- and South-group. We applied the same model as 219 

described above with a two-way-interaction between the distance to the nearest 220 

inselberg and social group as fixed effect.  221 

 222 

To analyse whether the distance of the hammerstone to the nearest inselberg 223 

correlated with the amount of usage the tool has been exposed to over the years, 224 
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we assessed use-wear intensity for all Panda nut-cracking tools. As a proxy of use 225 

wear intensity we measured maximum pit depth of hammerstones. We ran a 226 

linear regression with the depth of a use-worn pit as the response, and the 227 

distance to the nearest inselberg to a given Panda nut-cracking site as fixed effect.  228 

 229 

For all models, we checked various diagnostics of model validity and stability 230 

(Cook's distance, DFBetas, DFFits and leverage) and for the assumptions of 231 

normally distributed and homogeneous residuals by visually inspecting a qqplot 232 

and the residuals plotted against fitted values. We found no obvious deviations 233 

from these assumptions [38]. The significance of the full model as compared to 234 

the null model was established using a likelihood ratio test (LRT; R function 235 

anova with argument test set to ‘F’) (for the first and third model it was 236 

equivalent to [39]. The p-values were established using LRTs [40]. The models 237 

were implemented in R [42] using the function lm from the base package. 238 

 239 

3. Results 240 

(a) Tool weight vs distance to source 241 

Granite hammerstones had a mean weight of 8.7 ± 4.4 kg (range 2.6-17.2 kg), 242 

while distances between the nut-cracking sites and the nearest inselbergs 243 

averaged 704.5 ± 604.3 m (range 114-2265 m). Our first model revealed a 244 

significant distance-decay effect, with the weight of the hammerstones found at a 245 

nut-cracking sites decreasing with increasing distance to the nearest inselberg 246 

(LRT: Estimate=-3.726, SE=1.675,t=-2.225, p=0.043; Figure 3, Table S2). 247 

 248 
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Furthermore we did not find a difference in the effect on distance to the 249 

inselberg on the weight of the hammerstone between North and South-group 250 

(LRT: Estimate=-3.198, SE=4.101, t=-0.78, p=0.451, Table S3). Our results 251 

suggested that the distance-decay effect is therefore not influenced by potential 252 

cultural behaviour of the social group but is a universal effect of long distance 253 

tool transport.  254 

 255 

(b) Use-wear vs distance to source 256 

Use-wear intensity increased significantly with increasing distance to the closest 257 

inselberg. Linear regression revealed that the pit of a given hammerstone is 258 

deeper, the greater the distance between a site and the nearest mountain (LRT: 259 

Estimate=0.009, SE=0.003, t= 2.718, p=0.017; Figure 4, Table S4). Therefore, the 260 

depth of a pit reflected the potential distance the stone was carried to the current 261 

cracking site. We take these results with a note of caution, as pit depth could be 262 

affected by other variables for which we do not have data, such as slight 263 

variation in the stone material composition, or in the intensity and frequency the 264 

hammerstone was used at specific locations throughout its transport. 265 

Nevertheless, over the time-averaged dataset in this study, use-wear pit depth is 266 

positively correlated with distance to the nearest inselberg. 267 

 268 

(c) Stone distribution and availability  269 

To assess granite stone distribution throughout the territory, line transects 270 

covered 50.57 km of tree forest, 1.34 km over inselbergs, and 13.59 km through 271 

swamps. Because we were interested in the distribution of natural stones we 272 

excluded hammers at nut-cracking sites from this analysis. On all inselbergs that 273 
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were sampled representatively we found large stones in the size range of 274 

suitable Panda hammerstones which could function as raw material source.  In 275 

total we found 133 suitable hammerstones for Panda nut cracking (>2 kg) on the 276 

inselberg transects (average of 12.9 suitable hammerstones per 100 m line 277 

transect), 3 suitable hammerstones in the forest condition (0.006 suitable 278 

hammerstones per 100 m line transect) and no stones suitable for Panda nut 279 

cracking in the swamps. Two of the three stones located in the forest area do fit 280 

the common scheme of the distance-decay effect which could suggest that these 281 

hammerstones mark locations of deceased Panda trees. 282 

 283 

4. Discussion 284 

Wild chimpanzee nut-cracking tools from the Taï National Park show a clear 285 

distance-decay effect. Hammerstone weights at Panda nut-cracking sites 286 

decreased with increasing distance to the nearest location of suitable raw 287 

material. Suitable Panda nut-cracking raw material was located at the inselbergs, 288 

while the forest and swamps did not have large granite stones available naturally, 289 

demonstrating that such stones found at nut-cracking sites have been carried 290 

there by the chimpanzees. Our data recorded the longest known stone tool 291 

transport by wild chimpanzees, cumulatively reaching over 2 km. Additionally, 292 

tools found further from raw material sources were used and re-used more 293 

intensively, as measured by the development of pits on their surface.  294 

 295 

The oldest known chimpanzee tools to date were excavated from within the 296 

range of the Taï North group [43]. Interestingly, the combined weight of granite 297 

Panda tool fragments found at that site (Noulo) fits the distance-decay curve 298 
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derived from our observations of the modern landscape, indicating that this 299 

behavioural may have remained unchanged for at least 4,000 years (Figure 3). 300 

The continuity of this pattern over millennia suggests that stone tool transport 301 

over the long term is not influenced by cultural factors, instead it follows the 302 

pattern resulting from accumulated, unplanned, short-term transport events. 303 

 304 

Based on direct observations, chimpanzees very rarely move large 305 

hammerstones significant distances in one transportation event [5]. Panda trees 306 

often occur in clusters and are not homogeneously distributed throughout the 307 

territory. To date transport of Panda hammerstones has been observed only 308 

within these clusters [33]. Also, hammerstones do not follow a linear transport 309 

path away from the source, but the long term net effect of several sequential 310 

movements is to radiate material further and further away from the source the 311 

longer the hammerstone has been in use. We therefore suggest that chimpanzees 312 

do not intentionally plan long distance transport, and that stone tool distribution 313 

across the landscape has developed through the long-term interplay of ecological 314 

constraints, energetic requirements and foraging behaviour.  315 

 316 

Recent studies reported remarkable spatial memory [44], planning of daily 317 

foraging routes [45] and planned short distance tool transport bouts [46] in the 318 

Taï chimpanzees. In contrast to the time-averaged tool distributions that we 319 

report here, these daily activities do not adequately reflect the long-term stone 320 

deposition on a landscape scale. Distance of current stone location to source 321 

therefore cannot be used as a proxy for abilities linked to planned transport for 322 

the Taï chimpanzees. However, we also note that sophisticated planning abilities 323 
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may still be responsible for short term day-to-day activities, even where these 324 

are subsequently blurred by time.  325 

 326 

We are able use these direct observations of individual events to inform on the 327 

processes that led to the current situation. For example, two Panda 328 

hammerstones found 37 m apart, at two different nut-cracking locations 329 

illustrate how the distance-decay effect might have developed. Repeated use of a 330 

tool eventually breaks it at its weakest points, typically on the edges [9] or, as in 331 

this case, across the deepening pit in the center (Figure 2b). Both segments of the 332 

broken stone continued to be used as separate hammers, coupled with continued 333 

transportation. The result is a fragmentation of the original behavioural record, 334 

but the emergence of the archaeological pattern. 335 

 336 

Our results empirically support the results of prior agent-based models, by 337 

showing that short-term, undirected movements can produce a time-averaged 338 

distance-decay curve. This situation occurs even though the assumptions 339 

underlying these models are simplified versions of the environmental and social 340 

conditions that the chimpanzees have to negotiate. This concordance suggests 341 

that studies of hominin stone transport that emphasise complex drivers such as 342 

advanced planning abilities [12,47–49] may be over-interpreting the hominin 343 

evidence, where that evidence is indistinguishable from the model outcomes.  344 

 345 

Hominin stone tool distance-decay patterns have been explained as outcomes of 346 

the curation of raw material [26], natural topographic barriers [25], the 347 

mitigation of risk related to the need to possess sharp cutting edges [26], or 348 
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planning for future needs [20]. Stone tool deposition might have furthermore be 349 

influenced by the ranging pattern of carnivores and ecological factors such as 350 

water sources and clusters of shelter trees.  351 

The data presented in this study add the time-averaged result of multiple short–352 

distance transport bouts to the rage of possible hominins behaviours associated 353 

with this spatial patterning of lithic material, and may go some way to 354 

developing a better understand of the ‘middle range’ behaviours between raw 355 

material acquisition and artefact deposition. 356 

If archaeological circumstances provide similar evidence as seen in chimpanzee 357 

stone tool transport patterns – discreet and identifiable raw material sources 358 

within the landscape as well as decreasing mass of material and increase in 359 

reduction intensity from raw material sources- then the behavioual processes 360 

observed for wild chimpanzees should be the starting reference point for 361 

behavioural reconstructions.  Our study emphasizes that the final observed 362 

distribution of material is rarely under the control of the tool user, and should 363 

not be interpreted as such without supporting contextual evidence. 364 

 365 

We have demonstrated that landscape-wide patterning of materials applies to 366 

the Taï chimpanzees, and is identifiable using archaeological methods. For both 367 

chimpanzees and hominins, investigations can now proceed to help explain how 368 

these patterns emerge from the interplay of short- and long-term behavioural 369 

processes. 370 

 371 

 372 

 373 

Page 15 of 29

http://mc.manuscriptcentral.com/prsb

Submitted to Proceedings of the Royal Society B: For Review Only



 

 
 

16

Ethical statement 374 

All our work was conducted in compliance with appropriate animal care 375 

regulations and national laws. Data collection was non-invasive and in 376 

compliance with the requirements and guidelines of the ‘Ministère de 377 

l’enseignement supérieure et de la recherche scientifique’ and adhered to the 378 

legal requirements of the Côte d´Ivoire. We further strictly adhered to the 379 

regulations of the Deutsche Tierschutzgesetz or the ASP principles for the ethical 380 

treatment of non-human primates.  381 

 382 

Data accessibility statement 383 

The dataset supporting this article has been uploaded as part of the 384 

supplementary material (Table S1). 385 

 386 

Competing interests 387 

We have no competing interests. 388 

 389 

Authors’ contribution 390 

LVL designed the study, carried out the data collection and analysis, wrote the 391 

manuscript, TP carried out analysis and wrote the manuscript, LK carried out the 392 

analysis and wrote the manuscript, MH designed the study and wrote the 393 

manuscript, RMW designed the study and edited the paper.  394 

 395 

Page 16 of 29

http://mc.manuscriptcentral.com/prsb

Submitted to Proceedings of the Royal Society B: For Review Only



 

 
 

17

Acknowledgements 396 

We thank Lissa Ongman and Sylvain Lemoine for their contribution to the data 397 

collection and Christophe Boesch and three anonymous reviewers for helpful 398 

comments on the manuscript. We thank the Centre Suisse in Ivory Coast for 399 

logistical support on site, the ‘Ministère de l’enseignement supérieure et de la 400 

recherche scientifique’, the OIPR (‘Office Ivorien des Parcs et Réserves’) for 401 

granting us permission to conduct research in Côte d’Ivoire and the Taï National 402 

Park.  403 

 404 

Funding 405 

LVL, TP, LK, MH were funded by the ERC grant European Research Council 406 

Starting Grant no.283959 (PRIMARCH), RMW was funded by the Max Planck 407 

Society. 408 

 409 

 410 

 411 

References 412 

1. Furuichi, T., Sanz, C., Koops, K., Sakamaki, T., Ryu, H., Tokuyama, N. & Morgan, 413 
D. 2015 Why do wild bonobos not use tools like chimpanzees do? Behaviour 414 
152, 425–460. (doi:10.1163/1568539X-00003226) 415 

2. Carvalho, S., Biro, D., Cunha, E., Hockings, K., McGrew, W. C., Richmond, B. G. & 416 
Matsuzawa, T. 2012 Chimpanzee carrying behaviour and the origins of 417 
human bipedality. Curr. Biol. 22, R180–R181. 418 
(doi:10.1016/j.cub.2012.01.052) 419 

3. Boesch, C., Head, J. & Robbins, M. M. 2009 Complex tool sets for honey 420 
extraction among chimpanzees in Loango National Park, Gabon. J. Hum. Evol. 421 
56, 560–569. (doi:10.1016/j.jhevol.2009.04.001) 422 

4. Schaik, C. P. van, Fox, E. A. & Sitompul, A. F. 1996 Manufacture and use of 423 
tools in wild Sumatran orangutans. Naturwissenschaften 83, 186–188. 424 
(doi:10.1007/BF01143062) 425 

Page 17 of 29

http://mc.manuscriptcentral.com/prsb

Submitted to Proceedings of the Royal Society B: For Review Only



 

 
 

18

5. Boesch, C. & Boesch, H. 1984 Mental map in wild chimpanzees: an analysis of 426 
hammer transports for nut cracking. Primates 25, 160–170.  427 

6. Haslam, M., Pascual-Garrido, A., Malaivijitnond, S. & Gumert, M. 2016 Stone 428 
tool transport by wild Burmese long-tailed macaques (Macaca fascicularis 429 
aurea). J. Archaeol. Sci. Rep. 7, 408–413. (doi:10.1016/j.jasrep.2016.05.040) 430 

7. Visalberghi, E., Haslam, M., Spagnoletti, N. & Fragaszy, D. 2013 Use of stone 431 
hammer tools and anvils by bearded capuchin monkeys over time and space: 432 
construction of an archeological record of tool use. J. Archaeol. Sci. 40, 3222–433 
3232. (doi:10.1016/j.jas.2013.03.021) 434 

8. Fragaszy, D. M., Biro, D., Eshchar, Y., Humle, T., Izar, P., Resende, B. & 435 
Visalberghi, E. 2013 The fourth dimension of tool use: temporally enduring 436 
artefacts aid primates learning to use tools. Philos. Trans. R. Soc. B Biol. Sci. 437 
368, 20120410. (doi:10.1098/rstb.2012.0410) 438 

9. Carvalho, S., Cunha, E., Sousa, C. & Matsuzawa, T. 2008 Chaînes opératoires 439 
and resource-exploitation strategies in chimpanzee (Pan troglodytes) nut 440 
cracking. J. Hum. Evol. 55, 148–163. (doi:10.1016/j.jhevol.2008.02.005) 441 

10. Massaro, L., Massa, F., Simpson, K., Fragaszy, D. & Visalberghi, E. 2016 The 442 
strategic role of the tail in maintaining balance while carrying a load 443 
bipedally in wild capuchins (Sapajus libidinosus): a pilot study. Primates 57, 444 
231–239. (doi:10.1007/s10329-015-0507-x) 445 

11. Braun, D. R., Harris, J. W. K., Levin, N. E., McCoy, J. T., Herries, A. I. R., Bamford, 446 
M. K., Bishop, L. C., Richmond, B. G. & Kibunjia, M. 2010 Early hominin diet 447 
included diverse terrestrial and aquatic animals 1.95 Ma in East Turkana, 448 
Kenya. Proc. Natl. Acad. Sci. 107, 10002–10007. 449 
(doi:10.1073/pnas.1002181107) 450 

12. Shick, K. D. 1987 Modeling the formation of Early Stone Age artifact 451 
concentrations. J. Hum. Evol. 16, 789–807. (doi:10.1016/0047-452 
2484(87)90024-8) 453 

13. Harmand, S. et al. 2015 3.3-million-year-old stone tools from Lomekwi 3, 454 
West Turkana, Kenya. Nature 521, 310–315. (doi:10.1038/nature14464) 455 

14. Stout, D., Quade, J., Semaw, S., Rogers, M. J. & Levin, N. E. 2005 Raw material 456 
selectivity of the earliest stone toolmakers at Gona, Afar, Ethiopia. J. Hum. 457 
Evol. 48, 365–380. (doi:10.1016/j.jhevol.2004.10.006) 458 

15. Potts, R. 2012 Environmental and Behavioral Evidence Pertaining to the 459 
Evolution of Early Homo. Curr. Anthropol. 53, S299–S317. 460 
(doi:10.1086/667704) 461 

16. Plummer, T. W., Ditchfield, P. W., Bishop, L. C., Kingston, J. D., Ferraro, J. V., 462 
Braun, D. R., Hertel, F. & Potts, R. 2009 Oldest Evidence of Toolmaking 463 
Hominins in a Grassland-Dominated Ecosystem. PLOS ONE 4, e7199. 464 
(doi:10.1371/journal.pone.0007199) 465 

Page 18 of 29

http://mc.manuscriptcentral.com/prsb

Submitted to Proceedings of the Royal Society B: For Review Only



 

 
 

19

17. Goldman-Neuman, T. & Hovers, E. 2012 Raw material selectivity in Late 466 
Pliocene Oldowan sites in the Makaamitalu Basin, Hadar, Ethiopia. J. Hum. 467 
Evol. 62, 353–366. (doi:10.1016/j.jhevol.2011.05.006) 468 

18. Isaac, G. L. 1978 The Harvey Lecture Series, 1977-1978. Food Sharing and 469 
Human Evolution: Archaeological Evidence from the Plio-Pleistocene of East 470 
Africa. J. Anthropol. Res. 34, 311–325.  471 

19. Leakey, M. In press. Olduvai Gorge. Excavations in Beds I and II, 1960–1963. 472 
Cambridge: Cambridge University Press.  473 

20. Potts, R. 1994 Variables versus models of early Pleistocene hominid land use. 474 
J. Hum. Evol. 27, 7–24. (doi:10.1006/jhev.1994.1033) 475 

21. Stout, D., Semaw, S., Rogers, M. J. & Cauche, D. 2010 Technological variation in 476 
the earliest Oldowan from Gona, Afar, Ethiopia. J. Hum. Evol. 58, 474–491. 477 
(doi:10.1016/j.jhevol.2010.02.005) 478 

22. Stern, N. 1994 The implications of time-averaging for reconstructing the 479 
land-use patterns of early tool-using hominids. J. Hum. Evol. 27, 89–105. 480 
(doi:10.1006/jhev.1994.1037) 481 

23. Brantingham, P. J. 2003 A Neutral Model of Stone Raw Material Procurement. 482 
Am. Antiq. 68, 487. (doi:10.2307/3557105) 483 

24. Pop, C. M. 2015 Simulating Lithic Raw Material Variability in Archaeological 484 
Contexts: A Re-evaluation and Revision of Brantingham’s Neutral Model. J. 485 
Archaeol. Method Theory (doi:10.1007/s10816-015-9262-y) 486 

25. Blumenschine, R. J., Masao, F. T., Tactikos, J. C. & Ebert, J. I. 2008 Effects of 487 
distance from stone source on landscape-scale variation in Oldowan artifact 488 
assemblages in the Paleo-Olduvai Basin, Tanzania. J. Archaeol. Sci. 35, 76–86. 489 
(doi:10.1016/j.jas.2007.02.009) 490 

26. Braun, D. R., Plummer, T., Ditchfield, P., Ferraro, J. V., Maina, D., Bishop, L. C. & 491 
Potts, R. 2008 Oldowan behavior and raw material transport: perspectives 492 
from the Kanjera Formation. J. Archaeol. Sci. 35, 2329–2345. 493 
(doi:10.1016/j.jas.2008.03.004) 494 

27. Braun, D. R., Plummer, T., Ferraro, J. V., Ditchfield, P. & Bishop, L. C. 2009 Raw 495 
material quality and Oldowan hominin toolstone preferences: evidence from 496 
Kanjera South, Kenya. J. Archaeol. Sci. 36, 1605–1614. 497 
(doi:10.1016/j.jas.2009.03.025) 498 

28. Dibble, H. L. & Pelcin, A. 1995 The Effect of Hammer Mass and Velocity on 499 
Flake Mass. J. Archaeol. Sci. 22, 429–439. (doi:10.1006/jasc.1995.0042) 500 

29. Haslam, M., Luncz, L., Pascual-Garrido, A., Falótico, T., Malaivijitnond, S. & 501 
Gumert, M. 2016 Archaeological excavation of wild macaque stone tools. J. 502 
Hum. Evol. 96, 134–138. (doi:10.1016/j.jhevol.2016.05.002) 503 

Page 19 of 29

http://mc.manuscriptcentral.com/prsb

Submitted to Proceedings of the Royal Society B: For Review Only



 

 
 

20

30. Haslam, M., Luncz, L. V., Staff, R. A., Bradshaw, F., Ottoni, E. B. & Falótico, T. 504 
2016 Pre-Columbian monkey tools. Curr. Biol. 26, R521–R522. 505 
(doi:10.1016/j.cub.2016.05.046) 506 

31. Luncz, L. V., Wittig, R. M. & Boesch, C. 2015 Primate archaeology reveals 507 
cultural transmission in wild chimpanzees ( Pan troglodytes verus ). Philos. 508 
Trans. R. Soc. B Biol. Sci. 370, 20140348. (doi:10.1098/rstb.2014.0348) 509 

32. Proffitt, T., Luncz, L., Falótico, T., de la Torre, Ignacio, Ottoni, Eduardo & 510 
Haslam, Michael. Wild monkeys flake stone tools. Nature (in press). 511 

33. Boesch, C. & Boesch, H. 1983 Optimisation of Nut-Cracking with Natural 512 
Hammers by Wild Chimpanzees. Behaviour 83, 265–286.  513 

34. Caruana, M. V., Carvalho, S., Braun, D. R., Presnyakova, D., Haslam, M., Archer, 514 
W., Bobe, R. & Harris, J. W. K. 2014 Quantifying Traces of Tool Use: A Novel 515 
Morphometric Analysis of Damage Patterns on Percussive Tools. PLoS ONE 9, 516 
e113856. (doi:10.1371/journal.pone.0113856) 517 

35. Benito-Calvo, A., Carvalho, S., Arroyo, A., Matsuzawa, T. & de la Torre, I. 2015 518 
First GIS Analysis of Modern Stone Tools Used by Wild Chimpanzees (Pan 519 
troglodytes verus) in Bossou, Guinea, West Africa. PLoS ONE 10, e0121613. 520 
(doi:10.1371/journal.pone.0121613) 521 

36. de la Torre, I., Benito-Calvo, A., Arroyo, A., Zupancich, A. & Proffitt, T. 2013 522 
Experimental protocols for the study of battered stone anvils from Olduvai 523 
Gorge (Tanzania). J. Archaeol. Sci. 40, 313–332. 524 
(doi:10.1016/j.jas.2012.08.007) 525 

37. Tagil, S. & Jenness, J. 2008 GIS-Based Automated Landform Classification and 526 
Topographic, Landcover and Geologic Attributes of Landforms Around the 527 
Yazoren Polje, Turkey. J. Appl. Sci. 8, 910–921.  528 

38. Quinn, G. P. & Keough, M. J. 2002 Experimental Design and Data Analysis for 529 
Biologists. Cambridge University Press.  530 

39. Forstmeier, W. & Schielzeth, H. 2011 Cryptic multiple hypotheses testing in 531 
linear models: overestimated effect sizes and the winner´s curse. Behav. Ecol. 532 
Sociobiol. 65, 47–55.  533 

40. Barr, D. J. 2013 Random effects structure for testing interactions in linear 534 
mixed-effects models. Front. Psychol. 4. (doi:10.3389/fpsyg.2013.00328) 535 

41. Bolker, B. M., Brooks, M. E., Clark, C. J., Geange, S. W., Poulsen, J. R., Stevens, M. 536 
H. H. & White, J.-S. S. 2009 Generalized linear mixed models: a practical guide 537 
for ecology and evolution. Trends Ecol. Evol. 24, 127–135. 538 
(doi:16/j.tree.2008.10.008) 539 

42. R Developing Core Team 2010 R: A language and environment for statistical 540 
computing. R Foundation for Statistical Computing, Vienna, Austria.  541 

Page 20 of 29

http://mc.manuscriptcentral.com/prsb

Submitted to Proceedings of the Royal Society B: For Review Only



 

 
 

21

43. Mercader, J., Barton, H., Gillespie, J., Harris, J., Kuhn, S., Tyler, R. & Boesch, C. 542 
2007 4,300-year-old chimpanzee sites and the origins of percussive stone 543 
technology. Proc. Natl. Acad. Sci. 104, 3043.  544 

44. Normand, E. & Boesch, C. 2009 Sophisticated Euclidean maps in forest 545 
chimpanzees. Anim. Behav. 77, 1195–1201. 546 
(doi:10.1016/j.anbehav.2009.01.025) 547 

45. Janmaat, K. R. L., Polansky, L., Ban, S. D. & Boesch, C. 2014 Wild chimpanzees 548 
plan their breakfast time, type, and location. Proc. Natl. Acad. Sci. 111, 549 
16343–16348. (doi:10.1073/pnas.1407524111) 550 

46. Sirianni, G., Mundry, R. & Boesch, C. 2015 When to choose which tool: 551 
multidimensional and conditional selection of nut-cracking hammers in wild 552 
chimpanzees. Anim. Behav. 100, 152–165. 553 
(doi:10.1016/j.anbehav.2014.11.022) 554 

47. Isaac, G. 1978 The Food-sharing Behavior of Protohuman Hominids. Sci. Am. 555 
238, 90–108. (doi:10.1038/scientificamerican0478-90) 556 

48. Isaac, Glyn 1983 Bones in contention: competing explanations for the 557 
juxtaposition of Early Pleistocene artifacts and faunal remains. Anim. 558 
Archaeol. 1, 3–19.  559 

49. Potts, Richard 2011 Early Hominid Activities at Olduvai. Aldine Transaction. 560 
[cited 2016 Sep. 12].  561 

 562 

 563 

Figure captions: 564 

 565 

Figure 1. Position of inselbergs (black) and located hammerstones (grey) in the 566 

Taï National Park. The size of the grey circles (hammerstones) corresponds to 567 

the weight of the hammerstone material at a site. The two polygons represent 568 

the home range of the North- and the South-group. The X represents the location 569 

of the excavated Noulo chimpanzee site.  570 

 571 

Figure 2. (a) Assessing pit depth from Panda nut-cracking hammerstone using 572 

3D models. (1) Photograph (Sony Nex6); (2) 3D scan (NextEngine laser scanner); 573 
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(3) Topographic model of the pitted area (GIS). (b) Refit of broken hammerstone, 574 

each part was independently used as a hammer at two Panda cracking sites that 575 

were 37 meters apart. 576 

 577 

Figure 3. Weight of stone tools as a function of the distance to the nearest 578 

inselberg. Each circle represents a stone tool (black circle: this study, cross: 579 

excavated tools from [43]). The dashed line shows the fitted model and the 580 

dotted lines the 95% confidence interval. (The excavated material was not 581 

included in the model and only placed on the graph for visual aid). 582 

 583 

Figure 4. Use-wear pit depth as a function of the distance to the nearest inselberg. 584 

Each dot represents one stone tool. The dashed line shows the fitted model and 585 

the dotted lines the 95% confidence interval. 586 

 587 

Figure 5. Granite stone distribution in the chimpanzee home range in the Taï 588 

National Park. Available stone size is corrected for the area sampled in the three 589 

different ecological conditions (forest, inselberg, swamp). The horizontal line 590 

represents the minimum weight of a suitable Panda hammerstone (assessed 591 

through our sample size). 592 

 593 

 594 

 595 

 596 

 597 

 598 
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Supplementary Tables Captions: 599 

 600 

ESM 1: Supplementary Data Set 601 

Table S1: 602 

Data set used to investigate the distance-decay effect in wild chimpanzees: 603 

The hammerstones for Panda oleasa nut cracking were located in two study 604 

groups (North and South group) the Taï National Park in Côte d´Ivoire, West-605 

Africa. Here we present their weight and the distance to the nearest potential 606 

source (inselberg).  607 

 608 

 609 

ESM 2: Statistical models and model results 610 

Table S2: 611 

Investigations of the weight of granite hammerstones and its influenced by the 612 

distance to the closest inselberg (as the possible origin): 613 

The table presents the results of a linear model analyzing the effect of distance to 614 

the nearest inselberg on hammerstone weight of Panda nut cracking tools. The 615 

comparison of the full with the null model revealed: F1,14=4.949 , P=0.043. 616 

 617 

Table S3: 618 

Investigations of differences in the distance-decay effect between two social 619 

groups (North and South group): 620 

The table presents the results of a linear model analyzing the effect of distance to 621 

the nearest inselberg on hammerstone weight in regard to the social group 622 
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(North and South group) ranging in the area the hammerstone was located in. 623 

The comparison of the full with the null model revealed: F3,12=2.797 , P=0.086.  624 

‘Distance.Inselberg*GroupSouth’ refers to the impact of the two-way-interaction 625 

between distance of the nearest inselberg and social group (North or South 626 

group) on hammerstone weight.  627 

The interaction was not significant, i.e. the distance-decay effect was not 628 

influenced by the social group (F1,12=0.608, P=0.451).  629 

 630 

Investigations of the use-wear intensity of hammerstones and its distance to the 631 

source: 632 

The table presents the results of a linear model analyzing the effect of pit depth 633 

of Panda hammerstones on distance to the nearest inselberg. The comparison of 634 

the full with the null model revealed: F1,14=7.390 , P=0.017. 635 

 636 
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