Distance-decay effect in stone tool transport by wild chimpanzees Lydia V. Luncz¹, Tomos Proffitt¹, Lars Kulik², Michael Haslam¹, Roman M. Wittig^{2,4} ¹Primate Archaeology Research Group, School of Archaeology, University of Oxford, Oxford, UK ²Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany ³Institute of Biology, University of Leipzig, Leipzig, Germany ⁴Taï Chimpanzee Project, Centre Suisse de Recherches Scientifiques, Abidjan, Côte d'Ivoire Corresponding author: Lydia.Luncz@rlaha.ox.ac.uk

26 Abstract

27 Stone tool transport leaves long lasting behavioural evidence in the landscape. 28 However, it remains unknown how large scale patterns of stone distribution 29 emerge through undirected, short term transport behaviors. One of the longest 30 studied groups of stone tool using primates are the chimpanzees of the Taï 31 National Park in Ivory Coast, West-Africa. Using hammerstones left behind at 32 chimpanzee Panda nut-cracking sites, we tested for a distance-decay effect, in 33 which the weight of material decreases with increasing distance from raw 34 material sources. We found that this effect exists over a range of more than 2 km, 35 despite the fact that observed, short term tool transport does not appear to 36 involve deliberate movements away from raw material sources. Tools from the 37 millennia-old Noulo site in the Taï forest fit the same pattern. The fact that 38 chimpanzees show both complex short term behavioural planning, and yet 39 produce a landscape-wide pattern over the long term, raises the question of 40 whether similar processes operate within other stone tool using primates, 41 including hominins. Where hominin landscapes have discrete material sources, a 42 distance-decay effect, and increasing use of stone materials away from sources, 43 the Taï chimpanzees provide a relevant analogy for understanding the formation 44 of those landscapes. 45 46 47 Keywords: chimpanzees, stone tools, transport, distance-decay effect, primate 48 archaeology

- 49
- 50

51 Background

52 Primates regularly move materials from one place to another, mainly for display 53 [1], foraging [2] and tool use [3,4]. Because the majority of materials involved are organic, these behaviours are often invisible in the absence of direct observation. 54 55 Stone tools, as durable markers of past activity, offer an opportunity to record 56 the long-term effects of primate behaviour on the landscape. Among the stone-57 tool-using primates - West African chimpanzees (*Pan troglodytes verus*) [5], 58 Burmese long-tailed macaques (*Macaca fascicularis aurea*) [6], and bearded 59 capuchin monkeys (*Sapajus libidinosus*) [7] - stone tool transport is receiving 60 increasing attention for its role in niche construction [8], site formation [9] and 61 energetic costs [10]. 62

63 Movement of stone materials has also been instrumental in reconstructing the 64 ranging patterns of early members of the human lineage, the hominins [11,12]. 65 Stone transport especially helps with identifying early hominin tool use, when 66 materials are carried from their original context to a site [13]. A number of 67 studies have shown that Early Pleistocene hominins were selectively 68 transporting stone materials that were suitable for the tasks at hand [11,14–19]. 69 Along with the requirement to bring together suitable stone materials and target 70 prey in one place [20], tool transport has been suggested to attest to planning or 71 other cognitive abilities in early hominins [21]. 72 73 However, time averaging of the archaeological record – in which multiple

74 activities occurring in the same place at different times are indistinguishable –

obscures our ability to identify the individual behavioural sequences included

76	[22]. One technique used to overcome this limitation and elucidate the stepwise
77	behavioural patterns behind the archaeological record has been to use agent-
78	based modeling. These models examine how a composite record can result from
79	a series of unplanned individual movements [23,24]. Their findings suggest that
80	such tool transport patterns lead to the emergence of a distance-decay effect as a
81	default when the driving factors behind movements are undirected.
82	
83	The distance-decay [25] effect is defined as a negative correlation between the
84	weight of stone materials at a site, and the site's distance from the raw material
85	source, and it has been identified from various Early Stone Age hominin
86	archaeological sites [25–28]. This effect has been postulated to occur for two
87	main reasons: (i) heavier stones are energetically more expensive to carry longer
88	distances, and (ii) stones further from sources have typically been used for
89	longer and are more completely broken down (either deliberately flaked or
90	accidentally fractured) as a result [25].
91	
92	Despite the insights that time-averaged archaeological sites and computational
93	models can provide, they both lack essential information. For the models, the
94	missing information relates to real world behavioural complexity, and for the
95	hominin sites it is an understanding of the individual behavioural steps that have
96	been compressed to form the archaeological record. In this situation, primate
97	archaeology [29–32] gives us a unique opportunity to record those aspects of the
98	data that are missing from other approaches. Here, we present the results of the
99	first study of wild chimpanzee long distance stone tool transport, and its relation

- 100 to stone source distributions, on a landscape scale to assess whether or not non-
- 101 human primates show a distance-decay effect.
- 102

103 At Taï National Park, Ivory Coast, chimpanzees use stone hammers and mainly 104 wooden anvils to crack open different nut species. Most commonly processed are 105 *Coula edulis* nuts; these nuts are rather easy to crack and allow chimpanzees to 106 choose between stone and wooden tools. Another commonly cracked nut species 107 is Panda oleosa. In contrast to Coula this nut is very hard, requiring greater force, 108 and can only be cracked with large stone tools that typically weigh several 109 kilograms [5]. As large stones are rare in this tropical rain forest, chimpanzees 110 often leave a suitable hammerstone that they have brought to a tree which is 111 currently producing nuts, frequently re-using this tool for as long as the tree 112 bears fruit. Over time this leads to the development of intense use-damage to the 113 hammerstone, in the form of central pits and stone fracture [33]. 114 115 To test for the distance-decay effect in wild chimpanzee stone transport at Taï,

116 we concentrated on granite tools. Taï National Park is located on a Precambrian

117 granite peneplain, with several isolated granite inselbergs formed from plutonic

118 intrusions, which made this material the most amenable to studying chimpanzee

stone redistribution. Granite is also a preferred material for chimpanzee when

- 120 cracking of *Panda* nuts. We therefore compared stone availability at the
- 121 inselbergs with that of other environments in the home range of the Taï
- 122 chimpanzees, predicting that the availability of large granite stones suitable for
- 123 cracking the hard *Panda* nuts would be highest at the inselbergs.
- 124

125	We then mapped the location, recorded size and raw material of hammerstones
126	used at <i>Panda</i> nut-cracking sites throughout the chimpanzee home range. We
127	additionally recorded the use-wear on each hammerstone, as a means of
128	assessing the intensity of previous use. Taking use-damage as a proxy for the
129	length of time that a stone had been used allowed us to determine whether (i)
130	small hammerstones were being transported further before use, or (ii) stones
131	became smaller over time through intense re-use, and traveled further due to a
132	longer latency from the first movement away from the original source.
133	
134	Our data are more closely aligned with previous archaeological work than fine-
135	scale ethological observations, in that we collected information on the
136	palimpsest of stone distribution that has been built up by the chimpanzees over
137	time. However, we are additionally able to integrate direct observations of
138	chimpanzees into our analysis to shed light onto the development of stone tool
139	distribution pattern throughout the landscape.
140	
141	2. Methods
142	The study was conducted in the home range of two chimpanzee communities in
143	the Taï National Park. The two study groups ranging in this area were fully
144	habituated to human observers, and focal follows have been determining their
145	home range since 1985 (North-group) and 2005 (South-group).
146	
147	(a) Field data collection
148	During February and March 2015 we located 25 active Panda nut-cracking sites
149	(7 in the North-group and 18 in the South-group territory) by revisiting sites

150	used by the chimpanzees in the prior 18 months (Figure 1). For each
151	hammerstone we recorded its GPS position and weight. We consistently found
152	only one hammerstone per nut cracking site. To determine use-wear of these
153	hammerstones we produced a 3D model of each hammerstone using a
154	NextEngine laser scanner. If stones found at one site were clearly broken into
155	several parts, we combined all parts belonging to a single stone in our
156	calculations (Table S1).
157	
158	On the basis of GPS reference points taken at landmarks within the chimpanzee
159	home range, we digitized a map of the Taï National Park (originally created by
160	Organisation mondiale de la Santé) that showed the locations of inselbergs.
161	Inselbergs are defined as elevated granite outcrops, marked on the map as
162	polygons. We accounted for the possibility that outcrops without elevation are
163	missing from the map (see below). On average the inselbergs are rarely larger
164	than 100 m radius. For each inselberg we determined one coordinate using the
165	center point of the maximum length and width of the inselberg (Figure 1). For
166	each hammerstone we calculated the distance to all granite inselbergs (n=55)
167	located in the two chimpanzee home ranges. In our analysis we excluded
168	quartzite (South-group N=4) and laterite (North-group N=1) Panda
169	hammerstones, because they cannot be allocated to a specific location of origin
170	and therefore we were not able to estimate transport distances.
171	
172	To assess the availability of large granite stones, in 2011 we systematically
173	placed 131 line transects of two meter widths through the North-group and
174	South-group ranges. We divided the environmental conditions encountered on

175	transects into three conditions: forest, inselberg and swamp. Each transect was
176	500 m in length and ran north-to-south, separated from one another by 500 m
177	(total transect length= 65.5 km). We counted and measured each stone larger
178	than 3 cm within a maximum range of 1 m to either side of the transect, and
179	classified them into one of 10 weight categories (1:0.1-0.25 kg; 2:>0.25-0.5 kg;
180	3:>0.5-0.75 kg; 4:>0.75-1 kg; 5:>1-2 kg; 6:>2-4 kg; 7:>4-6 kg; 8:>6-8 kg; 9:>8-
181	10 kg; 10:>10 kg). We only included granite material in the analysis.
182	
183	(b) Use-wear intensity
184	Our approach to the use-wear assessment was similar to previous studies that
185	have pioneered the use of GIS analysis of both archaeological and primate
186	percussive tools, focusing on hammerstones [34] and stone anvils [35,36]
187	(Figure 2a). After visually assessing pits on 3D models of all hammerstones, we
188	exported the models as STL files to Meshlab at a resolution of 0.127 mm, where
189	we calculated total model volume and isolated and cropped the pitted surfaces.
190	Cropped 3D surfaces were then oriented so the pitted surface was horizontal
191	using Nett Fab $^{\mathrm{M}}$ and exported as xyz files. Each xyz file was imported into
192	ArcGIS 10.2 and converted to TIN (triangular irregular network) models in
193	order to subsequently convert the 3D surface to a raster DEM surface.
194	
195	The total extent of the pit was derived using a topographic position index (TPI)
196	calculated with the land facet analysis plugin for ArcGIS® [37], which calculated
197	the difference in the elevation of each cell against the average elevation of the
198	surrounding cells in order to identify relative high and low regions of the 3D

199 surface. We used a circular scale of 25mm to determine the surrounding

200	neighbourhood of cells. We applied contour lines using the TPI raster layer in
201	order to consistently delimit the extent of the pitted region of the hammer, and
202	the delimiting contour line was used as a mask in order to extract a DEM raster
203	of the pit. We calculated the total depth of the pit using the DEM raster layer
204	from a bounding box layer. Using this methodology, we were able to record the
205	maximum depth of the pit(s) on each hammerstone.
206	
207	<u>(c) Statistical analysis (models):</u>
208	To investigate whether the weight of granite hammerstones at a given nut-
209	cracking site was influenced by the distance between the site and the closest
210	inselberg (as the possible origin), we used Linear Models (LM) [38]. Overall we
211	expected that chimpanzees select a stone source close to a cracking site. For each
212	hammerstone we determined the distance to the nearest inselberg and included
213	that as fixed effect in our first model.
214	
215	To complement archaeological analysis we added direct observations to the data
216	set and controlled for the different group that ranged in the designated
217	territories. To evaluate potential inter-group differences, we investigated
218	whether the distances between the inselbergs and hammerstone locations
219	differed between the North- and South-group. We applied the same model as
220	described above with a two-way-interaction between the distance to the nearest
221	inselberg and social group as fixed effect.
222	
223	To analyse whether the distance of the hammerstone to the nearest inselberg
224	correlated with the amount of usage the tool has been exposed to over the years,

225	we assessed use-wear intensity for all Panda nut-cracking tools. As a proxy of use
226	wear intensity we measured maximum pit depth of hammerstones. We ran a
227	linear regression with the depth of a use-worn pit as the response, and the
228	distance to the nearest inselberg to a given <i>Panda</i> nut-cracking site as fixed effect.
229	
230	For all models, we checked various diagnostics of model validity and stability
231	(Cook's distance, DFBetas, DFFits and leverage) and for the assumptions of
232	normally distributed and homogeneous residuals by visually inspecting a qqplot
233	and the residuals plotted against fitted values. We found no obvious deviations
234	from these assumptions [38]. The significance of the full model as compared to
235	the null model was established using a likelihood ratio test (LRT; R function
236	anova with argument test set to 'F') (for the first and third model it was
237	equivalent to [39]. The p-values were established using LRTs [40]. The models
238	were implemented in R [42] using the function lm from the base package.
239	
240	3. Results
241	(a) Tool weight vs distance to source
242	Granite hammerstones had a mean weight of 8.7 ± 4.4 kg (range 2.6-17.2 kg),
243	while distances between the nut-cracking sites and the nearest inselbergs
244	averaged 704.5 ± 604.3 m (range 114-2265 m). Our first model revealed a
245	significant distance-decay effect, with the weight of the hammerstones found at a
246	nut-cracking sites decreasing with increasing distance to the nearest inselberg
247	(LRT: Estimate=-3.726, SE=1.675,t=-2.225, p=0.043; Figure 3, Table S2).

248

249	Furthermore we did not find a difference in the effect on distance to the
250	inselberg on the weight of the hammerstone between North and South-group
251	(LRT: Estimate=-3.198, SE=4.101, t=-0.78, p=0.451, Table S3). Our results
252	suggested that the distance-decay effect is therefore not influenced by potential
253	cultural behaviour of the social group but is a universal effect of long distance
254	tool transport.
255	
256	(b) Use-wear vs distance to source
257	Use-wear intensity increased significantly with increasing distance to the closest
258	inselberg. Linear regression revealed that the pit of a given hammerstone is
259	deeper, the greater the distance between a site and the nearest mountain (LRT:
260	Estimate=0.009, SE=0.003, t= 2.718, p=0.017; Figure 4, Table S4). Therefore, the
261	depth of a pit reflected the potential distance the stone was carried to the current
262	cracking site. We take these results with a note of caution, as pit depth could be
263	affected by other variables for which we do not have data, such as slight
264	variation in the stone material composition, or in the intensity and frequency the
265	hammerstone was used at specific locations throughout its transport.
266	Nevertheless, over the time-averaged dataset in this study, use-wear pit depth is
267	positively correlated with distance to the nearest inselberg.
268	
269	(c) Stone distribution and availability
270	To assess granite stone distribution throughout the territory, line transects
271	covered 50.57 km of tree forest, 1.34 km over inselbergs, and 13.59 km through
272	swamps. Because we were interested in the distribution of natural stones we
273	excluded hammers at nut-cracking sites from this analysis. On all inselbergs that

274	were sampled representatively we found large stones in the size range of
275	suitable <i>Panda</i> hammerstones which could function as raw material source. In
276	total we found 133 suitable hammerstones for <i>Panda</i> nut cracking (>2 kg) on the
277	inselberg transects (average of 12.9 suitable hammerstones per 100 m line
278	transect), 3 suitable hammerstones in the forest condition (0.006 suitable
279	hammerstones per 100 m line transect) and no stones suitable for Panda nut
280	cracking in the swamps. Two of the three stones located in the forest area do fit
281	the common scheme of the distance-decay effect which could suggest that these
282	hammerstones mark locations of deceased Panda trees.
283	
284	4. Discussion
285	Wild chimpanzee nut-cracking tools from the Taï National Park show a clear
286	distance-decay effect. Hammerstone weights at Panda nut-cracking sites
287	decreased with increasing distance to the nearest location of suitable raw
288	material. Suitable Panda nut-cracking raw material was located at the inselbergs,
289	while the forest and swamps did not have large granite stones available naturally,
290	demonstrating that such stones found at nut-cracking sites have been carried
291	there by the chimpanzees. Our data recorded the longest known stone tool
292	transport by wild chimpanzees, cumulatively reaching over 2 km. Additionally,
293	tools found further from raw material sources were used and re-used more
294	intensively, as measured by the development of pits on their surface.
295	
296	The oldest known chimpanzee tools to date were excavated from within the
297	range of the Taï North group [43]. Interestingly, the combined weight of granite
298	Panda tool fragments found at that site (Noulo) fits the distance-decay curve

Submitted to Proceedings of the Royal Society B: For Review Only

13

299	derived from our observations of the modern landscape, indicating that this
300	behavioural may have remained unchanged for at least 4,000 years (Figure 3).
301	The continuity of this pattern over millennia suggests that stone tool transport
302	over the long term is not influenced by cultural factors, instead it follows the
303	pattern resulting from accumulated, unplanned, short-term transport events.
304	
305	Based on direct observations, chimpanzees very rarely move large
306	hammerstones significant distances in one transportation event [5]. Panda trees
307	often occur in clusters and are not homogeneously distributed throughout the
308	territory. To date transport of <i>Panda</i> hammerstones has been observed only
309	within these clusters [33]. Also, hammerstones do not follow a linear transport
310	path away from the source, but the long term net effect of several sequential
311	movements is to radiate material further and further away from the source the
312	longer the hammerstone has been in use. We therefore suggest that chimpanzees
313	do not intentionally plan long distance transport, and that stone tool distribution
314	across the landscape has developed through the long-term interplay of ecological
315	constraints, energetic requirements and foraging behaviour.
316	
317	Recent studies reported remarkable spatial memory [44], planning of daily
318	foraging routes [45] and planned short distance tool transport bouts [46] in the
319	Taï chimpanzees. In contrast to the time-averaged tool distributions that we
320	report here, these daily activities do not adequately reflect the long-term stone
321	deposition on a landscape scale. Distance of current stone location to source
322	therefore cannot be used as a proxy for abilities linked to planned transport for
323	the Taï chimpanzees. However, we also note that sophisticated planning abilities

may still be responsible for short term day-to-day activities, even where theseare subsequently blurred by time.

326

327 We are able use these direct observations of individual events to inform on the

328 processes that led to the current situation. For example, two Panda

329 hammerstones found 37 m apart, at two different nut-cracking locations

330 illustrate how the distance-decay effect might have developed. Repeated use of a

tool eventually breaks it at its weakest points, typically on the edges [9] or, as in

this case, across the deepening pit in the center (Figure 2b). Both segments of the

333 broken stone continued to be used as separate hammers, coupled with continued

transportation. The result is a fragmentation of the original behavioural record,

but the emergence of the archaeological pattern.

336

337 Our results empirically support the results of prior agent-based models, by 338 showing that short-term, undirected movements can produce a time-averaged 339 distance-decay curve. This situation occurs even though the assumptions 340 underlying these models are simplified versions of the environmental and social 341 conditions that the chimpanzees have to negotiate. This concordance suggests 342 that studies of hominin stone transport that emphasise complex drivers such as 343 advanced planning abilities [12,47–49] may be over-interpreting the hominin 344 evidence, where that evidence is indistinguishable from the model outcomes. 345 346 Hominin stone tool distance-decay patterns have been explained as outcomes of 347 the curation of raw material [26], natural topographic barriers [25], the 348 mitigation of risk related to the need to possess sharp cutting edges [26], or

Submitted to Proceedings of the Royal Society B: For Review Only

349	planning for future needs [20]. Stone tool deposition might have furthermore be
350	influenced by the ranging pattern of carnivores and ecological factors such as
351	water sources and clusters of shelter trees.
352	The data presented in this study add the time-averaged result of multiple short-
353	distance transport bouts to the rage of possible hominins behaviours associated
354	with this spatial patterning of lithic material, and may go some way to
355	developing a better understand of the 'middle range' behaviours between raw
356	material acquisition and artefact deposition.
357	If archaeological circumstances provide similar evidence as seen in chimpanzee
358	stone tool transport patterns – discreet and identifiable raw material sources
359	within the landscape as well as decreasing mass of material and increase in
360	reduction intensity from raw material sources- then the behavioual processes
361	observed for wild chimpanzees should be the starting reference point for
362	behavioural reconstructions. Our study emphasizes that the final observed
363	distribution of material is rarely under the control of the tool user, and should
364	not be interpreted as such without supporting contextual evidence.
365	
366	We have demonstrated that landscape-wide patterning of materials applies to
367	the Taï chimpanzees, and is identifiable using archaeological methods. For both
368	chimpanzees and hominins, investigations can now proceed to help explain how
369	these patterns emerge from the interplay of short- and long-term behavioural
370	processes.
371	
372	
373	

374 **Ethical statement**

- 375 All our work was conducted in compliance with appropriate animal care
- 376 regulations and national laws. Data collection was non-invasive and in
- 377 compliance with the requirements and guidelines of the 'Ministère de
- 378 l'enseignement supérieure et de la recherche scientifique' and adhered to the
- 379 legal requirements of the Côte d'Ivoire. We further strictly adhered to the
- 380 regulations of the Deutsche Tierschutzgesetz or the ASP principles for the ethical
- 381 treatment of non-human primates.

382

383 Data accessibility statement

- 384 The dataset supporting this article has been uploaded as part of the
- 385 supplementary material (Table S1).
- 386

387 **Competing interests**

388 We have no competing interests.

389

390 Authors' contribution

- 391 LVL designed the study, carried out the data collection and analysis, wrote the
- 392 manuscript, TP carried out analysis and wrote the manuscript, LK carried out the
- analysis and wrote the manuscript, MH designed the study and wrote the
- 394 manuscript, RMW designed the study and edited the paper.

396 Acknowledgements

397	We thank Lissa Ongman and Sylvain Lemoine for their contribution to the data	
398	collection and Christophe Boesch and three anonymous reviewers for helpful	
399	comments on the manuscript. We thank the Centre Suisse in Ivory Coast for	
400	logistical support on site, the 'Ministère de l'enseignement supérieure et de la	
401	recherche scientifique', the OIPR ('Office Ivorien des Parcs et Réserves') for	
402	granting us permission to conduct research in Côte d'Ivoire and the Taï National	
403	Park.	
404		
405	Funding	
406	LVL, TP, LK, MH were funded by the ERC grant European Research Council	
407	Starting Grant no.283959 (PRIMARCH), RMW was funded by the Max Planck	
408	Society.	
409		
410		
411		
412	References	
413 414 415	 Furuichi, T., Sanz, C., Koops, K., Sakamaki, T., Ryu, H., Tokuyama, N. & Morgan, D. 2015 Why do wild bonobos not use tools like chimpanzees do? <i>Behaviour</i> 152, 425–460. (doi:10.1163/1568539X-00003226) 	
416 417 418 419	 Carvalho, S., Biro, D., Cunha, E., Hockings, K., McGrew, W. C., Richmond, B. G. & Matsuzawa, T. 2012 Chimpanzee carrying behaviour and the origins of human bipedality. <i>Curr. Biol.</i> 22, R180–R181. (doi:10.1016/j.cub.2012.01.052) 	
420 421 422	 Boesch, C., Head, J. & Robbins, M. M. 2009 Complex tool sets for honey extraction among chimpanzees in Loango National Park, Gabon. <i>J. Hum. Evol.</i> 56, 560–569. (doi:10.1016/j.jhevol.2009.04.001) 	
423 424 425	 Schaik, C. P. van, Fox, E. A. & Sitompul, A. F. 1996 Manufacture and use of tools in wild Sumatran orangutans. <i>Naturwissenschaften</i> 83, 186–188. (doi:10.1007/BF01143062) 	

426 427	5.	Boesch, C. & Boesch, H. 1984 Mental map in wild chimpanzees: an analysis of hammer transports for nut cracking. <i>Primates</i> 25 , 160–170.
428 429 430	6.	Haslam, M., Pascual-Garrido, A., Malaivijitnond, S. & Gumert, M. 2016 Stone tool transport by wild Burmese long-tailed macaques (Macaca fascicularis aurea). <i>J. Archaeol. Sci. Rep.</i> 7 , 408–413. (doi:10.1016/j.jasrep.2016.05.040)
431 432 433 434	7.	Visalberghi, E., Haslam, M., Spagnoletti, N. & Fragaszy, D. 2013 Use of stone hammer tools and anvils by bearded capuchin monkeys over time and space: construction of an archeological record of tool use. <i>J. Archaeol. Sci.</i> 40 , 3222–3232. (doi:10.1016/j.jas.2013.03.021)
435 436 437 438	8.	Fragaszy, D. M., Biro, D., Eshchar, Y., Humle, T., Izar, P., Resende, B. & Visalberghi, E. 2013 The fourth dimension of tool use: temporally enduring artefacts aid primates learning to use tools. <i>Philos. Trans. R. Soc. B Biol. Sci.</i> 368 , 20120410. (doi:10.1098/rstb.2012.0410)
439 440 441	9.	Carvalho, S., Cunha, E., Sousa, C. & Matsuzawa, T. 2008 Chaînes opératoires and resource-exploitation strategies in chimpanzee (Pan troglodytes) nut cracking. <i>J. Hum. Evol.</i> 55 , 148–163. (doi:10.1016/j.jhevol.2008.02.005)
442 443 444 445	10.	Massaro, L., Massa, F., Simpson, K., Fragaszy, D. & Visalberghi, E. 2016 The strategic role of the tail in maintaining balance while carrying a load bipedally in wild capuchins (Sapajus libidinosus): a pilot study. <i>Primates</i> 57 , 231–239. (doi:10.1007/s10329-015-0507-x)
446 447 448 449 450	11.	Braun, D. R., Harris, J. W. K., Levin, N. E., McCoy, J. T., Herries, A. I. R., Bamford, M. K., Bishop, L. C., Richmond, B. G. & Kibunjia, M. 2010 Early hominin diet included diverse terrestrial and aquatic animals 1.95 Ma in East Turkana, Kenya. <i>Proc. Natl. Acad. Sci.</i> 107 , 10002–10007. (doi:10.1073/pnas.1002181107)
451 452 453	12.	Shick, K. D. 1987 Modeling the formation of Early Stone Age artifact concentrations. <i>J. Hum. Evol.</i> 16 , 789–807. (doi:10.1016/0047-2484(87)90024-8)
454 455	13.	Harmand, S. et al. 2015 3.3-million-year-old stone tools from Lomekwi 3, West Turkana, Kenya. <i>Nature</i> 521 , 310–315. (doi:10.1038/nature14464)
456 457 458	14.	Stout, D., Quade, J., Semaw, S., Rogers, M. J. & Levin, N. E. 2005 Raw material selectivity of the earliest stone toolmakers at Gona, Afar, Ethiopia. <i>J. Hum. Evol.</i> 48 , 365–380. (doi:10.1016/j.jhevol.2004.10.006)
459 460 461	15.	Potts, R. 2012 Environmental and Behavioral Evidence Pertaining to the Evolution of Early <i>Homo. Curr. Anthropol.</i> 53 , S299–S317. (doi:10.1086/667704)
462 463 464 465	16.	Plummer, T. W., Ditchfield, P. W., Bishop, L. C., Kingston, J. D., Ferraro, J. V., Braun, D. R., Hertel, F. & Potts, R. 2009 Oldest Evidence of Toolmaking Hominins in a Grassland-Dominated Ecosystem. <i>PLOS ONE</i> 4 , e7199. (doi:10.1371/journal.pone.0007199)

466	17. Goldman-Neuman, T. & Hovers, E. 2012 Raw material selectivity in Late
467	Pliocene Oldowan sites in the Makaamitalu Basin, Hadar, Ethiopia. <i>J. Hum.</i>
468	<i>Evol.</i> 62 , 353–366. (doi:10.1016/j.jhevol.2011.05.006)
469 470 471	18. Isaac, G. L. 1978 The Harvey Lecture Series, 1977-1978. Food Sharing and Human Evolution: Archaeological Evidence from the Plio-Pleistocene of East Africa. <i>J. Anthropol. Res.</i> 34 , 311–325.
472	19. Leakey, M. In press. <i>Olduvai Gorge. Excavations in Beds I and II, 1960–1963</i> .
473	Cambridge: Cambridge University Press.
474	 Potts, R. 1994 Variables versus models of early Pleistocene hominid land use.
475	J. Hum. Evol. 27, 7–24. (doi:10.1006/jhev.1994.1033)
476	 Stout, D., Semaw, S., Rogers, M. J. & Cauche, D. 2010 Technological variation in
477	the earliest Oldowan from Gona, Afar, Ethiopia. <i>J. Hum. Evol.</i> 58, 474–491.
478	(doi:10.1016/j.jhevol.2010.02.005)
479	 Stern, N. 1994 The implications of time-averaging for reconstructing the
480	land-use patterns of early tool-using hominids. <i>J. Hum. Evol.</i> 27, 89–105.
481	(doi:10.1006/jhev.1994.1037)
482	23. Brantingham, P. J. 2003 A Neutral Model of Stone Raw Material Procurement.
483	<i>Am. Antiq.</i> 68 , 487. (doi:10.2307/3557105)
484	24. Pop, C. M. 2015 Simulating Lithic Raw Material Variability in Archaeological
485	Contexts: A Re-evaluation and Revision of Brantingham's Neutral Model. <i>J.</i>
486	<i>Archaeol. Method Theory</i> (doi:10.1007/s10816-015-9262-y)
487 488 489 490	25. Blumenschine, R. J., Masao, F. T., Tactikos, J. C. & Ebert, J. I. 2008 Effects of distance from stone source on landscape-scale variation in Oldowan artifact assemblages in the Paleo-Olduvai Basin, Tanzania. <i>J. Archaeol. Sci.</i> 35 , 76–86. (doi:10.1016/j.jas.2007.02.009)
491 492 493 494	26. Braun, D. R., Plummer, T., Ditchfield, P., Ferraro, J. V., Maina, D., Bishop, L. C. & Potts, R. 2008 Oldowan behavior and raw material transport: perspectives from the Kanjera Formation. <i>J. Archaeol. Sci.</i> 35 , 2329–2345. (doi:10.1016/j.jas.2008.03.004)
495	 Braun, D. R., Plummer, T., Ferraro, J. V., Ditchfield, P. & Bishop, L. C. 2009 Raw
496	material quality and Oldowan hominin toolstone preferences: evidence from
497	Kanjera South, Kenya. <i>J. Archaeol. Sci.</i> 36, 1605–1614.
498	(doi:10.1016/j.jas.2009.03.025)
499	 Dibble, H. L. & Pelcin, A. 1995 The Effect of Hammer Mass and Velocity on
500	Flake Mass. J. Archaeol. Sci. 22, 429–439. (doi:10.1006/jasc.1995.0042)
501 502 503	29. Haslam, M., Luncz, L., Pascual-Garrido, A., Falótico, T., Malaivijitnond, S. & Gumert, M. 2016 Archaeological excavation of wild macaque stone tools. <i>J. Hum. Evol.</i> 96 , 134–138. (doi:10.1016/j.jhevol.2016.05.002)

504 505 506	 Haslam, M., Luncz, L. V., Staff, R. A., Bradshaw, F., Ottoni, E. B. & Falótico, T. 2016 Pre-Columbian monkey tools. <i>Curr. Biol.</i> 26, R521–R522. (doi:10.1016/j.cub.2016.05.046) 	
507 508 509	 Luncz, L. V., Wittig, R. M. & Boesch, C. 2015 Primate archaeology reveals cultural transmission in wild chimpanzees (<i>Pan troglodytes verus</i>). <i>Philos.</i> <i>Trans. R. Soc. B Biol. Sci.</i> 370, 20140348. (doi:10.1098/rstb.2014.0348) 	
510 511	32. Proffitt, T., Luncz, L., Falótico, T., de la Torre, Ignacio, Ottoni, Eduardo & Haslam, Michael. Wild monkeys flake stone tools. <i>Nature</i> (in press).	
512 513	 Boesch, C. & Boesch, H. 1983 Optimisation of Nut-Cracking with Natural Hammers by Wild Chimpanzees. <i>Behaviour</i> 83, 265–286. 	
514 515 516 517	 Caruana, M. V., Carvalho, S., Braun, D. R., Presnyakova, D., Haslam, M., Archer, W., Bobe, R. & Harris, J. W. K. 2014 Quantifying Traces of Tool Use: A Novel Morphometric Analysis of Damage Patterns on Percussive Tools. <i>PLoS ONE</i> 9, e113856. (doi:10.1371/journal.pone.0113856) 	
518 519 520 521	35. Benito-Calvo, A., Carvalho, S., Arroyo, A., Matsuzawa, T. & de la Torre, I. 2015 First GIS Analysis of Modern Stone Tools Used by Wild Chimpanzees (Pan troglodytes verus) in Bossou, Guinea, West Africa. <i>PLoS ONE</i> 10 , e0121613. (doi:10.1371/journal.pone.0121613)	
522 523 524 525	 de la Torre, I., Benito-Calvo, A., Arroyo, A., Zupancich, A. & Proffitt, T. 2013 Experimental protocols for the study of battered stone anvils from Olduvai Gorge (Tanzania). <i>J. Archaeol. Sci.</i> 40, 313–332. (doi:10.1016/j.jas.2012.08.007) 	
526 527 528	 Tagil, S. & Jenness, J. 2008 GIS-Based Automated Landform Classification and Topographic, Landcover and Geologic Attributes of Landforms Around the Yazoren Polje, Turkey. J. Appl. Sci. 8, 910–921. 	
529 530	38. Quinn, G. P. & Keough, M. J. 2002 <i>Experimental Design and Data Analysis for Biologists</i> . Cambridge University Press.	
531 532 533	39. Forstmeier, W. & Schielzeth, H. 2011 Cryptic multiple hypotheses testing in linear models: overestimated effect sizes and the winner's curse. <i>Behav. Ecol. Sociobiol.</i> 65 , 47–55.	
534 535	40. Barr, D. J. 2013 Random effects structure for testing interactions in linear mixed-effects models. <i>Front. Psychol.</i> 4 . (doi:10.3389/fpsyg.2013.00328)	
536 537 538 539	 Bolker, B. M., Brooks, M. E., Clark, C. J., Geange, S. W., Poulsen, J. R., Stevens, M. H. H. & White, JS. S. 2009 Generalized linear mixed models: a practical guide for ecology and evolution. <i>Trends Ecol. Evol.</i> 24, 127–135. (doi:16/j.tree.2008.10.008) 	
540	42. R Developing Core Team 2010 R: A language and environment for statistical	

541 *computing*. R Foundation for Statistical Computing, Vienna, Austria.

542 543 544	 Mercader, J., Barton, H., Gillespie, J., Harris, J., Kuhn, S., Tyler, R. & Boesch, C. 2007 4,300-year-old chimpanzee sites and the origins of percussive stone technology. <i>Proc. Natl. Acad. Sci.</i> 104, 3043.
545 546 547	 Normand, E. & Boesch, C. 2009 Sophisticated Euclidean maps in forest chimpanzees. <i>Anim. Behav.</i> 77, 1195–1201. (doi:10.1016/j.anbehav.2009.01.025)
548 549 550	45. Janmaat, K. R. L., Polansky, L., Ban, S. D. & Boesch, C. 2014 Wild chimpanzees plan their breakfast time, type, and location. <i>Proc. Natl. Acad. Sci.</i> 111 , 16343–16348. (doi:10.1073/pnas.1407524111)
551 552 553 554	 Sirianni, G., Mundry, R. & Boesch, C. 2015 When to choose which tool: multidimensional and conditional selection of nut-cracking hammers in wild chimpanzees. <i>Anim. Behav.</i> 100, 152–165. (doi:10.1016/j.anbehav.2014.11.022)
555 556	 Isaac, G. 1978 The Food-sharing Behavior of Protohuman Hominids. <i>Sci. Am.</i> 238, 90–108. (doi:10.1038/scientificamerican0478-90)
557 558 559	 Isaac, Glyn 1983 Bones in contention: competing explanations for the juxtaposition of Early Pleistocene artifacts and faunal remains. <i>Anim.</i> <i>Archaeol.</i> 1, 3–19.
560 561	49. Potts, Richard 2011 <i>Early Hominid Activities at Olduvai</i> . Aldine Transaction. [cited 2016 Sep. 12].
562	
563	
564	Figure captions:
565	
566	Figure 1. Position of inselbergs (black) and located hammerstones (grey) in the
567	Taï National Park. The size of the grey circles (hammerstones) corresponds to
568	the weight of the hammerstone material at a site. The two polygons represent
569	the home range of the North- and the South-group. The X represents the location
570	of the excavated Noulo chimpanzee site.
571	
572	Figure 2. (a) Assessing pit depth from Panda nut-cracking hammerstone using

574	(3) Topographic model of the pitted area (GIS). (b) Refit of broken hammerstone,
575	each part was independently used as a hammer at two Panda cracking sites that
576	were 37 meters apart.
577	
578	Figure 3. Weight of stone tools as a function of the distance to the nearest
579	inselberg. Each circle represents a stone tool (black circle: this study, cross:
580	excavated tools from [43]). The dashed line shows the fitted model and the
581	dotted lines the 95% confidence interval. (The excavated material was not
582	included in the model and only placed on the graph for visual aid).
583	
584	Figure 4. Use-wear pit depth as a function of the distance to the nearest inselberg.
585	Each dot represents one stone tool. The dashed line shows the fitted model and
586	the dotted lines the 95% confidence interval.
587	
588	Figure 5. Granite stone distribution in the chimpanzee home range in the Taï
589	National Park. Available stone size is corrected for the area sampled in the three
590	different ecological conditions (forest, inselberg, swamp). The horizontal line
591	represents the minimum weight of a suitable Panda hammerstone (assessed
592	through our sample size).
593	
594	
595	
596	
597	
598	

- 601 ESM 1: Supplementary Data Set
- 602 Table S1:
- 603 Data set used to investigate the distance-decay effect in wild chimpanzees:
- 604 The hammerstones for *Panda oleasa* nut cracking were located in two study
- 605 groups (North and South group) the Taï National Park in Côte d'Ivoire, West-
- 606 Africa. Here we present their weight and the distance to the nearest potential
- 607 source (inselberg).

608

- 609
- 610 **ESM 2: Statistical models and model results**
- 611 Table S2:
- 612 Investigations of the weight of granite hammerstones and its influenced by the
- 613 <u>distance to the closest inselberg (as the possible origin):</u>
- 614 The table presents the results of a linear model analyzing the effect of distance to
- 615 the nearest inselberg on hammerstone weight of *Panda* nut cracking tools. The
- 616 comparison of the full with the null model revealed: $F_{1,14}$ =4.949, P=0.043.
- 617
- 618 Table S3:
- 619 Investigations of differences in the distance-decay effect between two social
- 620 groups (North and South group):
- 621 The table presents the results of a linear model analyzing the effect of distance to
- 622 the nearest inselberg on hammerstone weight in regard to the social group

http://mc.manuscriptcentral.com/prsb

- 623 (North and South group) ranging in the area the hammerstone was located in.
- 624 The comparison of the full with the null model revealed: $F_{3,12}$ =2.797, P=0.086.
- 625 'Distance.Inselberg*GroupSouth' refers to the impact of the two-way-interaction
- 626 between distance of the nearest inselberg and social group (North or South
- 627 group) on hammerstone weight.
- 628 The interaction was not significant, i.e. the distance-decay effect was not
- 629 influenced by the social group ($F_{1,12}$ =0.608, P=0.451).
- 630
- 631 Investigations of the use-wear intensity of hammerstones and its distance to the
- 632 <u>source:</u>
- 633 The table presents the results of a linear model analyzing the effect of pit depth
- 634 of *Panda* hammerstones on distance to the nearest inselberg. The comparison of
- 635 the full with the null model revealed: $F_{1,14}$ =7.390, P=0.017.

Figure 1. Position of inselbergs (black) and located hammerstones (grey) in the Taï National Park. The size of the grey circles (hammerstones) corresponds to the weight of the hammerstone material at a site. The two polygons represent the home range of the North- and the South-group. The X represents the location of the excavated Noulo chimpanzee site.

112x158mm (300 x 300 DPI)

Figure 2. (a) Assessing pit depth from Panda nut-cracking hammerstone using 3D models. (1) Photograph (Sony Nex6); (2) 3D scan (NextEngine laser scanner); (3) Topographic model of the pitted area (GIS). (b) Refit of broken hammerstone, each part was independently used as a hammer at two Panda cracking sites that were 37 meters apart.

93x87mm (600 x 600 DPI)

Figure 3. Weight of stone tools as a function of the distance to the nearest inselberg. Each circle represents a stone tool (black circle: this study, cross: excavated tools from [43]). The dashed line shows the fitted model and the dotted lines the 95% confidence interval. (The excavated material was not included in the model and only placed on the graph for visual aid).

48x46mm (300 x 300 DPI)

Figure 4. Use-wear pit depth as a function of the distance to the nearest inselberg. Each dot represents one stone tool. The dashed line shows the fitted model and the dotted lines the 95% confidence interval.

80x81mm (300 x 300 DPI)

Figure 5. Granite stone distribution in the chimpanzee home range in the Taï National Park. Available stone size is corrected for the area sampled in the three different ecological conditions (forest, inselberg, swamp). The horizontal line represents the minimum weight of a suitable Panda hammerstone (assessed through our sample size).

49x48mm (300 x 300 DPI)