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We present an accurate computational study of the electronic structure and lattice dynamics of
solid molecular hydrogen at high pressure. The band-gap energies of the C2/c, Pc, and P63/m
structures at pressures of 250, 300, and 350 GPa are calculated using the diffusion quantum Monte
Carlo (DMC) method. The atomic configurations are obtained from ab-initio path-integral molec-
ular dynamics (PIMD) simulations at 300 K and 300 GPa to investigate the impact of zero-point
energy and temperature-induced motion of the protons including anharmonic effects. We find that
finite temperature and nuclear quantum effects reduce the band-gaps substantially, leading to met-
allization of the C2/c and Pc phases via band overlap; the effect on the band-gap of the P63/m
structure is less pronounced. Our combined DMC-PIMD simulations predict that there are no
excitonic or quasiparticle energy gaps for the C2/c and Pc phases at 300 GPa and 300 K. Our
results also indicate a strong correlation between the band-gap energy and vibron modes. This
strong coupling induces a band-gap reduction of more than 2.46 eV in high-pressure solid molecular
hydrogen. Comparing our DMC-PIMD with experimental results available, we conclude that none
of the structures proposed is a good candidate for phases III and IV of solid hydrogen.

I. INTRODUCTION

Determining the metallization pressure of solid hy-
drogen is one of the great challenges of high-pressure
physics. Since 1935, when it was predicted that molecu-
lar solid hydrogen would become a metallic atomic crys-
tal at 25 GPa1, compressed hydrogen has been of huge
scientific interest. Additional interest arises from the pos-
sible existence of room-temperature superconductivity2,
a metallic liquid ground state3, and the relevance of solid
hydrogen to astrophysics4,5.

Early spectroscopic measurements at low temperature
suggested the existence of three phases4,6. Phase I, which
is stable up to 110 GPa, is a molecular solid composed
of quantum rotors arranged in a hexagonal close-packed
structure. Changes in the low-frequency regions of the
Raman and infrared (IR) spectra imply the existence
of phase II, also known as the broken-symmetry phase,
above 110 GPa. The appearance of phase III at 150 GPa
is accompanied by a large discontinuity in the Raman
spectrum and a strong rise in the spectral weight of
the molecular vibrons. Phase IV, characterized by the
two vibrons in its Raman spectrum, was discovered at
300 K and pressures above 230 GPa7–9. Recently, an-
other new phase has been claimed to exist at pressures
above 200 GPa and higher temperatures (e.g. 480 K
at 255 GPa)10. This phase is thought to meet phases
I and IV at a triple point, near which hydrogen retains

its molecular character. The most recent experimental
results indicate that H2 and hydrogen deuteride (HD)
at 300 K and pressures greater than 325 GPa transform
into a new phase V that is characterized by substantial
weakening of the vibrational Raman activity11. Other
features include a change in the pressure dependence of
the fundamental vibrational frequency and partial loss of
the low-frequency excitations.
Although it is very difficult to reach the static pres-

sure of more than 400 GPa at which hydrogen is nor-
mally expected to metallize, some experimental results
have been interpreted as indicating metallization at room
temperature below 300 GPa7. However, other experi-
ments show no evidence of the optical conductivity ex-
pected of a metal at any temperature up to the high-
est pressures explored12. Experimentally, it remains un-
clear whether or not the molecular phases III and IV are
metallic, although it has been suggested that phase V
may be non-molecular (atomic) and metallic11. Metal-
lization is believed to occur either via the dissociation of
hydrogen molecules and a structural transformation to an
atomic metallic phase7,13, or by band-gap closure within
the molecular phase14,15. The mechanism and origin of
band-gap closure are not well-known.
The electronic structure of solid molecular hydrogen

have mainly been investigated by means of density-
functional theory (DFT)-based methods16–25, as well as
using the quasiparticle (QP) approach15,26. Although
DFT-based methods are usually able to describe the crys-
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tal structures and relative total energies of the relevant
phases, their insufficiencies are more apparent in the case
of band-gap calculations27. To obtain precise energy
gaps, it is vital to go beyond mean-field theories and solve
the many-electron Schrödinger equation directly. In this
work, we combine two sophisticated methods, diffusion
quantum Monte Carlo (DMC) and path-integral molec-
ular dynamics (PIMD), to calculate the excitonic and
quasiparticle band-gaps of dense hydrogen at both zero
and room temperature.

The DMC method is one of the most accurate known
techniques for evaluating the total energies of sys-
tems of more than a few tens of interacting quantum
particles28–30. It has been indicated recently that DMC
can provide an accurate description of the phase dia-
gram of solid molecular hydrogen31. Although the DMC
method was originally designed to study the electronic
ground state, it is also capable of providing accurate in-
formation about excited states in atoms, molecules, and
crystals32–35. In general, DMC calculations of excita-
tions in crystals remain challenging because of the 1/N
effect: The fractional change in the total energy due to
the presence of a one- or two-particle excitation is in-
versely proportional to the number of electrons in the
simulation cell. Since large simulation cells are required
to provide an accurate description of the infinite solid,
high-precision calculations are necessary36.

Structures of crystalline materials are normally deter-
mined by x-ray or neutron diffraction methods. These
techniques are very challenging for elements with low
atomic numbers such as hydrogen, which is part of the
reason the structures of phases III and IV have remained
uncertain. Fortunately, even though the crystal struc-
tures are still unknown, optical phonon modes disappear,
appear, or experience discrete shifts when the crystal
structure changes. It is, therefore, possible to identify
the transitions between phases using optical methods.

The main input to any DMC calculation is the struc-
ture of the system under study, which, in this case, is
unknown. Hence, there is no option but to use structures
predicted by mean-field theories such as DFT. It is now
generally accepted that DFT results for high-pressure
hydrogen critically depends on the choice of exchange-
correlation (XC) functional21,22,25. This frustrating lim-
itation may be the main cause of the contradictions be-
tween different theoretical results37,38.

In the present work, we carry out a comprehensive
study of the band-gap energy of high-pressure solid
molecular hydrogen at zero and finite temperature. We
concentrate on the smallest band-gap, which may be di-
rect or indirect, of the C2/c, Pc, and P63/m structures.
These include all of the candidates suggested by DFT
calculations for phases III and IV16–19,31.

II. COMPUTATIONAL DETAILS

We considered the C2/c, Pc, and P63/m crystal struc-
tures of solid molecular hydrogen at P = 250, 300, and
350 GPa. According to previously conducted DFT sim-
ulations, the C2/c and Pc structures are the most fa-
vorable candidates for phase III and phase IV16,17,31, re-
spectively. All structures, which were afterwards used
for our DMC simulations, were first fully relaxed at con-
stant pressure at the DFT level. The latter calcula-
tions were carried out within the pseudopotential and
plane-wave approach using the Quantum Espresso suite
of programs39. All DFT calculations employed a dense
16×16×16 k-point mesh, norm-conserving pseudopoten-
tials, a plane-wave basis set with a cutoff of 100 Ry, as
well as the Becke-Lee-Yang-Parr (BLYP) generalized gra-
dient approximation to the exact XC functional40. In
our recent work41, we have demonstrated that for study-
ing the high-pressure solid hydrogen phase diagram, the
BLYP XC functional is more accurate than most other
semi-local XC functionals. Independent studies of oth-
ers have confirmed the superior accuracy of the em-
ployed BLYP XC functional for the description of ther-
modynamic properties of high-pressure hydrogen22,31,42.
Geometry and cell optimizations were performed using
the Broyden-Fletcher-Goldfarb-Shanno quasi-Newton al-
gorithm with a convergence thresholds on the total en-
ergy and forces of 0.01 mRy and 0.1 mRy/Bohr, respec-
tively, to guarantee convergence of the total energy to
better than 1 meV/proton and the pressure to better
than 0.1 GPa/proton.
Our DMC simulations were conducted using the

casino QMC code43 and a trial function of the Slater–
Jastrow (SJ) form,

ΨT(R) = exp[J(R)] det[ψn(r
↑
i )] det[ψn(r

↓
j )], (1)

where R is a 3N -dimensional vector that defines the
positions of all N electrons, r

↑
i is the position of the

ith spin-up electron, r↓j is the position of the jth spin-

down electron, exp[J(R)] is the Jastrow correlation fac-

tor, whereas det[ψn(r
↑
i )] and det[ψn(r

↓
j )] are Slater deter-

minants of spin-up and spin-down one-electron orbitals,
respectively. The one-electron orbitals were also obtained
from the DFT calculations using the plane-wave Quan-
tum Espresso code39. However, to guarantee converge to
the complete basis set limit, a rather large basis set cut-
off of 200 Ry was chosen44. Thereafter, the plane-wave
orbitals were transformed into a blip polynomial basis45.
As is customary, our QMC calculations were car-

ried out using finite simulation cells subject to periodic
boundary conditions which introduce finite-size (FS) er-
rors. An important contribution to the FS errors in our
calculations arises from the treatment of the Coulomb
potential energy. The Coulomb interaction is inconsis-
tent with the periodicity of the simulation cell and has
to be replaced by the Ewald interaction, which is the
Green’s function of Poisson’s equation subject to peri-
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odic boundary conditions. Unlike the Coulomb interac-
tion, the Ewald interaction depends on the size and shape
of the simulation cell. Therefore, we employed canon-
ical twist averaging to correct single-particle FS errors
which are analogous to k-point sampling errors in DFT46.
Specifically, we performed twist-averaged DMC calcula-
tions based on eight randomly chosen twists at three dif-
ferent system sizes for each phase and volume. We used
192, 432, and 648 atoms in our simulation cells for the
C2/c phase, which has 24 atoms in the primitive unit
cell, 192, 384, and 576 atoms for the Pc structure with
48 atoms in the primitive unit cell, and 28, 288, and 768
hydrogen atoms for the P63/m phase that has 16 atoms
in the primitive unit cell.
We linearly extrapolated the twist-averaged energy per

atom to the thermodynamic limit in order to correct for
many-body FS errors, which are due to the long range
of both the Coulomb interaction and the two-body cor-
relations. We verified that the linear fitting is accurate,
because the finite-size error in the energy per atom de-
ceases as 1/N , where N is the number of particles in the
simulation cell.
Our Jastrow correlation factor consists of a polyno-

mial one-body electron-nucleus (1b), two-body electron-
electron (2b), three body electron-electron-nucleus (3b),
as well as plane-wave expansions in the electron-electron
separation (p)47. We found that the latter p term makes
significant improvements to the wave function and the
variational energy, since it describes the long-range corre-
lation term in the Jastrow, which plays an important role
in our calculations. The parameters within the Jastrow
were optimized by means of variance minimization at the
variational quantum Monte Carlo (VMC) level48,49.
The QP energy gap is defined as

∆qp = EN+1 + EN−1 − 2E0, (2)

where EN+1 [EN−1] is the many-body total energy of
the system after an electron has been added [removed
form] the system, while E0 is the ground-state energy.
Our calculations of ∆qp were performed at the Γ-point
of the supercell Brillouin zone, equivalent to a mesh of k-
points in the primitive Brillouin zone. Technical details
of the QP calculations are given in our recent work41. We
created excitonic states by promoting an electron from a
valence-band orbital into a conduction-band state with
the same wave vector. However, the so created states
do not cover all excitonic effects since no configuration
interactions are taken into account. The absorption gap
to an excitonic state at Γ is

∆exc = E′ − E0, (3)

where E′ and E0 are the total energies of the first excited
and the ground state as obtained by DMC. We found that
the difference between the triplet and singlet excitonic
gaps is small in the systems studied here. For exam-
ple, in the case of the C2/c structure at 250 GPa, the
singlet-triplet splitting is 0.2(1) eV. We focus, therefore,
on singlet excitonic absorption gaps.

Finite-temperature second generation Car-Parrinello
PIMD simulations were performed to account for har-
monic and anharmonic zero-point motion (ZPM)50–52.
The combined path-integral generalized Langevin
(PIGLET) scheme of Ceriotti et al. was employed
here53, as implemented in the i-Pi wrapper54, to reduce
the number of computationally expensive imaginary-time
replicas.
Eventually, convergence was achieved with as few as

six imaginary-time replicas. All of the simulations were
performed using the isobaric-isothermal (NPT) ensem-
ble at 300 K and 300 GPa. The interatomic forces were
computed at the DFT level using the Quantum Espresso
suite of programs and a plane-wave cutoff of 680 eV. The
simulations consisted of 96 protons for the C2/c and Pc
phases and 128 atoms for the P63/m structure. The first
Brillouin zone was sampled using a 2× 2× 2 Monkhorst-
Pack k-point mesh55. In each case, 25 statistically inde-
pendent configurations, which are separated by 1 ps, were
considered to compute the associated ensemble averages
at the DMC level. Since for each PIMD configuration the
DMC energy is obtained based on eight randomly chosen
twists26, in total 3× 25× 8 = 600 DMC simulations have
been performed to obtain reliable results.

III. RESULTS AND DISCUSSION

The free energy difference between two phases at con-
stant temperature and pressure is ∆G = ∆H − T∆S,
where ∆H = ∆E + P∆V . Herein, G,H, T, S,E, P and
V are the Gibbs free energy, enthalpy, temperature, en-
tropy, internal energy, pressure and volume of the sys-
tem. We calculated the ensemble average of the en-
thalpy 〈H〉 = N−1ΣN

i=1Hi, where Hi is the enthalpy
of the system at each configuration. Thus, the en-
thalpy difference between two phases can be defined as
〈∆H〉 = 〈H2〉 − 〈H1〉. In Fig. 1, 〈H〉 for the C2/c, Pc,
and P63/m phases at room temperature and 300 GPa are
shown. The resulting difference 〈∆H〉 between the C2/c
and Pc structures is about 2(1) meV/atom, while it is
0.23(2) eV/atom between the P63/m and the two other
phases. However, at constant temperature, ∆S between
the C2/c and Pc phases is less than 10 meV/atom31.
This suggests that ∆S is the dominant term within ∆G
for the C2/c to Pc transition and that this is an entropy
driven transition. Assuming that ∆S is relatively similar
for all considered structures, this also suggests that, at
room temperature and 300 GPa, the Gibbs free energy
of P63/m is much lower than that of the C2/c and Pc
phases, respectively.

A. Electronic Density of States

We investigated the electronic structure of the C2/c,
Pc, and P63/m by computing the averaged DOS at room
temperature and 300 GPa, which is shown in Fig. 2. As
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FIG. 1. DMC enthalpies of 25 statistically independent con-
figurations obtained by ab-initio PIMD simulation at P=
300 GPa and T=300 K. The ensemble averaged energy is il-
lustrated by a flat line.
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FIG. 2. Ensemble averaged DOS per particle as obtained by
ab-initio PIMD simulations at P= 300 GPa and T=300 K
for the C2/c, Pc, and P63/m phases. The Fermi energy is
located at E=0. All energies and DOS are in eV and eV−1,
respectively.

can be seen, the electronic DOS at Fermi level of the
P63/m phase is smaller than that of the C2/c and Pc
structures. Nevertheless, at the DFT level, all of the
considered phases obey metallic behavior.

B. Band-gap Energy

In a recent paper we reported our QP and excitonic
band-gap results at the nuclear ground state, where the
ZPM and temperature-induced vibrations of the pro-
tons are neglected41. Therein, we found that the exci-

ton binding energy is smaller than 100 meV/atom and
that our DMC QP and excitonic band-gaps are within
error bars to one another. Therefore, in this work, we
do not attempt to distinguish the excitonic from the
QP band-gap. Instead, by calculating the static-nucleus
energy band-gaps using DMC, we quantify the many-
body corrections to the band structure that are ab-
sent in the mean-field DFT approach. Although these
contributions are relatively independent of lattice vi-
brations and temperature, it is well known that nu-
clear quantum effects are significant in hydrogen-rich sys-
tems and greatly affect the metallization of high-pressure
solid hydrogen21. Assuming the validity of the Born-
Oppenheimer approximation, the full electron-nuclear
wave function Ψ(R,d) can be approximated in the form
Φ(R|d)χ(d), where Φ(R|d) is a function of the positions
R = (r1, r2, . . . , rN ) of the N electrons in the supercell
at fixed nuclear positions d, while χ(d) is the nuclear
wave function. The measured band structure is then an
average of the band structures calculated from Φ(R|d),
which are weighted according to the nuclear probabil-
ity density. We sampled the nuclear probability density
by performing finite-temperature PIMD simulations us-
ing DFT within the generalized gradient approximation
in order to take harmonic and anharmonic nuclear quan-
tum and finite-temperature effects into account.

It is not straightforward to measure the band-gap at
pressures greater than 300 GPa, but experimental re-
sults suggest that solid hydrogen is indeed an insulator
in this pressure range8,12,18. It is, therefore, reasonable
to assume that the C2/c, Pc, and P63/m structures all
have non-zero band-gaps at 300 GPa and 300 K. Based
on this assumption, we treat each PIMD configuration
as an insulator and calculate the DFT band structure
of that configuration by occupying the same number of
one-electron DFT orbitals at every wave vector in the
simulation cell Brillouin zone. Using this protocol, we
found that the highest occupied and lowest unoccupied
states belong to different k-points and that the difference
between them, which we denote as the dynamic gap, is
negative for almost every nuclear configuration sampled.
This implies that, at the DFT level, the nuclear quan-
tum and finite-temperature effects render all the studied
structures metallic.

To correct for the underestimation of the dynamic gap
by DFT, we introduce a scissor operator. The dynamic
DFT band-gap is increased from EDFT

g to EDFT
g + δsci,

where δsci = EDMC
g − EDFT

g is calculated for a perfect

crystalline supercell at the static level41. The scissor op-
erator depends on the crystal structure and the pressure
applied. However, a detailed study and the specific values
of δsci for all the studied structures at P = 250, 300, and
350 GPa are reported in our recent work41. The result-
ing scissor-corrected dynamic band-gaps of the C2/c, Pc,
and P63/m structures at room temperature and a pres-
sure of 300 GPa are shown in Fig. 3. We find that the
harmonic and anharmonic ZPM and finite-temperature
contributions are substantial, and that the C2/c and Pc
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FIG. 3. Energy band-gaps of the C2/c, Pc, and P63/m struc-
tures at room temperature and a pressure of 300 GPa. The
horizontal lines denotes the corresponding ensemble averaged
band-gap energies. A DMC scissor operator is used to cor-
rect the DFT energy band-gaps. The statistical uncertainties
within the band-gap as obtained by the present DMC calcula-
tions are indicated be vertical bars. The occurence of negative
band-gaps is due to the fact that the valence band maximum
(VBM) and conduction band minimum (CBM), which occur
at different k-points, do overlap.

structures remain metallic even after the scissor correc-
tion has been applied. The scissor-corrected static band-
gaps of the C2/c, Pc, and P63/m structures at 300 GPa,
which are calculated by DMC, are 2.3(2), 2.4(2), and
2.8(2) eV, respectively41. The inclusion of nuclear quan-
tum and finite-temperature effects lowers the C2/c, Pc,
and P63/m band-gaps by as much as 3.4(2), 3.8(2), and
2.5(2) eV, respectively, relative to static-nucleus results.

Discussion

Our results indicate a strong structure dependence of
the protons ZPM and thermal contributions. The C2/c
and Pc crystal structures have weakly bonded graphene-
like layers, while three-quarters of the H2 molecules in
the P63/m phase lie flat within the plane and a quar-
ter lie perpendicular to the plane. The centers of the
molecules fall on a slightly distorted hexagonal close-
packed lattice16. The quantum and thermal vibra-
tional motions increase the intermolecular interactions
and weaken the intramolecular bonding, an effect that
appears to be more significant for the C2/c and Pc struc-
tures than for the P63/m phase. The high structural
flexibility of phase IV at pressures of 250–350 GPa and
temperatures of 300–500 K has also been observed in
a previous ab initio variable-cell MD simulations, which
found that the protons in the graphene-like layers can
readily transfer to neighboring molecular sites via a si-
multaneous rotation of three-molecule rings56. Our re-
sults confirm that this behavior has a strong effect on
the band-gaps of the C2/c and Pc structures.

According to our band-gap energy results, the C2/c
and Pc structures, thought to be the best candidates
for phases III and IV of solid molecular hydrogen31, are
metallic at room temperature and 300 GPa, in disagree-
ment with most of the experimental evidence. Another
possible crystal structure, Pbcn, entails two different lay-
ers of graphene-like three-molecule rings with elongated
and unbound H2 molecules16. Assuming that the reduc-
tion of the band-gap due to the proton motion in Pbcn
is similar to that in Pc, we would also expect Pbcn to
be metallic at room temperature and 300 GPa. There
is some experimental evidence of metallization of high-
pressure hydrogen at room temperature and pressures
around 300 GPa7, but the onset of metallic behavior was
thought to be accompanied by a first-order structural
transition, presumably into a monatomic liquid state.
There are experimental band-gap results up to a pres-

sure of 350 GPa8,12,18. The optical transmission spec-
trum of phase IV shows an overall increase of absorption
and a band-gap reduction to 1.8 eV at 315 GPa8. Ac-
cording to these results, metallization of solid hydrogen
at and below room temperature should happen at pres-
sures above 350 GPa. This scenario appears to contra-
dict our band-gap energy results for the C2/c and Pc
phases. Assuming that the experimental measurements
of the band-gaps are accurate, our analysis implies that
the C2/c and Pc phases are unlikely candidates for high-
pressure solid molecular hydrogen at room temperature
and 300 GPa. Instead, it is more likely that the C2/c and
Pc structures become semi-metallic at pressures between
250 to 300 GPa.
The dynamic band-gap of the P63/m phases at room

temperature and 300 GPa is larger than the that of the
C2/c and Pc structures. The static DMC band-gap of
the P63/m phase is also larger than that of the other
layered-structures. In addition, the band-gap reduction,
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due to ZPM and temperature contributions, is in the
P63/m phase ∼1 eV smaller than in the two other struc-
tures studied. Experimental Raman spectra, however,
suggest that phase IV consists of two different graphene-
like sheets and unbound H2 molecules8. The metallic
nature of the C2/c and Pc structures leads us to doubt
that any graphene-like structure with weak interactions
between layers remains an insulator at room temperature
and 300 GPa, so this interpretation of the Raman data

is difficult to reconcile with the existence of a band-gap.
It seems likely that the true structures of phase III and
phase IV of high-pressure hydrogen remain unknown10.
To gain a deeper understanding of this problem, we

studied the correlation between the electronic band struc-
ture and the intramolecular H–H bond-length. For that
purpose, we performed band structure calculations for
the P63/m phase, which has the largest band-gap, at
fixed volume and two intramolecular H–H bond-lengths
(BL) of 0.73 and 0.75 Å(Fig. 4), respectively. We found a
strong coupling between the highest-occupied state and
the intramolecular H–H BL. The gradient of the energy
gap with respect to the intramolecular BL is ∼ 27.3
eV/Å, and is independent of XC functional41. Since the
root mean vibration amplitude of a H2 molecule due to
the vibron modes is ∼ 0.09 Å57–60, the band-gap reduc-
tion caused by ZP vibrations is ∼ 2.46 eV, which is in
excellent agreement with the 2.5(2) eV band-gap reduc-
tion obtained by our PIMD calculations.

IV. CONCLUSION

To summarize, based on combined ab-initio PIMD and
DMC simulations, we find that finite-temperature and
nuclear quantum effects leads to a band-gap reduction of
at least 2.5 eV. Since this renders all candidate structures
we have considered here metallic, which is in contrast
with available experimental measurements, we conclude
that none of the proposed structures are likely candidates
for phase III and IV of solid molecular hydrogen.
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