Practical challenges for biomedical modeling using HPC.
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Abstract— The concept underlying precision medicine is that
prevention, diagnosis and treatment of pathologies such as can-
cer can be improved through an understanding of the influence
of individual patient characteristics. Predictive medicine seeks
to derive this understanding through mechanistic models of
the causes and (potential) progression of diseases within a given
individual. This represents a grand challenge for computational
biomedicine as it requires the integration of highly varied (and
potentially vast) quantitative experimental datasets into models
of complex biological systems. It is becoming increasingly clear
that this challenge can only be answered through the use of
complex workflows that combine diverse analyses and whose
design is informed by an understanding of how predictions must
be accompanied by estimates of uncertainty. Each stage in such
a workflow can, in general, have very different computational
requirements. If funding bodies and the HPC community are
serious about the desire to support such approaches, they
must consider the need for portable, persistent and stable
tools designed to promote extensive long term development
and testing of these workflows. From the perspective of model
developers (and with even greater relevance to potential clin-
ical or experimental collaborators) the enormous diversity of
interfaces and supercomputer policies, frequently designed with
monolithic applications in mind, can represent a serious barrier
to innovation. Here we use experiences from work on two very
different biomedical modeling scenarios - brain bloodflow and
small molecule drug selection - to highlight issues with the
current programming and execution environments and suggest
potential solutions.

[. INTRODUCTION

The goal of computational biomedicine is to generate
insights from complex mathematical models of human bi-
ology in order to influence the development of new and
existing therapies. This endeavor naturally encompasses the
integration of data and understanding of phenomena from a
huge range of temporal and spatial scales (from chemical
reactions to the whole human and even up to the level
of populations). The application of such modeling in the
context of precision medicine requires that sufficient detail
is included in the models to differentiate individual patients.
The source of differentiation is determined by both the
disease of interest and the type of intervention that is being
considered. For example, the mutations present in a brain
tumour are highly likely to influence the selection of a drug
while having less impact on the efficacy of surgery to remove
the tumour. Here we argue that developing simulation and
modeling in this varied and challenging field is about more
than method development and improving code performance
and scalability. Focusing on optimizing time-to-completion,
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while undoubtedly useful, nevertheless risks ignoring the
time-to-insight which is of far greater interest to scientists.
We start by outlining specific issues facing computational
biomedicine and putting them in the context of the HPC
ecosystem illustrated with descriptions of the impact on our
own work (in brain bloodflow and small molecule drug
selection).

Large and diverse input data - The data required to
specify a system of interest can span many orders of mag-
nitude in size, and parameter dimensionality can be equally
varied. This naturally results in very different computational
requirements between preprocessing of the input, and subse-
quent simulation. It is a dirty secret of many computational
modeling workflows that the preprocessing of input data can
be as, or more, computationally demanding as simulations
themselves. Furthermore, automation requires the reliable
application of data scrubbing/sanitisation, and the ability to
fail hard and early when “bad” data is detected (ideally with
error messages understandable to a clinical or experimental
user).

Uncertainty quantification - If the aim is to influence
decision-making processes at the clinical or industrial level,
it is paramount that the “trust” one can place in a given set
of results is quantified, and its sensitivity to different input
parameters explored in a systematic and communicable fash-
ion. Validation, verification and uncertainty quantification
(UQ) of computational models is increasingly recognized as
essential to producing “certified” and therefore actionable
results.

Complex workflows - A typical biomedical simulation
will not be a single step but usually a workflow, ingesting
data and preprocessing to specify the system of interest,
followed by large scale simulation(s) and then analysis.
Such directed acyclic workflows are common as the base
description of a calculation, but dealing with uncertainty
quantification, adaptive sampling or model failure in a robust
fashion can lead to far more complex workflows, containing
conditional steps or other decision making.

The advent of exascale facilities is often discussed in terms
of monolithic applications. This focus tends to encourage
large, one-off simulations rather than workflows or multi-
simulation sampling approaches (where statistical ensembles
are used to ensure more complete model exploration). By
definition such calculations are expensive and hard to repeat,
which can lead them to contribute to the “reproducibility
crisis” [1]. Furthermore, at larger core counts high commu-
nication costs mean that ensemble simulations (necessary for
UQ) often represent a more efficient use of compute time.

In this context, the ecosystem of software for workflow
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development and execution can be of greater importance to
the general exploitation of computational precision medicine
than the scaling of monolithic applications. For example, the
transfer of data between two stages of the workflow may
be better achieved through a persistent memory object than
through interaction with the I/O system, particularly in the
case of enormous files or datasets. The focus on headline
grabbing core counts exacerbates the existing tendency for
funding bodies to focus on capital expenses (i.e. hardware)
and to neglect integration and services.

Interaction with non-typical HPC users - Unlike many
areas of, for example, physics and engineering, the utility
of biomedical computing comes through its integration with
the expertise of clinicians and biologists, who typically not
only lack HPC knowledge but may have no familiarity with
modeling and simulation at all. For such communities the
scientific applicability and robustness of output are more
important than the innovation of methodology. This innova-
tion, when resulting in frequent changes to existing workflow
tools, may in fact hamper such a community’s efforts in this
domain.

II. DIVERSITY OF CHALLENGES EXPERIENCED

As members of CompBioMed, an EU funded Centre of
Excellence in HPC, we have been exposed to the wide range
of codes and modeling approaches currently being employed
in computational biomedicine. Part of the project remit is to
understand the diverse needs of the community and engage
with HPC providers to best accommodate them. Here we
give details of two exemplar applications from the project
with different use cases and our experience in developing,
using and porting them to a variety of supercomputers.

A. Binding Affinity Calculator

The Binding Affinity Calculator (BAC) [2] automates sys-
tem building, execution and analysis of molecular dynamics
(MD) simulations in order to compute the strength with
which drugs bind to their target protein. Whilst BAC supports
a range of simulation protocols and analysis methods, the
workflow is common to all. A number of ‘replica’ simula-
tions of the same protein-drug complex are initiated from a
single input structure, each consisting of a number of con-
secutive steps; minimization, equilibration and production.
Once the simulation is complete an analysis step is executed
(typically much less computationally demanding than the
MD). The use of multiple replica simulations is used as both
a sampling strategy and to provide uncertainty estimates.

BAC can be used to provide personalized estimates of drug
binding based on the genetic sequence of proteins within a
patient (or pathogen), and also in drug discovery scenarios.
In both cases large numbers of runs may be required, either
to untangle the interactions of mutations or to scan a large
chemical space. Typically BAC based MD simulations use
less than a few hundred cores (or a node’s worth plus a
GPU) and require 6 to 12 hours to complete. Policies at
most supercomputers (we have direct recent experience of
ARCHER in the UK, SuperMUC in Germany, and Titan

and Bluewaters in the US) force such jobs to be bundled
together in order to run at the required scale. This is due to
either limitations on the number of jobs allowed per user in
the queue (this is mitigated to a degree through array jobs
in some instances) or a requirement for a particular job size
to allow runs of sufficient duration for the completion of the
simulations. In order to facilitate these runs we have recently
developed HTBAC [3], [4], a middleware solution based
on RADICAL CyberTools [5] that standardizes the way we
manage replicas across the supercomputers to which we
have access. Furthermore, by using a workflow middleware
we have the potential to use adaptive execution patterns
(for example terminating simulations once convergence is
reached and using the freed cores for other systems). Some
of the challenges in creating this flexible middleware have
been finding a solution to having a message broker accessible
to compute nodes, deletion of required stack elements and
unexpected updates of system libraries.

B. HemelB

HemeLB [6], [7] is a 3D computational fluid dynamics
solver that employs the lattice-Boltzmann method (LBM),
optimized for the highly sparse geometries of the cerebral
vasculature. Images taken of a patient’s brain during X-ray
CT scans (or, less commonly, MRI scans) are segmented
and combined to form an estimate of the 3D surface of the
blood vessel network. Artifact identification and removal,
and surface smoothing, are performed at this stage, often with
partial human intervention. A flow-diverting stent may also
be introduced into this mesh. In preparation for simulation
with LBM, the interior of the surface is discretized at the
desired resolution (often 10 pm or lower). This meshing
process can carry a high computational cost, often at a
significant fraction of the simulation phase cost. Load-
balancing during the LBM simulation phase is complex for
a sparse system (especially if magnetic drug particles are
introduced [8]), and a simpler block decomposition scheme
is often preferred for large systems due to the relative costs of
calculating more optimal load distributions. Finally, the flow-
field and vessel wall shear stress patterns are analyzed, with
visualization playing an important part of communicating the
result to, say, a clinical user.

Each step in the workflow can and does have very different
resource requirements, and data transfer between the steps
can be costly if done via I/O (in the case of the very high
resolution models that may be needed for clinical accuracy).
These differing computational demands, particularly in terms
of core counts, mean that it is not always possible or practical
to launch a given workflow in a single job submission, and
instead extra queuing time is incurred via the scheduling of
multiple sequential jobs.

Development of the simulation code as well as the
workflow presents its own challenges, with respect to the
portability and installation across multiple supercomputing
platforms, and the different ways in which errors are caught
or communicated by the local machine during runtime.
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III. WORKFLOW REQUIREMENTS

The development, validation and verification of com-
putational biomedicine workflows represents a significant
investment. The portability and repeatability of the workflow
is therefore essential to keeping costs manageably low.
Unfortunately, developers currently face portability issues
across both space (running on different computers with
different architecture and policies) and time (system updates
on the same computer, affecting repeatability). The spatial
aspect is of particular importance in decisions of whether to
rely on particular middleware tools which may prove time-
saving on a given supercomputer, while being completely or
partially prohibited by security policies on another. The lack
of standards in this area adds to reticence among application
developers to use certain types of middleware, such as
workflow engines. On a related note, the third-party nature
of middleware means that the responsibility for support lies
neither with the user nor with the supercomputing staff. One
may not wish to invest in development of a workflow that
depends on one or more third party tools which may or may
not still be maintained in two or three years time. Unfortu-
nately, the time scale for development of such workflows is
at least of order several years.

A. Repeatability

For any software solution to be deemed production ready
it must at the very least meet the criteria that it can be
run more than once using valid inputs. This may seem like
an absurdly low bar, but for many scientific code bases on
HPC resources if there is a significant time delay between
two runs then it may not be reached. One of the major
factors of this is the recklessness of user-developers who
may update their software without having performed due
diligence (for example running integration tests). Thankfully,
the increasing awareness of best practices (driven by ini-
tiatives like Software Carpentry [9]) and the wider use of
version control, this is both becoming less common and more
easily recoverable. There are nevertheless still many parts of
the software stack that are beyond the user’s control, the
most obvious of which is the set of libraries maintained by
target HPC machines. It is unrealistic to ask either for HPC
administrators never to update their modules or for users
to track all changes, however it should always be possible
for users to find out what has changed and when the change
occurred, a requirement which is not generally met. This lack
of information is even more of a problem for the developers
and maintainers of lower level tools such as middleware.

A second policy decision which frequently impedes re-
peatability is the combination of having only a subset of
storage locations available to compute nodes, and of these
being regularly cleared. Whilst this is a sensible (probably
necessary) arrangement, complex workflows often require
persistent, compute accessible, storage for management soft-
ware and the option to ask for limited space for this would
greatly aid software stability and repeatability.

B. Reproducibility

While workflow engines (and associated middleware) can
be an important step towards systematically reproducible
computational science, the problems with portability across
systems, and (more critically) the need for technical support
from third party developers (with no guarantee of future
long-term development) make their use a less appealing in-
vestment than might otherwise be assumed. Other researchers
are not likely to test out a published workflow, even if all
files and data are provided, if their experience tells them that
a time-consuming amount of bug-hunting and tuning will be
needed to make it work on their chosen HPC platform.

The systematic calculation of uncertainties in measured
values is vital in order to ascertain the reproducibility of any
given result. The flow of uncertainty through complex work-
flows is not easy to track, and the full understanding of this
process represents an entire field of research. Consequently
portable UQ toolkits are required that make state of the art
techniques available to scientists on any platform they run
their code.

Key to the ability to understand the causes of seemingly
non-reproducible results is knowledge of exactly what was
run in the first place. Most non-developers are unaware of
which versions of which libraries are being called by the
applications they use. It is currently the responsibility of the
application developer (often delegated to the workflow tool
authors) to augment results directories with some form of
metadata capturing the system environment and run param-
eters at the moment of execution. Doing so in a standard
manner across different systems can be painstaking and
prone to instabilities resulting from system updates, amongst
others. Automatic production of this metadata in a standard
(or as close as practicable) form across HPC sites would
aid (and thus promote) better reproducibility practices in
computational science.

IV. PORTABILITY

The experience of running software on HPC is generally
that each supercomputer will require some adaptation of the
work to be performed, due to both technical and policy differ-
ences. Such changes represent both a barrier to adoption and
a possible point of failure. As such, for applications where
robustness is paramount, there is a need for standardization
of tools and convergence of policies wherever possible to
enable as-frictionless-as-possible porting between systems.

A. Software Environment

Standardization of workflow tools - A large and diverse
range of tools exist for workflow management and code
coupling in the scientific domain and beyond [10], [5], [11],
[12], [13], [14], [15], [16]. The level of choice can be
unhelpful to application and workflow developers, and result
in a lot of duplicated effort on the side of the tool designer.
A minimal set of standards (such as an API analogous to
OpenMPI) could help settle this next layer of abstraction, and
give application developers the solid, stable ground on which
to build their workflows to be lasting and low-maintenance,
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and in the process aid repeatability and reproducibility in the
domain of computational science.

Batch queue API standardization / middleware - The
precise details of job submission varies considerably between
supercomputers. Standardization of API access to batch
queuing systems via DRMAA (Distributed Resource Man-
agement Application API, www.drmaa.org/) could help with
this. A number of middleware tools, such as QCGBroker
[10] aim to exploit this, but require installation on the HPC
platform in use, and can often come into conflict with local
security policies. Whilst the latter concern can be overcome
through direct collaboration on a common project, this is not
a scalable approach. Further development of common stan-
dards agreed between supercomputing centres may help here.
Previous efforts at interoperability, for example those based
on Globus and UNICORE, have largely been unsuccessful
but the current landscape for HPC access is in stark contrast
to the simplicity provided by Cloud APIs.

Programming environment - Despite our focus on
production workflows, a large part of the computational
biomedicine community is engaged in low level development
of simulation codes. Of particular relevance to developer-
oriented workflows are differences in the programming en-
vironment across HPC platforms. These can be partially
(though not completely) alleviated through widely-used build
systems such as cmake lcmake.org, as well as package
and environment management systems (such as conda for
Python).

Tools for large datasets - A set of standard tools for
the large datasets increasingly used in precision medicine
workflows (as input, or in intermediary steps) may well
become essential soon. Datasets from both next generation
sequencing and medical imaging can result in exceptionally
large files. For example within HemeLB input data files
can be of the order of tens of terabytes. This has resulted
in the creation of bespoke file reading code where these
files are striped across multiple storage targets to increase
bandwidth and allow simultaneous access to the same file
for multiple processes. The creation of this code requires
multiple workarounds for limitations of libraries such as MPI
and system specific optimizations (e.g. of the stripe count).
Maintaining this code represents a considerable overhead,
taking effort away from scientific endeavours, as well as
a source of additional code fragility. Standardized tools or
libraries for such tasks would aid better and more robust
simulation code development.

B. Platform Policy

Workflow software frequently requires persistent but low-
resource-usage processes, for example databases or message
brokers to help orchestrate job steps or to store information
between them. This represents a challenge as processes on
login nodes are terminated if they run for too long or use
too much memory, yet connections to external databases can
be blocked by firewalls. Availability of nodes for this type
of job within the firewall, or less restrictive security policies,
could both be of help in this area.

Workflow and middleware layers that enable the pipelin-
ing of steps with diverse computational requirements are
currently prone to instability as the software and policies
of supercomputers can change without adequate warning.
Recognizing that supercomputing platforms often sit at the
bottom of very complex software stacks deployed by users,
and adopting suitable change management policies (for ex-
ample governed by ITIL) taking this into account, would be
invaluable here. Standardization of workflows could further
minimize the work involved in terms of reducing the variety
of dependencies that need to be maintained.

As supercomputer capacity grows, a wider diversity of
queue functionality would help facilitate workflow building
without the need for specific tools. Job chaining and array
jobs can handle many tasks assuming that there are queues
where jobs can be executed - many systems require that large
numbers of cores/nodes are used if a step lasts any significant
period of time. Whilst this is more relevant for development
codes, it nonetheless provides a potentially light weight and
sustainable solution.

V. FUTURE DIRECTIONS

Common and commonly used standards - It may also
be possible to identify the features most in-demand by
application developers through consideration of the plethora
of existing workflow tools, and from there to develop a
standard API or set of tools that would expose the desired
functionality across different HPC sites through shifting
responsibility from third party developers to the staff most
intimately acquainted with their own machine. It is not
sufficient for standards to be defined, they must be made
accessible and supported in ways which encourage user (and
developer) buy in.

Community managed modules - One potential solution
is for community organizations, such as the EU’s H2020
funded Centres of Excellence, to maintain central tools
that enable workflows in ways appropriate to their user
base. This would need to be accompanied by some links
to specific HPC centres but not tying maintainers to a
specific machine should reduce the “island effect” of each
supercomputing centre providing only the environment it
wants to users. It may also help middleware developers
within the communities to understand the challenges from the
point of view of supercomputer administrators. Such modules
could be maintained through tools such as EasyBuilder
(easybuilders.github.io/easybuild) and Spack (spack.10).

Containerization - Many of the portability issues may
be solved (or at least alleviated) through the use of con-
tainers. Whilst the most popular containerization solution,
Docker www.docker.com/, is not secure for use in multi-
user environments, the same images can be deployed using
tools such as Singularity (singularity.lbl.gov/) and Shifter
(github.com/NERSC/shifter). It is, however, likely that this
approach will present its own unique challenges when ap-
plied to extremely large or complex HPC systems and
applications (as compared with, say, the typical jobs executed
on Cloud services).
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