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Abstract—The increasing popularity of social media has encouraged health consumers to share, explore, and validate health and
wellness information on social networks, which provide a rich repository of Patient Generated Wellness Data (PGWD). While
data-driven healthcare has attracted a lot of attention from academia and industry for improving care delivery through personalized
healthcare, limited research has been done on harvesting and utilizing PGWD available on social networks. Recently, representation
learning has been widely used in many applications to learn low-dimensional embedding of users. However, existing approaches for
representation learning are not directly applicable to PGWD due to its domain nature as characterized by longitudinality,
incompleteness, and sparsity of observed data as well as heterogeneity of the patient population. To tackle these problems, we
propose an approach which directly learns the embedding from longitudinal data of users, instead of vector-based representation. In
particular, we simultaneously learn a low-dimensional latent space as well as the temporal evolution of users in the wellness space.
The proposed method takes into account two types of wellness prior knowledge: (1) temporal progression of wellness attributes; and
(2) heterogeneity of wellness attributes in the patient population. Our approach scales well to large datasets using parallel stochastic

gradient descent. We conduct extensive experiments to evaluate our framework at tackling three major tasks in wellness domain:
attribute prediction, success prediction and community detection. Experimental results on two real-world datasets demonstrate the

ability of our approach in learning effective user representations.

Index Terms—Latent Space Learning, User’s Wellness, Social Networks.

1 INTRODUCTION

With the advent of Web 2.0, we have witnessed the
revolutionary changes in many disciplines brought by an
explosion of user-generated contents; and health is of no ex-
ception [2], [7], [21], [44]. In such a context, millions of users
increasingly utilize social networks such as Twitter and In-
stagram to share their wellness data and to fulfil their health
demands. For example, diabetic patients not only share
about events happening around them but also frequently
post about their current health conditions, medication uses,
and outcomes of medications. They frequently post the
latest values of their blood glucose, diet, and exercises
on Twitter using “#diabetes” and “#BGnow” hashtags [2],
[21]. Effective mining of patient generated wellness data
(PGWD) can provide actionable insights into the wellness of
individuals as well as collaborative behaviour of communi-
ties. While data-driven approaches are increasingly used for
personalized healthcare [11], [12], [22], [48], as an important
and distinct data source, understanding PGWD available on
social networks presents great opportunities to improve care
delivery.
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Despite its value and significance, PGWD on social net-
works has not been fully utilized due to the following chal-
lenges. (1) Longitudinality. Wellness data are longitudinal per
se, which means multiple measurements or repeated events
are available for each subject [22], [48], [53]. For example,
Hemoglobin Alc (HbAlc) test might be done several times
per year for diabetic patients. The longitudinal nature of
the problem provides a matrix of wellness data describing
patient at different time points [40], [48], [53]. This is quite
different from standard machine learning representation
where we have a static vector of features. In such a context,
time dimension plays an essential role. (2) Noisiness and
Incompleteness. Social media is a highly varied and informal
media; arising from various background and intention of
users [39]. Moreover, missing data is an intrinsic nature
of PGWD since patients do not persistently report their
wellness data. In most cases, users are not sufficiently keen
to expose the event or they self-censor the content due
to privacy concerns [7], [21]. This means that the absence
of a wellness event in PGWD does not always mean that
the event did not happen [33]. (3) Heterogeneity. An intrin-
sic characteristic of the wellness domain is heterogeneity
of the patient population according to their health condi-
tions; meaning that wellness attributes and events related
to each user can be highly different from the others [27].
For instance, even though diabetic users often share sim-
ilar characteristics, they are still different from each other
based on demographic attributes (e.g., age and gender),
type of disease (e.g., Type I Diabetes, Type II Diabetes,
Gestational Diabetes, etc.), and many other behavioral and
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genetic factors. Even though patient stratification is a well-
established approach in health informatics [42], this kind
of disease-specific context has not been fully investigated
in many wellness models such as re-admission prediction
[12], disease progression modelling [43], [52], risk prediction
[41]; and the assumption of a homogenous cohort does not
hold in the population. How to share information among
homogenous population while simultaneously avoid inter-
actions between heterogeneous populations is still an open
problem in wellness modelling.

Representation learning, also called latent feature learn-
ing, has been widely used as an effective tool for many
machine learning and data mining tasks to derive an ef-
fective latent space from original data [17], [45], [49], [50].
The key idea of representation learning is to seek a low-
dimensional embedding of data instances while preserving
different discriminative factors of variation behind the data.
Recently, factorization based methods have been attracting
a lot of interests in modeling user behaviors and interests
due to its ability to alleviate data sparsity [14], [17], [49],
[50]. For example, MaxMF [45] is developed to represent
each user with a set of latent factors representing his/her
different latent interests. Zhao et al. [49] incorporated social
connections into latent space to improve the performance
of recommendation. Seen from the personalization aspect,
Zhao et al. [50] proposed a personalized feature projection
method that employs users’ projection matrices and items’
factors to solve the one-class recommendation problem.
However, existing representation learning approaches have
been designed for attribute-value data and cannot be di-
rectly applied to longitudinal data due to the following
factors. First, many existing methods assume that data
instances are fully observed and construct a model from
original data treating missing values as zero, which is
clearly violated in longitudinal data [35], [48], [53]. Second,
traditional representation learning methods assume that the
data instances are independent and identically distributed
(i.i.d), which is clearly violated in longitudinal wellness data.
Several decades of research in health science states that
longitudinal wellness data are strongly related along tem-
poral dimension and wellness attributes progress smoothly
over time instead of sudden changes in consecutive time
points [22], [48].

To deal with the challenges raised by the distinct PGWD,
in this paper, we aim to learn wellness representation of
users from social media. Our framework, in contrast to
conventional models, determines the wellness latent space
directly from users’ longitudinal data, instead of attribute-
value data, by considering two types of domain priors,
namely the heterogeneity in data space and temporal con-
tingency of wellness concepts. In particular, the proposed
approach decomposes longitudinal data into two compo-
nents: wellness latent space, and temporal representation of
users. To effectively handle data heterogeneity, the learned
wellness latent space is comprised of two sub-spaces, i.e.,
the shared and personalized latent spaces. The learned tem-
poral representation is constrained to model the temporal
progression of wellness attributes and simultaneously tackle
the problems arising from missing data values. The pro-
posed framework has been extensively examined through
several machine learning tasks to evaluate its effectiveness

in user embedding.
The main contributions of this paper are as follows:

e We propose a representation learning approach
for longitudinal wellness data available in social
networks. Specifically, we decompose longitudinal
PGWD into wellness latent space and the temporal
progression of users in that space.

e We exploit consistency within homogenous popula-
tion as well as distinction between heterogeneous
population to learn a shared and personalized latent
space for embedding users.

e We incorporate the temporal progression prior of
wellness data in the learning process to tackle the
problems arising from missing and sparsity of data.

The remainder of this paper is organized as follows. In
Section 2, we formally define the problem we study. We next
model longitudinal representation learning as an optimiza-
tion problem in Section 3 followed by the algorithmic details
in Section 4. In Section 5, we report experimental results fol-
lowed by related work in Section 6. Finally, we summarize
the paper and outline the future work in Section 7.

2 PROBLEM STATEMENT

The task at hand is to embed users in a latent space with
lower-dimensionality while preserving important discrimi-
native features amongst users. Intuitively, we aim to learn
a projection of users’ longitudinal data into a sparse latent
space. The learnt embedding demonstrates discriminative
features of users which can be used to solve different
machine learning tasks such as attribute prediction, suc-
cess prediction and patient clustering. To learn an effective
latent representation, we simultaneously incorporate prior
knowledge, such as temporality of wellness features and
heterogeneity of users, in the learning process. In this sec-
tion, we first present the notations and then formally define
the problem of representation learning of longitudinal data.

2.1 Problem Formulation

Notation. We use boldface uppercase letters (e.g., A) to
denote matrices, boldface lowercase letters (e.g., a) to denote
vectors, and lowercase letters (e.g., a) to denote scalars.
The entry at the i-th row and j-th column of a matrix A
is denoted as A(; j). A(x) and A(,;) denote the i-th row
and j-th column of a matrix A, respectively. Meanwhile,
subscript, i.e., A; is used to denote the i-th item in the set
of items A. ||A||; is the ¢;-norm and ||A||% is the Frobenius
norm of matrix A. Specifically, [|A[[; = >2i"; [|[A¢l[1 and
1A% = /S8 X5 A ).

Let U = {U;1,U,,...U,} denote a set of n users’ lon-
gitudinal information. Each user longitudinal information
U, is denoted by U; € R7**, where f is the number of
different wellness events and features' and ¢ is the length of
observation window in which we measure the events. Note
that the user’s longitudinal data is a matrix where Uj; 1)

1. In this text, we use wellness feature (e.g., blood glucose, hyper-
tension) and wellness events (onset of asthma attack, hyperglycemia)
interchangeably.
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Fig. 1. The conceptual view of the proposed framework for representation learning of longitudinal data from social networks. The wellness latent
space is comprised of two sub-spaces: shared and personal latent space. The final representation of each user, i.e., H;, embeds the user in the
latent space while each row is his/her representation at one time point, where different colors show distinct features and color intensity shows

relative weight of the feature.

represents the measurement value of wellness event j at
time point & for user <.

We want to learn a low-rank representation of users in i/
so that if two users u and v have similar wellness data, their
representation would be closer. We assume that the longi-
tudinal data can be factorized to two components: a latent
space representing wellness concepts and the temporal pro-
gression of each user in the latent space, as shown in Figure
1. The factorization process is capable of reconstructing the
user data matrix on observed values. In general, a user’s
longitudinal representation is formally defined as a matrix
H,;, where each row of the matrix, i.e., Hi( jx), Tepresents the
user wellness state at time point j.

With the notation above, we formally define the longi-
tudinal user representation problem as: Given a set of users’
longitudinal information U, we aim to learn a model as follows,

which can compute wellness latent space W; € R/** and
temporal progression of each user in wellness latent space, i.e.,
H,; € R¥**,

The final representation of each user, i.e., H;, precisely
embeds the user in wellness latent space while each row is
his/her representation at one time point.

3 FACTORIZATION OF LONGITUDINAL DATA

As mentioned, PGWD includes two major aspects: well-
ness aspect and temporal aspect. Constructing an effec-
tive representation requires to subtly decompose these two
components from each other. The key hypothesis behind
longitudinal data factorization is that user’s data matrix
can be decomposed into two factors: (1) wellness latent
space, and (2) the temporal onset of wellness events over
the observation window, i.e., time dimension.

3.1 Preliminaries

Previous studies have shown that the wellness features can
be projected to a latent space with a lower dimension-
ality; resulting in a dense representation of the original
features [53]. This factorization process is capable of recon-
structing the observed entries of original matrix, i.e., patient

longitudinal wellness data. Inspired by these research find-
ings, we utilized nonnegative matrix factorization (NMF) to
decompose patient data matrix into two low rank matrices
which are capable of approximately reconstructing the ob-
served matrix. NMF is a matrix factorization algorithm that
factorizes the non-negative data matrix into two positive
matrices [18]. Assume that U; € R/ ** represents the data
matrix for patient ¢, the aim of factorization is to decom-
pose U; into to non-negative matrices W; € R/** and
H; € R***, whose product provide a good approximation
of U;, ie, U; ~ W,;HT, where k is a pre-specified param-
eter denoting the dimension of reduced space. For instance,
in topic modeling, k represents the number of topics while it
denotes the number of desired latent dimensions in feature
learning. Formally, NMF aims to minimize the following
objective function,

Jnin (U = WiHT [ st Wi 20,H; 20, ()

where W, is called the wellness basis matrix and H; is the
temporal progression matrix. Intuitively, H; represents how
wellness dimensions evolve over time for the given user.
In other words, it demonstrates how the user’s wellness is
going to improve, stable, or worsen as time passes. As the
above objective function is not jointly convex in W; and
H;, finding the global minima is infeasible [18]. Therefore,
alternating minimization is iteratively utilized to find a local
minima. The iterative update rules are as follows,

UiHi UTWi

W, HTH,’ H,W]W;’

where © and the division symbol in this matrix context
denote element-wise multiplication and division. Note that
the above setting is different from standard matrix factoriza-
tion where U represents an item-feature matrix constructed
from the whole dataset.

3.2 Shared Wellness Space for Homogenous Cohort

Factorization of user’s longitudinal data provides an in-
tuitive decomposition of data matrix of a given user into
wellness latent features and their temporal progression over
time. However, decomposing wellness data of each user
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in isolation may not provide effective representation due
to the excessive sparsity in data. Besides, comparing latent
spaces of different users would be a challenging task since
the factorization process may extract diverse latent features
fitted on each user data. Therefore, extracting a common
latent space from the entire collection of data is normally
preferred. The hypothesis behind collective latent space
learning is that the wellness latent space extracted from
different data instances, in our case users, should admit
the same underlying structure, corresponding to higher-
level latent features constructed from the combination of
lower level features. At the same time, the temporal pro-
gression of these wellness latent features can vary from user
to user depending on user’s attributes, behaviors and so
on. Mathematically, it can be formulated as the following
objective function,

n

. . 1 T2 )\1 2
oin Jsps = o Z 1U; — WH |7 + 5 (W%

i=1

171
- H;|2) st. W>0H;>0, (4
%;” %) s >0,H; >0, (4

where the first term factorizes users’ longitudinal data,
where the second and third terms control the complexity of
models. Here, W is to compute the shared wellness latent
space amonyg all patients.

The above objective function assumes that all patients
share the same wellness space and learns a unique mapping
W from the original feature space to wellness latent space.
With sharing of the latent space among all patients, we in-
deed transfer knowledge among the patient cohorts, which
is attractive especially when the available information for
each patient is limited and the cohort is homogenous [29],
[33]. Sharing also reduces the effect of noise since the latent
space is derived from a large amount of data.

3.3 Personalized Wellness Space for Heterogeneous
Cohort

Even though learning a common latent space from dataset is
an intuitive and well-established tradition in machine learn-
ing, its performance is highly varied in real applications
since it assumes a rigid consensus in dataset; i.e., all the
data instances need to follow a specific latent space [29].
This is, however, impossible in real situations since patients
can be divided into different cohorts with different char-
acteristics. For example, diabetic users can be divided into
three major patient groups: type I, type II, and gestational
diabetics based only on disease type, where each group
holds different characteristics [11], [27], [35]. This suggests
that we need a personalized feature learning framework to
deal with heterogeneity in data space.

Inspired by the notion of “dirty models” in machine
learning for handling heterogeneous high-dimensional
data [16], [17], we assume that individual’s wellness la-
tent space can be slightly deviated from the shared space
extracted from the whole population. Mathematically, we

consider the following learning model,

) 1<
min Jprs = o Z |U; — (W +P,)H ||
i=1

IEE SRR

/\1 1 n /\2 n
+ S (IWIE+ =Y IHlE) + = > 1Pl
2 n i=1 n 1=1

st. W>0,H;,>0,P; >0, )

where the latent space is estimated by the summation of
two parameters W and P;. The first part of Eq. (5) learns
three sets of parameters: (1) W is the shared latent space
for all users inferred from the entire dataset; (2) P; is to
model heterogeneity in data space, i.e., the personalized
feature space; and (3) H; demonstrates the temporal evo-
lution of each individual in the latent space. By imposing
different regularizations for each parameter, we can fit an
effective personalized learning model. The above formu-
lation includes two set of regularizers; the second term,
ie, (|W[% + 2> |[H;||%), controls the generalization
performance of the model to avoid overfitting and the third
term (¢;-norm) leads to a sparse model. By imposing a ¢;
norm over P;, we indeed learn a sparse model for the
personalized latent space, enforcing the wellness features
of individuals slightly deviate from the shared features
extracted from the whole population. It is worth noting
that the aforementioned model extends the concept of dirty
model to longitudinal data [16].

From clinical aspects, the proposed model is closely
related to precision medicine [11], [24], where medical treat-
ments are tailored to individual patients based on their de-
tailed genetic and clinical profiles as well as lifestyle factors.
By learning personalized latent space, i.e. P;, our model
follows precision medicine paradigm through modeling dis-
tinct characteristics of individuals. Our model also considers
disease principle paradigm by providing a computational
model with the shared feature space, i.e., W, where disease
treatment and prevention are learned from the entire pop-
ulation. This also presents significance in treating patients
with missing values.

3.4 Modeling Temporal Information

Recall that wellness attributes smoothly evolve over time.
The temporal progression of wellness attributes suggests
that these values gradually changes over time [22], [48]. Fur-
ther, modelling the temporal evolution of wellness attributes
can effectively reduce the noise and sparsity of the wellness
data through imputation of missing values as pointed by
[35], [48]. As each row of the temporal progression matrix
H;;.) indicates the wellness representation of user i in time
point j, we hence penalize the sudden changes of wellness
attributes between neighbouring time points. Specifically,
the temporal progression of wellness attributes can be math-
ematically modelled as,

n t—1

1
Rtemporal = % Z Z HHz(]*) - Hi(j+1>k) ||27 (6)

i=1j=1

where H;(;,) denotes the wellness representation of user 7 at
time point j. To facilitate the optimization of the temporal
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progression term, Eq.(6) can be restated in an equivalent
form as follows,

n t—1

*ZZ [Hi(j —

= 1] 1
*ZHHiRiH%,
2n i=1

where R; € R'*!~! is the temporal smoothness indicator
and is precalculated by the following definition,

Rtemporal = L(j+1*)||2 (7)

1 if j = k;
0 otherwise .

It is worth noting that temporal smoothness constraints
have been also used in the problem of sound source sep-
aration to increase the robustness of separation [26], [37].
Inspired by [37], Eq.(7) constrains that the wellness repre-
sentation of the given user at two consecutive time points to
be close to each other.

4 ALGORITHM DETAILS

The optimization framework, which integrates prior infor-
mation into representation, is defined as follows,

JS'pace + aRtemporalv (9)

where the first term, i.e., Jspace, denotes the objective
function for learning latent space, i.e. Eq.(4) and Eq.(5) for
homogenous and heterogenous settings, respectively.

In this section, we introduce an efficient algorithm to
solve the optimization problems and discuss its time com-
plexity. Note that the optimization problem of homoge-
nous setting is a special case of the heterogenous setting.
Therefore, we only provide the algorithm for heterogenous
setting. Here, by substituting Eq.(5) in the above equation,
we have the following cost function,

wWHn, Z U, —

min (’)—

(W +P,)H!|%
+o- Z IH R, || Il

A
+ﬁ2\|Pi||1

i=1

st. W>0,H, >0,P; >0,

(IIWIIF + - Z L[

=1

(10)

where a, A1, and A, are regularizers to control the trade-off
between different components.

4.1 Optimization Algorithm

We adopt an alternating optimization strategy to find the
optimal values for model parameters. Specifically, we alter-
natively update W, H;, and P; to minimize the objective
function while keeping the others fixed. To enforce the non-
negativity constraints, we need to incorporate Lagrange
multipliers. Let A, Ap;, and Ajp; be the Lagrange matrices

for constraints W > 0, P; > 0, and H; > 0, respectively.
The Lagrange L is:

n

> (Tr(ApiPy) + Tr(ApHy)).

i=1

L=0+Tr(AyW) +
(11)

4.1.1 Optimizing W
By fixing H; and P;, we can rewrite the objective function
as follows,

A
mlnﬁ— W—i—Pz)HzTH%"‘?lHWH%

Z IU; —

+ TT(AwW) +C, (12)

where C' is constant with respect to W. Taking the deriva-
tive with respect to W, we have,

= L) (PHTH, - UH) ZWHTH + AW £ Ay

i=1 i=1
(13)

Using the Karush-Kuhn-Tucker (KKT) complementary con-
dition that A,,(; ;)W j) = 0, we have the following update
rule for W,

S, UH, - Y P.HHT

W+« W
© >, WHIH,; + n\\W

(14)

4.1.2 Optimizing P;
By ignoring terms that are independent of P; in Eq.(11), the
objective function boils down to:

(W +P)H] | %

) 1 A2
min £ = o—||U; — + il + Tr(ApiPs).

(15)

The above objective function is non-smooth since it is the
composition of a smooth term and a non-smooth term, i.e.,
¢, penalty, and gradient descent method is not available for
solving the formulation. Inspired by [6], [25], we utilize the
accelerated proximal method (APM) to solve its equivalent
smooth reformulation. APM has been excessively utilized
in data mining and machine learning communities [6], [15]
due to its optimal convergence rate among all first-order
techniques and its ability of dealing with large-scale non-
smooth optimization problems. Note that in this paper,
we focus on discussing the key concepts of APM, i.e, the
proximal operator and its efficient computation; the detailed
description of APM can be found in [25].

APM maintains two sequences of variables: a feasible
solution sequence {P?/} and a searching point sequence
{S7}, where the superscript, i.e., j, shows the index in the
sequence. We denote the smooth and non-smooth part of
the objective function £ by f(.) and ¢(.). APM reformulates
the optimization problem by a proximal operator which is
formally defined as,

Pt = arg min M. si (PD), (16)
where,
. ) . J .
Moy 8 (Pi) = f(S) + (VI(S), P! = &) + 1| P — 87,
17)
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where S7 is computed based on the past solutions by S7 =
P! + 77/ (P — PJ7') and Vf(S7) denotes the derivatives
of the smooth component f(.) in the objective function, i.e.,
Eq.(15), at the search point S7. The parameter 7 is the step
size and is determined by line search according to Armijo-
Goldstein rule. By ignoring terms that are independent of
P the objective function boils down to:

P} = argmin [P} - Q' (18)

where Q/ = S7 — %V f(S7) and indeed the solution of
P} is the Euclidian projection of Q7 onto convex set of
constraints [25]. Here, V f(S?) denotes the gradient of the

smooth component f(.) in Eq.(15) at S7, which is defined
as:

1

Vf(P;) = —(WH/H,; + P,H/H; - U;H;). 19)
n

4.1.3 Optimizing H;

To minimize the cost function with respect to H;, we first fix

W and P;, and then compute the derivative with respect to
H; as follows,

oL 1
—— = _—[-U,p;, - U’ H; P,)T P,
oH, n[ UP,—-U, W+H,(W+P,)"(W+P,)]
)\1 (0% T
+ (;I + ERz‘Ri JH; + Api, (20

where I denotes the identity matrix with correct dimensions.
Using the Karush-Kuhn-Tucker (KKT) complementary con-
dition that Ap;(m.n)Higm,n) = 0, we have the following
update rule for H;,

ul'p, + UI'w

Hi — Hi ®
(21)

4.2 Computational Complexity

We now analyze the time complexity of our learning frame-
work using big O notation. The learning algorithm includes
three main steps for optimizing three set of variables, i.e.
W, P;, and H;. In update rule for W, the time complexity is
O(nk ft), where n is the number of users, k is the dimension
of latent space, f is the dimension of original feature space,
and t is the length of the observation window. The main
computational time for P; is to compute the derivation
of smooth part of objective function, i.e., Eq.(19), which is
O(ftk). As we need to update P; for all samples, in our
case each user, the total computational time is in order of
O(nkft). The computation for H; is similar to P; with
time complexity of O(nkft). If we need ¢ iteration for
updating the values of variables, the time complexity of
the final algorithm is in order of O(gnkft). As t denotes
the length of observation window and it is in the size of
few hundred, which is a small constant, in our experiment
it is a six months period and ¢ = 25, the final complexity
can be approximated by O(gnk ft) ~ O(gnkf), making PLS
a linear representation learning algorithm. We empirically
verified this in our experiments, as the actual running time
of our framework was similar to running plain NMF on all
longitudinal data matrices.

HZ(W + Pz)T(W + Pz) + ()\11 + QRZR?)H, '

TABLE 1
The list of seed hashtags and twitter support groups used for collecting
twitter user pool.

Hashtags Support Groups
#Dibetes #Bgnow | @AmDiabetesAssn @WDD
#Diabetic #T1D @DiabeticConnect @DiabetesUK
#type2diabetes #T2D @diabetesdaily @NDEP
#diabeteschat #Doc @DiabetesMine @citiesdiabetes
#LivingwithDiabetes  #Dblog @DiabetesHealth @diabeteshf

5 EXPERIMENTS

In this section, we conduct extensive experiments to evalu-
ate the effectiveness of the proposed representation learning
of users from social networks in both homogenous and
heterogeneous settings. We used our approach in two real-
world datasets to accomplish different tasks, which show
superiority of our proposed approach over the state-of-the-
art baseline methods.

5.1 Experimental Settings
5.1.1 Datasets

Diabetes Dataset. We evaluated our approaches on a real-
world dataset containing social postings of diabetic users
about diabetes and their associated symptoms, medications,
and activities. To construct the dataset, we first gathered a
set of users who actively utilized diabetes related hashtags
like “#diabetes” and “#bgnow” or follow diabetes support
groups in Twitter microblogging service. Table 1 shows the
list of hashtags and twitter support groups which were used
for collecting candidate twitter users.

We next crawled the twitter profile of these users using
Twitter API and selected the users who explicitly mention
diabetes as an interest in their Twitter profile, resulting
into 14, 108 different candidate user accounts. To construct
ground truth labels, we utilized an automatic approach, in-
spired by similar efforts in computational social science [21],
based on users who self-declared their disease information.
We used expressions like “I am (Type—T) (1|2) diabetic” to
extract disease type for each user based on his/her profile
information 2. Disease type here refers to the major types
of diabetes and includes three categories: Type I diabetes,
Type II diabetes, and Others. We merged all the other non-
common diabetes types as one category®. Table 2 shows the
statistics of our dataset. As you can see, we could extract
the health attributes of more than 50 percent of users (7,474
Twitter accounts) based on their self-declared information
in their profiles, which we will use for the evaluation of our
framework. Table 3 shows some example profiles from our
collected dataset and their associated regular expression and
ground truth labels*.

To evaluate the reliability of the automatic annotation
approach used in constructing the ground truth labels, we
conducted a crowd-sourcing experiment in which we asked

2. We followed a bootstrapping approach similar to [36] to ensure the
coverage and diversity of used patterns, where all extracted patterns are
manually verified to ensure accuracy.

3. In our dataset, there are three non-common diabetes types: gesta-
tional diabetes, diabetes LADA (Type 1.5), and diabetes insipidus.

4. Due to user privacy concerns, some words/sentences may be
different from original version.
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TABLE 2
Statistics of the Diabetes Dataset
# of Users 14,108
# of Tweets 11,491,036
Diabetes Type I 4,194
Disease Type | Diabetes Type II 2,477
Others 803

TABLE 3

Sample profiles from our diabetes dataset

Husband. Dad. I've diag- I *diagnose* Type

nosed as Type 1 diabetic (1—2) %liabetic M Type 1
since DATE. On a journey ...

I LOVE LIFE!' I am type 2 | I* Type (1—2) dia- Tvoe 2
diabetic and take insulin .... | betic ype
Writer, avid reader, ...; live | * with (T1—T2) dia- T 1
with T1 diabetes, ... betes ype

three volunteers to annotate a randomly selected subset of
the dataset containing 1,000 users. The annotators were
trained with short tutorials and a set of typical examples
before the labelling process. We asked them to carefully
read biographies of the users and annotate them based on
disease type to three categories of type 1, type 2, and other
diabetes. A majority voting scheme among the annotators
was adopted to alleviate any ambiguity and inconsistency.
The manually constructed ground truth was compared with
its rule-based generated counterpart. The inter-agreement
between annotators and rule-based approach was 0.882
with Cohen’s Kappa metric, which demonstrates a sub-
stantial agreement between annotators and the rule-based
approach.

BG Dataset. This is a public dataset of diabetic users
who actively share their wellness information on Twitter.
They not only post about their lifestyle information and
activities such as their diet, activities, and emotional states
but also share their health information in terms of medical
events and measurements like their blood glucose value,
HbAlc test results and hypoglycaemia/hyperglycaemia on-
set. This dataset was first used for extracting personal well-
ness events from social media posts of users [2]. Each user
in the dataset has been labelled with a “successful”, and
“unsuccessful” tags showing that he managed to maintain
an on-target blood glucose value for the pertaining week
or failed to do so, respectively. We used this dataset to
evaluate the effectiveness of our method in predicting the
wellness states of users (such as the blood glucose value)
based on the longitudinal wellness data of users on social
media. This is important since wellness states are highly
dependent on historical values, i.e. temporally dependent,
showing that we need to consider longitudinal information
of user’s wellness instead of merely considering current
state. Table 4 shows the statistics of this dataset.

5.1.2 Extraction of Longitudinal Wellness Descriptions

Feature extraction is an important aspect in our approach
since it determines the original representation of data.
To comprehensively represent user’s wellness, inspired by
studies in clinical text mining [2], [3], [47], we extracted three
kinds of features as follows.

TABLE 4
Statistics of the BG dataset
# of Users 1,174
# of Tweets 1,060, 105
# Successful Users 436
# Unsuccessful Users 738

1) RxNorm description. Medication information is one of
the most important types of wellness data. It is critical for
healthcare safety and quality as well as for prognostic mod-
eling [54]. To extract medication information, we utilized the
approach proposed in [47] which utilizes semantic parser
and domain knowledge to accurately extract medication
information, i.e. medication names and signatures, from free
texts and was commonly used as medication representation
in literature. We utilized the widely-used tf-idf weighting
scheme to construct feature vectors representing users.

2) UMLS description. We also used a widely-used
knowledge-based system called MetaMap to assign Uni-
fied Medical Language System (UMLS) Meta-thesaurus se-
mantic concepts to user’s social posts [3]. We collected
all MetaMap’s finding in the dataset and used their gold
standard medical concepts as features. Along with the
analogy of bag-of-words, we constructed a Bag-of-Concepts
(BoC) in medical terminology and represent each user in
the resulting space. The final BoC contains 5,370 distinct
concepts. Similar to RxNorm description, we utilized the
tf-idf weighting scheme to compute the feature vectors of
users.

3) Personal Wellness Events. Personal wellness events
are defined as events that are directly related to wellness
of individuals; providing a summary of users’ lifestyle and
wellness such as diet event, medication use, and hospitaliza-
tion [2]. Patients frequently post these events in their social
accounts. We utilized the approach proposed in [2] to extract
personal wellness events from users’ published messages on
Twitter. This will provide a high level description of user’s
wellness state; containing 14 distinct dimensions.

To construct the longitudinal wellness matrices of users,
we utilized social media posts of users. We need to select
a granularity level in time dimension and extract the infor-
mation according to the selected granularity. We observed
that the daily granularity is too sparse with more than
0.95% of users reluctant to report information daily. We
thus constructed the users’ longitudinal data at the weekly
granularity. As we collected the data for six months, from
May to October 2015, we constructed 25 time points for the
entire period °.

5.1.3 Evaluation Tasks and Metrics

To demonstrate the effectiveness of the proposed represen-
tation learning approach, we implicitly evaluated its per-
formance in two commonly-used machine learning settings:
supervised and unsupervised learning. The hypothesis be-
hind implicit evaluation is that a good representation will
improve the performance of the selected tasks as compared
to other baselines.

5. We did not consider the first week of May and the last week of
October because the data was partially crawled.
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Attribute Prediction. Attribute detection was widely ap-
plied in user profiling to infer latent attributes of users such
as age and gender prediction, education and occupation
detection, and politic party detection [8], [10]. As inferring
wellness attributes is a critical step in many downstream ap-
plications like recommendation [46], we hence proposed to
predict wellness attributes of users using information from
social media. We evaluated the performance of learning
representation in predicting disease type which is a major
wellness attribute of users. We utilized linear support vector
machine (SVM) as a supervised classification approach,
where in all experiments we used 1ibSVM standard setting
to be fair in comparison. To evaluate our approach, we
utilized diabetes dataset with 10-fold cross validation and
reported the performance in terms of precision, recall, and
the area under the receiver operating characteristic curve
(AUC). As the AUC metric is naturally defined for binary
classification, we applied the one versus other classes setting
and reported the average values. Due to the imbalance
nature of the dataset, the average AUC provides a good ex-
planation of the effectiveness of the proposed method [30].

Success Prediction. Success prediction is the task of pre-
dicting whether a specific user can successfully maintain
his/her health indicators in a suggested range. For example,
a diabetic patient who can successfully control his blood
glucose value in the healthy range would be categorized
as a successful patient, otherwise an unsuccessful patient.
Due to its importance in wellness domain [44], we evaluated
our feature learning framework in predicting users’ success
in managing their diabetes, i.e.,, maintaining their blood
glucose value in the healthy range. Here, we considered
the success prediction as a binary classification problem
and utilized blood glucose dataset to evaluate our problem.
Concretely, similar to the previous task, we train a linear
SVM to predict the success of user in managing his blood
glucose values.

Patient Clustering. We also evaluated our representation
learning approach under the clustering task. Compared to
classification, clustering is totally unsupervised and heavily
relies on the learned features and similarity measure. Patient
clustering is an inevitable need in healthcare domain as
medical experts often need to deep dive on features discrim-
inating patients subgroups. Patient stratification is a widely
known approach in the wellness domain [34]. We adopted
the commonly used cosine similarity for clustering of users
in the learned latent space. We compared the performance
of different approaches in terms of accuracy and normalized
mutual information (NMI) on diabetes dataset. Overall,
this experiment is to verify the robustness of the proposed
approach in unsupervised machine learning setting.

5.1.4 Learning with Longitudinal Data

Standard machine learning techniques and baselines work
on vector data, where we have a feature vector for each data
point. However, our model learns longitudinal representa-
tion for users ( i.e.,, P; and H;). Hence, inspired by [53],
we transformed the latent representation of users into a
feature vector. To extract the feature vectors from learned
representations, we derived features by averaging the latent
features along the time dimension within a given observa-
tion window (25 weeks). In other words, for each feature,

TABLE 5
Performance of attribute and success prediction

Disease Type Prediction
All LapScore Spec NDFS SLS PLS
Prec 42.31 44.71 41.50 46.32 53.02 59.34
Recall | 42.66 46.11 44.82 43.71 48.21 54.20
AUC 63.05 64.47 62.35 | 67.33 | 69.85 | 72.15
Success Prediction
Prec 62.21 67.34 64.08 68.82 71.33 74.12
Recall | 67.45 66.72 64.31 65.01 68.20 68.75
AUC 64.10 61.20 61.40 | 68.95 | 72.21 | 76.80

we averaged distinct values of the feature in different time
points, resulting in a single value. Therefore, the size of
final feature vectors would be equal to the number of latent
dimensions extracted. To be fair in comparison, we used
similar experimental setting for all baselines as mentioned
in previous section.

5.2 On Performance Comparison

To the best of our knowledge, we are the first to study
feature learning of the longitudinal data in social media.
To demonstrate the effectiveness of representation learning
approaches, we compared our learned features with those
of other state-of-the-art unsupervised feature learning meth-
ods, while keeping the classification and clustering scheme
fixed. We compared the following baseline methods:

o ALL. All original features are adopted for each user.

o LapScore. Laplacian score evaluates feature impor-
tance by its ability to preserve the local manifold
structure of data [13].

e Spec. Features are selected by spectral analysis. This
approach can be considered as an extension of Lapla-
cian score method [51].

o NDFS. Nonnegative discriminate unsupervised fea-
ture selection via joint nonnegative spectral analysis
and /3 1-norm regularization [19].

e Shared Latent Space (SLS). Users are embedded into
shared latent space of Eq.(4).

o Personal Latent Space (PLS). Each user’s is repre-
sented using personalized latent space learned from
Eq.(5); modelling both temporality and heterogene-

ity.

We followed previous research studies to tune the pa-
rameters for all baseline methods [13], [19]. The neighbor-
hood size has been fixed to 5 for LapScore and NDFS, as
suggested to be the best in [13], [19]. There are some regular-
ization parameters for NDFS, and LapScore, which were set
based on the experiments from the original papers. SLS, and
PLS have three different regularizer parameters «, A1, and
A2. In the experiments, we empirically set K = 200, o = 0.1,
A1 = 10, and Ay = 0.4 using grid search and reported the
performance of the models using 10-fold cross validation.
More details about the effects of these parameters on the
proposed framework will be discussed in Sections 5.3 and
54.

We evaluated the predictive performance of the pro-
posed framework in supervised setting using attribute pre-
diction and success prediction experiments. The perfor-
mance of attribute prediction and success prediction is
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TABLE 6
Performance of users clustering
All LapScore Spec NDFS SLS PLS
ACC | 5132 56.10 52.84 54.88 56.11 58.01
NMI | 0.0224 0.0227 0.0233 | 0.0240 | 0.0272 | 0.0287

presented in Table 5 in terms of precision, recall, and AUC.
From the Table, we can observe the following points: (1) Fea-
ture selection is important as well as effective. The selected
features can not only reduce the computational time of the
algorithm [51] but more importantly can improve the final
prediction performance, where all the feature learning ap-
proaches outperform ALL baseline. (2) LapScore and Spec
have a neck to neck performance with a slight improvement
by LapScore which is consistent with the results reported in
past research efforts [19], [51]. (3) NDEFS often outperforms
both LapScore and Spec which is attributed to the feature
selection process in NDFS. LapScore and Spec analyze fea-
tures individually which may overlook possible correlation
between distinct features, as reported in [19], while NDFS
considers feature correlation. (4) SLS and PLS consistently
outperform other baseline methods on both tasks. For ex-
ample, PLS approximately gained up to 6% and 3% relative
improvement in terms of precision in attribute prediction
and success prediction, respectively. The reason is probably
because SLS and PLS takes advantages of temporal corre-
lation between feature values to mitigate problems arising
from data sparsity and missing values. However, all baseline
methods assume the i.i.d assumption, which is not valid in
the wellness domain [48]. Moreover, PLS outperforms SLS
most of the time, which shows the importance of modeling
heterogeneity in data space, as reported by past efforts [17],
[22]. Overall, these observations support the fact that joint
learning features and modeling domain prior knowledge
would achieve the best performance [22], [35].

We also evaluated our method under unsupervised
setting, i.e., clustering. Table 6 summarizes the result of
clustering users in learned latent space in terms of accuracy
and NMI. The results are similar to that for supervised
setting, i.e., classification. (1) SLS and PLS approaches
outperform all the baseline methods in terms of accuracy
and NMI, which demonstrates the importance of modeling
temporal progression of wellness features as well as fea-
ture learning. The reason is probably because vector-based
representation cannot capture the context around each user
due to excessive sparsity of data, noisy information in social
media, and inability to model temporal evolution of user. (2)
PLS can effectively improve the performance with relative
improvement of 2% over SLS, in terms of accuracy. This
improvement is attributed to the effectiveness of model-
ing heterogeneity of patient populations, i.e., different sub-
populations in patients, which is modeled in PLS while
SLS assumes a homogeneous cohort of patients. Overall,
the proposed method of joint modeling temporality of wellness
features and heterogeneity of user space can outperform other
baselines and achieve the state-of-the-art performance. This
result is consistent with several past research in multi-
feature machine learning where dirty models are used to
model heterogeneity in samples [22], [35].

TABLE 7
Effectiveness evaluation of each involved component in our proposed
models( df: degree of freedom).

Precision | Recall | P-value | t-stat | df
PLS 74.12 68.75 - - -
SLS 71.33 68.20 3.4e-3 -3.47 9
PLS-noTP 64.02 58.91 1.7e-3 -3.39 9
SLS-noTP 62.37 56.09 2.6e-4 -5.23 9

5.3

We are now interested in figuring out the effectiveness of
different components in our proposed model. In particu-
lar, we compared the performance of incorporating tem-
poral smoothness of wellness features in our model. i.e.,
Rtemporal- We hence conducted experiments to compara-
tively validate the following experimental settings:

On the Effect of Temporal Information

e PLS. Our proposed framework which models both
heterogeneity and temporality, i.e., Eq.(5).

e SLS. Our proposed framework which models tem-
porality with homogenous assumption, i.e., Eq.(4).

e PLS-noTP. A variant of PLS without considering the
temporal smoothness by setting oo = 0.

e SLS-noTP. A variant of SLS without considering the
temporal smoothness by setting o = 0.

We only reported the results for the success prediction
task since similar observations have been made for the other
tasks. The results of component-wise analysis are reported
in Table 7. From the table, the following observations can
be made: (1) SLS-noTP achieves the worst results. This can
be explained by the fact that it neither models the temporal
smoothness in wellness features, nor considers the hetero-
geneity in the patient population. These results highlight the
importance of joint modeling the temporality of wellness
features and heterogeneity of the patient population. (2)
SLS and PLS consistently outperforms their counterparts
SLS-noTP and PLS-noTP, which significantly supports the
importance of modeling temporality of wellness features.
This result has also been reported in modeling disease
progression based on patient’s EHR [48], [54]. (3) PLS is
superior to the others; demonstrating that all components
in our proposed model is indispensable.

It is worth noting that we also conducted a significance
test based on the precision of success perdition task. In par-
ticular, we performed paired t-test between our PLS model
and the other baseline methods based on 10-fold cross
validation and the results shows that the improvements of
our proposed model are statistically significant (p-values are
smaller than 0.01).

5.4 On Parameter Sensitivity

We also studied the parameter sensitivity of our proposed
method. Our model holds two sets of parameters: (1) the
latent space dimension, i.e., k; and (2) the regularizers «,
A1, and Ag in Eq.(5). We first evaluated the sensitivity of the
proposed approach to the dimension of the latent space and
then examined the effects of other parameters in combina-
tion with latent space to see how the parameters affect the
learned latent space. We only performed parameter study
for attribute prediction and clustering tasks to save space.
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Fig. 2. Effect of latent space dimension on the performance of patient
clustering task. Small values of latent dimension result into limited
discrimination power, a large values yield overfitting.

We first varied the dimension of latent space k in the
range of {50,100, 150,...,500} while fixing the other pa-
rameters, i.e., o, A1, and \o. Figure 2 illustrates the clustering
performance in terms of accuracy and NMI. The clustering
performance is the best when the number of latent dimen-
sions is around 200. Figure 3 shows the performance of at-
tribute prediction in terms of AUC and precision. Similarly,
the prediction performance first increases, reaches its peak
and then gradually decreases. The results show that when
the number of latent dimensions is too small, the model
is unable to find a good representation. In contrast, a large
latent dimension tends to overfit the data which leads to loss
in performance. It is worth noting that how to determine the
number of features is still an open problem in data mining

[19].

To assess the effect of parameter A; which con-
trols the complexity of the model, we varied \; as
{0.001,0.01,...,100} while fixing A2, and «. Figure 4(a)
and Figure 5(a) show the sensitivity of our framework
with respect to various values of \;, and k for clustering
and attribute prediction tasks, respectively. As shown in
the figures, with the increase of A1, the performance rises
rapidly and then keeps stable between the range of 1 to
10. A high value of A; controls the effects of noise; making
the model more robust. The results also demonstrate that
the performance is more sensitive to the number of latent
dimensions than ;.

We also studied the effect of parameter Ay which controls
the personalization aspects of feature learning; making the
model more robust in heterogeneous data. Similarly, we
changed Ay in the range of {0.001,0.01,...,100} while
making the other parameters fixed. The results are shown
in Figure 4(b) and Figure 5(b) for clustering and attribute
prediction tasks, respectively. It can be seen that the perfor-
mance of our model significantly improved when Ay varies
between 1 and 10, verifying that modeling heterogeneity in
the patient population is vital in wellness domain.

We finally investigated the trade-off between temporal
smoothness of wellness features and latent space dimension
by varying a:in {0.001,0.01,...,100} as presented in Figure
4(c) and Figure 5(c). As shown in the Figures, in most cases,
the performance first increases, reaches its peak and then
gradually decreases. The best performance was achieved
when « is around 0.1. These observations suggest the im-
portance of modeling both temporal smoothness of wellness
features as well as feature learning.

AuC
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Fig. 3. Effect of latent space dimension on attribute prediction task.
Small values of latent dimension result into limited discrimination power,
a large values yield overfitting.

5.5 On Explanation of the Latent Space

While macro-level quantitative evaluation is useful, it is also
instructive to examine the actual results to better understand
the latent space learnt by the proposed model. To accom-
plish this, in this section, we examine the latent features
learnt from the data. This provides us a tangible under-
standing of the output of the proposed model. In the SLS
model, W is the latent space with low-dimensionality, while
H; demonstrates the progression of i-th user in the latent
space. Thus, we are able to represent the learnt embedding
by mapping them into the original features. To accomplish
this, we first normalized the weights of the columns in W
such that the sum of each column is equal to 1. We then
ranked the features for each latent dimension according to
their normalized weights and found representative original
features for each latent dimension. Table 8 shows several
examples of latent dimensions learnt with the list of highly
ranked features for each of the latent dimension. For the
sake of readability, we manually named each row with a rep-
resentative wellness concept. The results demonstrate that
the correlated and relevant features are grouped together to
form a latent dimension. For example the first dimension
shows a group of features related to diabetes medication,
e.g. Insulin (0.188), Injection (0.185), and Novolog (0.137).
Similarly, the third dimension contains features related to
the symptoms and comorbidities of diabetes in which Heart
disease (0.141) and Cardiovascular (0.131) are top features.
Overall, this results verify that the latent dimensions reveals
different wellness aspect of users from their longitudinal
social media data.

To have a deeper understanding of the effect of latent
representation on the defined tasks, we also inspected the
top parameters for the prediction of Diabetes Type II class.
Our analysis revealed that the first two latent dimensions in
Table 8 are prominent features for the prediction of Diabetes
Type II. This is indeed reasonable as the top features, i.e.
terms, in “Medication” latent dimension are related to Type
IT Diabetes treatments. Similarly, important features in the
second latent dimension, i.e. “Symptoms and Medication of
Type 11”7, are also deeply relevant to Diabetes Type IL It is
worth noting that inspection of the tweets pertaining to this
class also demonstrates features relating to Diabetes Type
II. Two sample tweets in this class are “Doctor today have
to redo my insulin pump numbers to high. right side of
back still swollen another month of muscle relaxers” and
“#Bloodsugars 5.5 mmol/L Dinner 50g cabs, 475 kcal. 7
units of #NovoRapid”. Overall, the results validated that
learning a good latent representation contributes to the per-
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Fig. 5. The effect of different regularizers on the performance of attribute prediction task. Overall, latent dimension is an important factor in learning
good representation. Besides, finding the best values for hyperparameters results into learning an effective latent space.

TABLE 8
Prominent feature for the Shared Latent Space and their weights.

[ ID [ Name [ Top features (weight) |
Diabetes(0.201), Glucose(0.191),
01 | Medication Insulin(0.188), Injection(0.185),

Novolog(0.137), Humalog(0.012),
Hypoglycemia(0.012), Victoza(0.012)

Metformin(0.221), Sugar(0.151),
Glucophase(0.146), mg(0.087), Weight

Symptoms and

02 | Medication of | }566(0.041), Diarrhea(0.034), Pain(0.031),
yp Actos(0.027)

Heart disease(0.141),

Cardiovascular(0.131), Surgery(0.129),

03 | Comorbidities Diabetes(0.121), Hypertension(0.052),

Ischemic(0.019),
Respiratory(0.018)

Pain(0.018),

formance of the prediction task. It is worth noting that 39%
of tweets hold features corresponding to RxNorm, which
indicates that patients often discuss their medication online.
Besides, 26% and 16.5% of the collected tweets are relevant
to UMLS and Personal Wellness Events, respectively. This
is attributed to the fact that patients leverage the power
of social media to receive and provide social support from
peers with similar wellness conditions [1], [2].

6 RELATED WORK

Representation learning, or latent feature learning, is a pop-
ular approach for discovering low-dimensional structure
from high dimensional data. We are interested in factoriza-

tion based models which aim to find a low rank decomposi-
tion of original space approximately recovering the original
space including sparse coding, Singular Value Decomposi-
tion (§VD), Principal Component Analysis (PCA), Weighted
Matrix Factorization (WMF), and so on [5], [20], [38]. Re-
cently, latent factor decomposition has been attracting much
interest to alleviate data sparsity in recommendation task
where user-item matrix is used to model user interests and
intentions [4], [14], [17], [49], [50]. For example, Cai et al.
[4] proposed a graph regularized NMF (GNMF) approach
which employs the geometrical information of data space
in factorization process. Similarly, semi-supervised GNMF
(SGNMF) incorporates label information into the graph
construction [23]. NMF has also been applied onto multi-
view data, where a shared latent factor is inferred from
different views [14], [29], [33]. For instance, joint NMF has
been applied to multi-view clustering of Web 2.0 items by
decoupling the learnt latent factors inferred from different
views [14].

Personalization of latent factor modelling was first ex-
plored in [32], where a joint personal and social latent
factor (PSLF) has been utilized for social recommendation.
Similarly, Pan et al. [28] aggregated the features of a group
of related users to reduce the uncertainty of the selected
training instances. Zhao et al. [49] leveraged social connec-
tions to improve the performance of one-class recommenda-
tion. Lately, they proposed a personalized feature projection
method that employs users’ projection matrices and items’
factors to solve one-class recommendation problem [50].
Similarly, Rendle et al. [31] proposed a next-basket recom-
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mendation approach based on personalized Markov chains
over sequential set data. By introducing personalization
over the transition graph of each user, they employed both
advantages of Markov chain and Matrix Factorization.

Multivariate time series has also applied for the task
of supervised learning in healthcare domain. For instance,
multivariate time-series with multi-task Gaussian process
was used for predicting the severity of illnesses in ICU [9].
Similarly, several multi-task learning has also been utilized
for progression modeling of chronic diseases. The existing
approaches in this domain can be group to three main
categories of: mono-modal mono-task learning, multi-task
learning, and multimodal analysis. For example Nie et
al. [26] proposed a regression model, named adaptive mul-
timodal multi-task learning (aM2L), to predict the progres-
sion of chronic diseases such as Alzheimer’s Disease. Their
proposed model incorporated three types of prior knowl-
edge into the learning process: 1) modality agreement; 2)
adaptive modality weighting; and 3) temporal progression.

Most of the existing approaches for latent factor learn-
ing have been designed for vector-based representation to
embed users (or items) in a low dimensional space. They
will fail to provide effective representation if applied to
longitudinal wellness data. Furthermore, existing feature
learning techniques assume that data items are i.i.d., which
is clearly violated in longitudinal data. Moreover, most of
these approaches fail to model heterogeneity in data space
or model temporal dependency as a regularized multi-
task learning framework but overlook heterogeneity in data
space. Our aim is to learn a latent representation directly
from longitudinal data where temporality and heterogeneity
of data are jointly modeled.

In the area of data-driven health care, phenotyping has
been applied to Electronic Health Records (EHRs) to predict
the onset of congestive heart failure (CHF) and end stage
renal disease (ESRD) by learning a general model [53]. Our
framework, however, is different from their approach since
we simultaneously model the shared latent space between
homogenous populations to transfer knowledge among ho-
mogenous population as well as learn personalized latent
space for each user to learn individual-based features. Their
framework either considers a shared space or an individual
latent space, which can be considered as a special case of our
formulation, i.e., SLS. Similarly, Wang et al. [42] proposed a
clustering-based approach to model the heterogeneity in the
patient population, where the shared latent space is learnt
for each group of users. It is worth noting that multi-task
learning paradigm was also used for investigating EHRs,
where they mostly assume the task are homogenous and
learn task models simultaneously [27], [54].

7 CONCLUSIONS AND FUTURE WORK

In this paper, we introduced a novel representation learn-
ing approach for longitudinal wellness data. The proposed
method jointly models the temporal progression of wellness
attributes as well as the heterogeneity in the patient popu-
lations. In particular, we factorized user’s longitudinal data
into two components, namely, the latent space representa-
tion and user temporal evolution in the space. The latent
space is comprised of two sub-spaces: shared latent space

and personalized latent space, which permits to exploit both
consistency within homogenous cohorts as well as differ-
ence amongst heterogeneous cohorts to share an effective
representation. Extensive experiments on two real-world
datasets and different learning tasks in wellness domain
verified the potential ability of the proposed framework in
learning a good user embedding.

This study demonstrates the importance of feature learn-
ing approaches intrinsically designed for longitudinal data.
Different extensions of this work are currently being in-
vestigated. The first is to utilize the social context around
users in a collaborative learning approach. As social media
users are linked to each other, incorporation of network-
centric information is a promising direction. Moreover, users
mostly utilize multiple social networks, thus integration of
user descriptions from multiple social networks would be
a promising research direction. The application of learned
space in different wellness problems can be another promis-
ing direction.
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