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Abstract. The 42 amino acid form of amyloid  (A42) plays a key role in the 

pathogenesis of Alzheimer’s disease (AD) and is a core biomarker for the diagnosis of 

AD. Numerous studies have shown that cerebrospinal fluid (CSF) A42 concentrations 
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are decreased in AD, when measured by enzyme-linked immunosorbent assay 

(ELISA) and other conventional immunoassays. While most studies report no change 

in plasma A42, independent studies using the immunomagnetic reduction (IMR) 

technique report an increase in plasma A42 levels in AD. To confirm the opposite 

changes of A42 levels in CSF and plasma for AD, we assayed the levels of A42 in 

plasma of subjects with known CSF A42 levels. In total 43 controls and 63 AD 

patients were selected at two sites: the VU University Medical Center (n = 55) and 

Sahlgrenska University Hospital (n = 51). IMR and ELISA were applied to assay A42 

in plasma and CSF, respectively. We found a moderately negative correlation between 

plasma and CSF A42 levels in AD patients (r = -0.352), and a weakly positive 

correlation in controls (r = 0.186). These findings further corroborate that there are 

opposite changes of A42 levels in CSF and plasma in AD. The possible causes for the 

negative correlation are discussed by taken assay technologies, A42 transport from 

brain to peripheral blood, and sample matrix into account.  
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INTRODUCTION 

There is a strong demand for fluid-based biomarkers for Alzheimer’s disease 

(AD) in both the research and clinical context, with applications in clinical diagnosis, 

developing AD-related drugs, and as screening tools in clinical trials, for example in 

the pre-screen of patients for amyloid positron emission tomography (PET) [1-8]. 

Quantifications of cerebrospinal fluid (CSF) biomarkers such as A42, total tau (t-Tau) 

and phosphorylated tau (p-Tau) proteins have been incorporated into standard 

diagnostic guidelines for AD [1,2]. It has been demonstrated that the change in CSF 

A42 level happens 10-20 years earlier than the onset of clinical symptoms [3,4]. The 

CSF A42 level was found to be significantly reduced in individuals with AD [5-9]. 

For inclusion of A42 analysis as the first step in a multiple process to screen 

preclinical AD, it is important to be able to measure it with a low cost and 

non-invasive method, such as blood analysis. However, the AD-related biomarkers in 

blood are very low abundant and thus ultra-sensitive assay technologies are needed to 

measure AD-related biomarkers in blood samples. This demand motives numerous 

groups to develop ultra-sensitive assays. Several technologies for peripheral blood 

analysis have been developed, such as single-molecule array (Simoa), single-molecule 

counting (SMC), multi-analyte profiling (xMAP) and mass spectrometry (MS)-based 

quantification [10-15]. So far, the results have been inconsistent showing increased, 

unchanged or decreased plasma A42 concentrations in AD and no overall significant 

change upon meta-analysis [16]. The low levels of A42 in blood together with its 

short half life and matrix effects pose strong requirements on the methodologies [17]. 

An ultra-sensitive immunoassay with high sensitivity and low interference 

called immunomagnetic reduction (IMR) assay was developed to quantify blood A42 

level [18,19]. According to the results in a Taiwanese cohort, blood A42 level 
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measured using IMR is approximately 15 pg/ml in healthy elderly individuals [20]. 

Interestingly, blood A42 levels are increased in early AD (specifically mild cognitive 

impairment (MCI) due to AD and mild AD in the two studies) [20,21]. Importantly, 

higher blood A42 level in AD patients than healthy control was also observed in 

study based on a US patient cohort [22]. The good consistency between the studies in 

Taiwan and US shows the high reliability and promising utilities of blood-based 

biomarkers for both research and clinical uses of AD using IMR assay.  

According to the published reports by independent groups, significant changes 

in A42 level in both CSF and in plasma in AD were found, but with an opposite 

change in A42 between CSF (reduced levels) and plasma (higher levels), which 

implies that there is an inverse correlation for A42 between CSF and plasma. 

However, the cohorts in the CSF studies were different from the above studies, 

precluding the possibility to directly correlate A42 levels between CSF and plasma in 

the same cohort. Therefore, in the present study, the levels of plasma A42 (measured 

with IMR) were directly compared and correlated with those in CSF (measured with 

ELISA) in the same cohort, that included 106 samples from 63 AD patients and 43 

controls from two independent sites. In addition to examining the correlation in A42 

level between CSF and plasma, possible factors contributing to the correlation are 

discussed. 

 

MATERIALS AND METHODS 

Study populations 

Two sites enrolled subjects and analyzed CSF A42. The first site was the 

Clinical Neurochemistry Laboratory, Sahlgrenska University, Mölndal, Sweden, and 

the samples consisted of de-identified CSF samples from clinical diagnostic routine, 
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following procedures approved by the Ethical Committee at University of Gothenburg. 

The AD group included patients with cognitive deterioration who had pathological 

CSF AD core biomarker levels using optimized cut-off levels for AD, specifically 

Aβ1-42 < 530 pg/ml, t-tau > 350 pg/ml, and p-tau > 60 pg/ml [23]. The control group 

included patients with minor psychiatric or neurological complaints, but with normal 

basic CSF tests (cell count, CSF/serum albumin ratio, IgG and IgM index), thereby 

excluding disorders affecting the blood-brain barrier function, including inflammatory 

CNS disorders [10], together with normal levels of the core AD biomarkers. 

The second site wasthe Alzheimer Center at VU University Medical Center. We 

selected 53 patients (n = 34 AD patients and n = 19 controls) from the Amsterdam 

Dementia Cohort [24]. All patients underwent standard dementia screening at baseline, 

including physical and neurological examination, electroencephalogram (EEG), 

magnetic resonance imaging (MRI) and laboratory tests. Cognitive screening included 

at least a Mini Mental State Examination (MMSE). Diagnoses were made by 

consensus in a multidisciplinary team without knowledge of CSF results. The 

diagnosis of SCD was given when the results of all clinical examinations and test 

results were normal, i.e., when the criteria for MCI or AD were not fulfilled, and there 

was no psychiatric diagnosis. The SCD patients served as a control in this study. All 

probable AD patients met the core clinical NIA-AA criteria [1]. All subjects gave 

written informed consent for the use of clinical data for research purposes and the use 

of clinical data was approved by the local ethical review board.  

CSF biochemical analysis 

CSF sampling and analyses followed similar protocols for both sites. In short, 

CSF was obtained by lumbar puncture, using a 25-gauge needle, and collected in 10 

ml polypropylene tubes (Sarstedt, Nümbrecht, Germany). Within two hours, CSF 
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samples were centrifuged at 1800g for 10 minutes at 4° C. CSF supernatant was 

transferred to new polypropylene tubes and stored at -20° C until further analysis 

(within two months). CSF Aβ42 was measured with a commercially available ELISA 

(Innotest β-amyloid(1-42); Fujirebio, Ghent, Belgium) on a routine basis as described 

before [25,26]. 

Sampling plasma and assaying Aβ42 in plasma 

Plasma samples were collected by EDTA-blood collecting tube followed by 

centrifugation with a speed ranges from 1500-2500g for 15 minutes at room 

temperature. The upper layer (plasma) was then transferred and aliquoted to 1.5 ml 

microcentrifuge tube and stored at -70 ℃ or lower until further analysis. Collected 

plasma samples were then delivered to MagQu Co., Ltd. by dry-ice package for 

assaying plasma A42 blindly. 

Plasma A42 concentration was measured by the IMR assay [18,27]. Amyloid β 

1-42 IMR Reagent (Cat. # MF-AB2-0060; MagQu Co., Ltd., Taiwan) is made of 

magnetic nanoparticles (Cat. # MF-DEX-0060; MagQu Co., Ltd., Taiwan) and 

specific antibody (Cat. # ab34376; Abcam, UK) against C-terminal of A42. A fixed 

volume of IMR reagent and plasma sample (60 l: 60 l) were mixed in sample 

testing tube and assayed with magnetic immunoassay analyzer (Cat. # XacPro-S; 

MagQu Co., Ltd., Taiwan) at room temperature. The analyzer detects the reduction 

percentage in the alternating current (ac) magnetic susceptibility ac of IMR reagent 

due to the interaction of antibody-coated magnetic nanoparticles and Aβ42. The 

reduction percentage of ac signal is referred to as the IMR signal. The IMR signal 

was converted to the concentration of A42 according to the relationship between IMR 

signal and A42 concentration [21,27]. It is not necessary to dilute EDTA plasma 

sample for assaying A42 by IMR, because the plasma A42 levels of both control and 
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AD group are within the assaying range of IMR A42 assay (0.77-30,000 pg/ml). 

Interference test of IMR plasma A42 assay by A40 

Sample contained 100 pg/ml of A42 (Cat. # A9810; Sigma-Aldrich; USA) was 

reconstituted and prepared according to user’s manual. 100 pg/ml of A40 (Cat. # 

A1075; Sigma-Aldrich; USA) was used as interference material and then spiked into 

sample contained 100 pg/ml A42. The A42 levels were then determined by IMR 

A42 assay. 

Statistical analysis 

Continuous variables are presented as (mean ± standard deviation). Continuous 

variables were compared using T-test. Spearman correlation done with GraphPad 

Prism, r, is performed to explore the correlation between plasma A42 and CSF A42 

levels.  

  

RESULTS 

The demographic information of subjects enrolled at Sahlgrenska University 

(GOT) and Amsterdam (AMST) is given in Table 1. The mean values and standard 

deviations of CSF A42 level detected with conventional ELISA for each site are also 

shown in Table 1. The average levels of CSF A42 in AD groups at the two sites were 

402.2  105.3 pg/ml (GOT) and 465.2  106.9 pg/ml (AMST), respectively. The CSF 

A42 levels for control groups of the two sites were 901.3  177.2 pg/ml (GOT) and 

979.7  190.6 pg/ml (AMST), respectively. Combining subjects of the two sites, the 

CSF A42 level is 432.2  109.9 pg/ml for AD and 946.9  187.1 pg/ml for CONT, as 

given in Table 2. The combined AD group showed a significantly lower level of CSF 

A42 than the control group (p < 0.001). 
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The specificity of plasma A42 assay by IMR was clarified by spiking its 

similarity, A40, in sample contained A42 as interference material. The measured 

A42 on samples contained A42 only was 115.7 pg/ml. The measured A42 of another 

sample contained both A42 and A40 was quantified to be 104.6 pg/ml. The recovery 

rate of measured A42 by IMR between with and without A40 is 90.4% with a error 

range less than 10%. 

Human plasma contains various and abundant endogenous biomolecules may 

interfere the measurement of IMR assay on plasma A42. The chemicals in medicine 

used to treatment inflammatory diseases, viral and bacterial infections, cardiovascular 

disease and Alzheimer’s disease may also interfere. Each of these common molecules 

and chemicals (10,000 mg/ml of hemoglobin, 600 mg/ml of conjugated bilirubin, 

30,000 mg/ml of intra lipid, 200 mg/ml of uric acid, 500 IU/ml of rheumatoid factor, 

60,000 mg/ml of albumin, 500 mg/ml of acetylsalicylic acid, 300 mg/ml of ascorbic 

acid, 1,000 mg/ml of ampicillin sodium, 100 ng/ml of Quetiapine Fumarate, 90 ng/ml 

of Galanthanmine hydrobromide, 100 ng/ml of Rivastigmine hydrogen tartrate, 1,000 

ng/ml of Donepezil Hydrochloride and 150 ng/ml of Memantine Hydrochloride) are 

spiked in same plasma sample contains 115.7 pg/ml A42 quantified by IMR assay, 

separately. The measured plasma A42 ranges from 104.3 pg/ml to 123.8 pg/ml, and 

the corresponding recovery rate of measured A42 by IMR between with and without 

interfering materials is within 90.1% to 107.0% with a error range less than 10%. 

Taken together, this finding indicates that the A40, biomolecules, drugs and chemicals 

listed above do not interfere with the assay of plasma A42 by IMR. 

In order to validate the dilution linearity of assaying A42 by IMR, a dilution 

recovery study was performed by diluting a plasma sample containing A42 by factors 
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of 5, 10, 20, 50 and 100 with PBS buffer. The measured A42 concentration of the 

original sample (un-diluted) is 1059.43 pg/ml spiked with synthetic A42 in plasma. 

The dilution recoveries for samples diluted 1:5, 1:10, 1:20, and 1:50 ranged from 97.2 

% to 108.9 % with a error range less than 10%. The dilution recovery for sample 

diluted 1:100 was 115.3%. So, the highest linear dilution factor is 50 times. 

The plasma A42 levels assayed with IMR in AD at individual and combined 

cohorts were 17.9  4.0 pg/ml (GOT), 17.9  3.9 pg/ml (AMST), and 17.9  4.3 

pg/ml (combined). In controls, the plasma A42 levels assayed with IMR individual 

and combined sites were 13.7  0.7 pg/ml (GOT), 16.8  1.8 pg/ml (AMST), and 15.5 

 2.1 pg/ml (combined) for CONT. The AD group showed a higher level of plasma 

A42 than the control group (p < 0.001), as shown in Table 2. The increase in plasma 

A42 level in AD patients of these European cohorts assayed with IMR is consistent 

with Taiwan and US studies [18-20]. According to the results in Table 2, the ratio of 

A42 level in plasma to that in CSF was approximately 1.6% for controls and 4.1% for 

AD patients.  

In Table 2, the opposite change in A42 levels in CSF and plasma between 

controls and AD patients is evidenced. The relationship between CSF A42 and 

plasma A42 of the 106 subjects is plotted in Fig. 1, showing a non-linear correlation 

between CSF A42 and plasma A42. Spearman correlations are used to analysis the 

CSF-Plasma A42 correlations in controls and in AD, separately. In controls, there was 

a weakly positive correlation between CSF A42 and plasma A42 levels (r = 0.186). 

However, in AD, there is a moderately negative correlation between CSF A42 and 

plasma A42 levels (r = -0.352). This points out that the plasma A42 level 

dramatically increases with the decreasing CSF A42 level in AD. 
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By combining the control and AD groups, all data points in Figure 1 are fitted to 

hyperbolic curve: 

Plasma A42 = 





42

42

ACSF

ACSF
,                                      (1) 

where  and  are fitting parameters. By fitting the data to Eq. (1), the parameters are 

obtained to be 12.1 and 130.4, respectively. The fitting curve is plotted with the solid 

line in Fig. 1. The meanings of  and  in Eq. (1) are the low-limited values of 

plasma A42 and CSF A42 levels respectively, as plotted with dashed lines in Fig. 1.  

 

DISCUSSION 

To our knowledge, this is the first report showing that plasma A42 levels are 

negatively correlated with CSF A42 levels in AD patients. In contrast, a previous 

study recently reported both plasma and CSF A42 levels dropped in the dementia 

stage when assayed using ultrasensitive digital ELISA methodology (Simoa assay) 

[12]. This means A42 level in plasma and in CSF assayed with Simoa showed a 

slightly positive correlation. The opposite finding of an inverse (negative) correlation 

between CSF and plasma A42 in the current study might be related to the different 

designs of technological platforms used. The Simoa method [12] is based on the 

sandwich assay and thus relies on the binding of two antibodies (capture and detection 

antibody) to measure A42 molecules in body fluids [12,28], with the first antibody 

used to capture the N-terminal of A42, whereas the second antibody binds to the 

C-terminal domain of A. Because plasma A42 is frequently bound to carrier proteins 

in blood, such as albumin or lipoproteins [29], this may induce a potential 

stereoscopically obstacle for two antibodies to associate with one A42 molecule 

simultaneously, with loss of some plasma A42 signal by using two antibodies in 
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sandwich method. In contrast, the IMR method is a single-antibody immunoassay. 

The antibody specifically capturing C-terminal (a.a. 37-42) of A42 is anchored on the 

magnetic nanoparticles to detect A42 molecule. Based on the design of IMR assay, it 

ideally has a higher possibility to capture and detect A42 molecule when C-terminal 

of A42 is exposed in various conformations, such as isolated, complex or oligomeric 

form. This may explain the different signal for IMR in comparison with the 

sandwich-based immunoassay when detecting A42. Another explanation for the 

differing results is that the antibody used in the IMR experiments is a polycloncal 

antibody that has been reported to react with several 25-85 kDa bands of unknown 

identity at western blot of human plasma according to the commercial vendor. It was 

evidenced that IMR A42 assay is specific for A42 in the presence of A40 in present 

study. Whether these are made up from oligomerised A42 or other anti-A-reactive 

proteins remains to be examined.  

In addition to assay methodologies, we propose the following hypothesis from 

the biology point of view to explain the observed negative correlation between plasma 

A42 and CSF A42 levels in this study. CSF A42 shows a significant reduction in AD 

patients as reported in many studies [5-9], probably caused by aggregation and 

deposition of A42 in brain or a defect of A42 clearance which leads to lower amount 

of A42 molecules transport to CSF[30]. In contrast, when plasma A42 levels are 

measured by the IMR technique, there is an increase in AD [18, 20-22], probably 

related to the different transportation systems to move A42 from the brain to the CSF 

and to move A42 from the brain to the peripheral blood. Following is our hypothesis 

to emphasize the impact of independent transportation system on increasing plasma 

A42 levels in AD. 
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It is known that some clearance systems exist for transportation of A42 from 

brain to peripheral blood in order to clean out toxic A42 [31]. The blood-brain barrier 

(BBB) could play a role as a barrier to allow transportation of monomeric and soluble 

forms of A42 to the peripheral blood. The ratio of A42 in plasma as compared with 

CSF is small (< 5%; Table 2), a figure similar to a previous study [32], which may 

indicate that only small portion of A42 born in brain can reach peripheral blood. But 

in AD, the clearance systems might keep working to transport more A42 to peripheral 

blood to avoid more A42 accumulating in brain. This may be one of the reasons that 

A42 level increased in peripheral blood of AD patient in present study. An alternative 

explanation for the inverse correlation between plasma and CSF A42 levels in AD 

patients is the difference in composition of the matrix. The total protein concentration 

in blood plasma is approximately 50-70 g/l for an adult. The blood plasma is abundant 

in albumin (which constitute 50-60% of blood plasma proteins) that may carry 

substantial amounts of A42 [33] as compared with the amount of free A42. Because 

albumin is highly soluble in blood matrix, albumin-A42 complexes may be more 

prone to stay in a soluble form, which may prevent A42 from oligomerization and 

aggregation in blood. When A42 is transported from brain to peripheral blood in AD, 

it is a logical that higher level of soluble A42 in blood plasma are quantified by the 

IMR assay than by a sandwich immunoassay. On the other hand, the total protein 

level in spinal fluid is less than 1% of that in plasma, with albumin levels around 230 

mg/l as compared to 40 g/l in plasma [34]. In this environment with low levels of 

carrier proteins, aggregation-prone A42 molecules may relatively more easily contact 

with each other to form insoluble aggregates, which could reduce levels quantified by 

conventional sandwich immunoassays. On the contrast, IMR assay shows better 
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sensitivity and consistence when quantifying ultra-low concentration of plasma A42 

from various and independent cohorts than conventional ELISA. In order to clarify 

the matrix effect of above interpretation, meanwhile to exclude the divergence 

between methodologies, a study of quantification of CSF A42 and plasma A42 by 

IMR assay form same subjects is necessary for further study. 

 

CONCLUSION 

We demonstrate the correlation between plasma and CSF A42 levels in two 

independent clinical cohorts. While CSF A42 levels were measured using sandwich 

ELISA methods, plasma A42 levels were measured with IMR, which is a technique 

based on a single antibody. A hyperbolic curve was found for the relationship between 

plasma A42 and CSF A42 in the whole set of samples. While plasma and CSF A42 

levels were weakly positive correlated in the control group, a moderately negative 

correlation between plasma and CSF A42 levels was observed within the AD group. 

This negative correlation in AD presented in this study may be caused by the 

differences of assaying methodologies, A42 transportation systems or matrix effect of 

blood and CSF. 
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Caption 

Figure 1. Relationship between plasma A42 and CSF A42 levels for control (CONT) 

and AD group. The solid line denotes the hyperbolic function with two 

asymptotic lines plotted with the dashed lines. 
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Table 1. The demographic information and CSF A42 level of subjects in this study. 

Site Group Numbers Age (yrs.) Gender 

(Male %) 

CSF A42 

(pg/ml) & 

Sahlgrenska 

University 

Hospital 

(GOT) 

CONT* 18 71.6  11.3 35.3% 901.3  177.2 

AD# 33 80.7  9.0 53.8% 402.2  105.3 

Amsterdam 

Dementia 

(AMST) 

CONT 25 63.1  5.6 32.0% 979.7  190.6 

AD 30 60.4  3.2 53.5% 465.2  106.9 

*CONT: Control, #AD: Alzheimer’s disease, &Mean  SD 
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Table 2. Detected A42 levels in CSF and plasma for subjects in CONT 

and AD groups. 

Group Numbers CSF A42+ 

(pg/ml) 

Plasma A42++ 

(pg/ml) 

Ratio# 

CONT 43 946.9  187.1 15.5  2.1 1.6% 

AD 63 432.2  109.9 17.9  4.3 4.1% 

Mean  SD; +Detected using conventional ELISA; ++Detected using 

IMR; #A42 level ratio of plasma to CSF. 
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