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Failure is Not an Option: Policy Learning for
Adaptive Recovery in Space Operations

Steve McGuire1, P. Michael Furlong2, Christoffer Heckman3, Simon Julier4, Daniel Szafir3, and Nisar Ahmed1

Abstract— This paper considers the problem of how robots
in long-term space operations can learn to choose appropriate
sources of assistance to recover from failures. Current assistant
selection methods for failure handling are based on manually
specified static look up tables or policies, which are not
responsive to dynamic environments or uncertainty in human
performance. We describe a novel and highly flexible learning-
based assistant selection framework that uses contextual multi-
arm bandit algorithms. The contextual bandits exploit infor-
mation from observed environment and assistant performance
variables to efficiently learn selection policies under a wide
set of uncertain operating conditions and unknown/dynamically
constrained assistant capabilities. Proof of concept simulations
of long-term human-robot interactions for space exploration
are used to compare the performance of the contextual bandit
against other state of the art assistant selection approaches.
The contextual bandit outperforms conventional static policies
and non-contextual learning approaches, and also demonstrates
favorable robustness and scaling properties.

Index Terms— Learning and Adaptive Systems; Human Fac-
tors and Human-in-the-Loop; Space Robotics and Automation

I. INTRODUCTION

ROBOTIC systems tasked with procedurally handling
complex tasks are not currently capable of operating

indefinitely without external interaction [1], [2]. This is a
particularly important consideration for planetary exploration
missions utilizing both humans and robots. Such missions rely
on complex interplays between different actors, with many
possible faults that might occur during autonomous operation.
Robots might be required to interact directly with humans in
the planetary environment, in an on-site habitat, and back on
Earth. Current robotic systems are unable to operate in this
environment without aid, and will likely remain powerless to
do so for the foreseeable future. It is thus natural to consider
how autonomous robots can leverage external assistance to
recover from failures and resume operations.
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Fig. 1: Information flow in an idealized learning robot.

This paper introduces a novel learning-based framework
that enables a team (robots, humans, software agents) to
cooperatively recover from a failure of autonomy by learning
optimal assistance task allocations under dynamic and uncer-
tain agent performance and environmental conditions that are
difficult to comprehensively model a priori. The new optimal
assistance allocation framework leverages contextual multi-
armed bandit reinforcement learning algorithms. The key idea
behind our approach is to exploit empirical information from
observed environment and assistant performance variables in
the form of context features, in order to efficiently learn
optimal assistant selection policies under a wide set of
uncertain operating conditions and unknown/dynamically con-
strained assistant capabilities. Unlike teleoperation strategies
or designated supervision strategies that are typically used for
highly choreographed and tightly coupled space operations,
our approach allows the full set of actors (i.e. agents who
can assist an autonomous agent) to include any robot in the
operating environment, proximal software agents and humans,
as well as distant software agents and humans back on Earth
– thus providing potentially great flexibility to future mission
designs. As shown in proof of concept numerical simulations
of dynamic space mission failure recovery scenarios, the
adaptive nature of our contextual bandit framework allows it to
significantly outperform conventional static policies and non-
contextual policy learning approaches for assistant selection.
Our results also show that contextual bandits demonstrate
robustness to other practical uncertainties such as unknown
state transition probabilities and imperfect context feature
vector specifications while scaling favorably to large problem
spaces.

Section II of this paper presents background and related
work, and describes the formal optimal assistant allocation
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problem. Section III describes our novel contextual multi-
armed bandit framework to solve this problem, which to our
knowledge has not been applied previously to autonomous
failure recovery. Section IV describes the simulated appli-
cation scenario used to evaluate our approach against other
state of the art assistant selection techniques, and Section
V presents and discusses the numerical results. Section VI
presents conclusions and outlook for future work.

II. BACKGROUND AND PROBLEM STATEMENT

This work is motivated by a hypothetical Mars mission
scenario, derived from existing Earth studies [3] and proposed
future manned exploration missions [4]. The crew has been
given a set of high-level goals which define the mission. Each
goal is comprised of a set of tasks that must be completed.
For example, suppose a goal is to characterize the geology
of a particular area [4]. Tasks include: conducting a pre-
outing inspection; traveling to the area of interest; selecting
particular rocks of interest; extracting samples; analyzing the
samples; and interpreting the analysis to make inferences
about greater geology of Mars. Each task is composed of
a series of subtasks, atomic units of work which cannot
be subdivided further [5]. For example, the subtasks for a
robot traveling to an area of interest include: route planning;
obstacle identification; obstacle avoidance; and localization.

Ideally, a robot should be fully capable of completing every
subtask on its own to meet all the mission goals. However,
this ideal is generally unachievable: the robot will eventually
encounter unknown or poorly characterized phenomena that
impacts its ability to complete certain subtasks. For instance,
while executing a navigation subtask, a robot might experience
unusual slippage which means it cannot reach its destination.
This inability to complete a subtask to specification is called
a failure. In the event of failure, the onboard agent must
select an appropriate aid source while considering the mission
impact of its choice. Once aid has been rendered, the robot
resumes autonomous operations. A key constraint on this
process is that human aid sources will have other primary
responsibilities besides monitoring robotic operations.

Fig. 1 shows the architecture of an idealized learning
robot. High-level goals are decomposed into subtasks by
the planner to be completed by the executive. A task monitor
observes the progress that the executive is making towards
completion of each task [6], [7], [8]. Should the task either
fail completely or be predicted to not meet requirements, an
assistant selector is consulted to determine which assistant
to consult. Assistants may be consulted for two reasons: task
recovery and observing exemplars from which to learn better
quality solutions in the future. In either case, the best assistant
should be consulted; the definition of best is a reward function
of mission objectives and resources.

The current practice in space robotic operations is to
designate a single human operator to monitor and assist
robots all the time using tightly choreographed operations
composed offline and orchestrated online by mission operators
and engineers [9], [10]. These designations can be determined
through a combination of expert opinion and design choices,
e.g. as in the static allocation tables of [11].

Subtask Queue
Subtask Status

Move to location Completed
Drill sample Completed

Move to location Failed
Grasp container Queued

Available Helpers
Attributes Actors
Actor ID A B C
Location EVA Habitat Earth

Past Perf (1-10) 4 7 9
Stress Level (1-10) 7 2 6

... ... ... ...
Est Performance Medium High Low

Fig. 2: A robot obtains assistance with the move to location subtask.

This static approach limits multi-robot/multi-tasking op-
erations due to the issue of fan-out, where the human’s
attention becomes divided between multiple competing robots
or external tasks [12]. Dedicated supervision also represents
an inefficient use of crew time (one of the most valuable
resources in a manned space expedition), while tight oper-
ations choreography incurs yet another significant mission
cost in terms of ground-based contingency planning and
system troubleshooting. In contrast to [13], where humans
and robots are working together in physical proximity to
accomplish a tightly-coupled task, humans in our scenario
have other primary responsibilities besides monitoring robotic
operations. While precise tasking and movements of possible
human aids may not be possible, much relevant information
will generally be readily available to robots at a coarse level
in envisioned future mission systems; e.g. in our scenario,
robots can query whether a human is inside the habitat
or outside in a spacesuit. It is thus desirable for assistant
allocation mechanisms to automatically exploit any available
information and dynamically adapt to specific robotic fault
recovery needs in response to evolving human capabilities and
constraints (Fig. 2, e.g. individual levels of skill, experience,
cognitive/physical workload, location constraints, costs for
disrupting human activities, etc.)

A. Related Work
Dynamic assistant selection can be framed as an optimal

allocation problem based on collective utility maximization
for a single robot over the set of actors (where an actor’s
contribution to system utility is defined through a set of local
utility functions based on each actor’s state and assistance
outcomes). Classical centralized [14], [15] and distributed
[16] task allocation schemes require coherent utility functions
to model the overall expected payoff of actor-task assign-
ments. Importantly, most allocation schemes assume that the
underlying task execution process and associated utilities
are well-modeled and time-invariant, i.e. they are brittle and
cannot respond to the system’s actual performance [17].

Optimal assignment problems under uncertainty have also
been addressed through partially observable Markov decision
processes (POMDPs), which are typically solved offline to
determine an optimal online actor assignment policy. In
alternative formulations, POMDPs have been used to optimize
spatio-temporal assignments of robots to tasks [18] and other
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All tasks T
Fetch sample:
T1 → L1

v

Tasks for Actor v

Classify outcrop:
T3 → L3

v

Drill borehole:
T6 → L6

v

Move to sample → t1v,1

Deploy grasper → t1v,2

Grasp sample → t1v,3

Stow sample → t1v,4

Move to home → t1v,5

Subtasks for Actor v

L3
v = [t3v,1, t

3
v,2, ..., t

3
v,4]

L6
v = [t6v,1, t

6
v,2, ..., t

6
v,6]

Fig. 3: Example of Task Decomposition

human-robot collaboration efforts [19]. POMDPs require
accurate system models to evaluate both actions and rewards;
however, such models are often unavailable or challenging
to develop for long-term space missions. Optimal allocation
policies are also extremely difficult to find for POMDPs with
high-dimensional state spaces [20].

Reinforcement learning (RL) can be used to enable
integration of feedback from action choices in order to
improve future choices. Parker, et al’s behavior-based L-
ALLIANCE [21] is an early example of an RL-based adaptive
task allocation system. A key limitation of that work is that it
considers time to complete objectives as the only performance
criteria, when in fact it is only one of many factors that
influence overall task and mission performance. Nevertheless,
the balance between “exploration and exploitation” inherent
to RL allows performance data from assigned actors to
be gathered and leveraged over time, without requiring
accurate a priori knowledge of system models (thus making
it attractive to consider for space missions). Since failure
recovery mechanisms currently do not take advantage of
either state-aware assistance or learning from past requests
for assistance, the novel contribution of our work is to exploit
both of these techniques within an adaptive context-based RL
framework to improve and inform future assistance decisions.

B. Formal Assistance Allocation Problem Statement
Assume there exists a set A = {av}NA

v=1 of actors capable
of assisting an onboard agent during an autonomy failure;
each actor av ∈ {onboard agent, offboard agent, human}.
Each onboard agent maintains a work queue of NT tasks:
T = {Ts}NT

s=1. Every task Ts assigned to a single agent av is
implemented by an ordered list Lsv of atomic work primitives,
called subtasks, such that Lsv = [tsv,1, t

s
v,2, ..., t

s
v,Nsv

]. Lsv is a
complete list of Nsv subtasks that implements every task Ts
assigned to onboard agent av . Fig. 3 shows an example task
decomposition for a single actor with three assigned tasks.

Several simplifying assumptions are introduced, along with
restrictions on the nature of the subtasks and assignments.
First, utility is earned by accumulating reward over a series
of actor assignments in response to subtask failures. In
considering actor assignments, any subtask may only be
assigned to a single actor for execution (i.e no teams
of opportunity or multi-robot teams). Since the onboard
autonomy is assumed to have made a “best effort” attempt at
completing sub-tasks, and since robot computing capabilities
are assumed to be similar, this work does not consider
situations where robots assist one another. The subtask
decomposition of higher-level goals is provided externally,
e.g. by a dynamic task decomposition algorithms [22] or

human intervention [6]. The subtask capabilities of the robot
(tsv) are fixed at deployment time. While any subtask in the
decomposition may fail, failure likelihoods are unknown a
priori. Finally, assistance outcomes are only obtained for
those actors assigned to assist the robot (i.e. no oracles are
available for comparing alternatives).
Problem: Onboard agent au must assign a single actor from
set Ā = A \ {au} of size NĀ to recover from failed subtask
tj and maximize mission utility U . That is, given an NĀ by
1 vector of rewards rk,sv,j corresponding to actor av executing
subtask tsv,j at timestep k, discover a set of NĀ indicator
values γ ∈ {0, 1} such that

U =

∞∑
k=1

NĀ∑
v=1

NT∑
s

Nsv∑
j=1

γk,sv rk,sv,j (1)

is maximized subject to the constraint that one and only one
γk,sv = 1 per k (only one actor may assist at a given time). We
refer to the process by which actors are assigned to subtask
requests as a policy.

III. MULTI-ARM BANDIT ASSISTANCE ALLOCATION

The optimal selection of an appropriate actor on the basis
of dynamically changing information can be viewed as an
instance of a contextual multi-arm bandit problem [23]. Multi-
arm bandits (MABs) constitute a widely applicable class of
reinforcement learning problems, and contextual MABs in
particular are distinguished by the availability and exploitation
of dynamically varying ‘contextual information’ that can be
used to further inform learned policies.

In conventional context-free MABs [24], all learning
occurs by examining the observed empirical reward earned
by selecting a particular actor. However, in the contextual
case, additional observations (called context vectors) of each
actor can be made before selecting a particular actor. These
observations provide insight into the otherwise unobservable
dependencies that may influence an actor’s performance.

The contextual information is provided by two context
vectors: a shared context vector zk and an actor-specific
context vector xkv . Subtask and environment parameters
(such as subtask difficulty and ambient weather conditions)
common to all actors are stacked together in zk, while actor-
specific context parameters (e.g. current location and duty
day information) are maintained separately in xkv for each
actor v.

A. Linear Multi-Arm Bandits
A contextual selection policy uses the context vector xkv

to select the actor v∗ to maximize the expected reward r at
each time step k:

v∗ = argmax
v

E[rkv |xkv ] (2)

In the standard linear multi-arm bandit problem [25], the
expected actor reward estimates are linear in the observed
context features xkv and estimated actor-specific parameter
vector θv , such that

E[rkv |xkv ] = (xkv)T θv. (3)

This standard formulation condition strictly assumes that
no contextual properties are shared between actors, and
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hence that the parameters θv are disjoint between actors. We
maintain this assumption for now to introduce the underlying
theory behind our allocation technique (before relaxing this
later). To estimate θv in this case, a design matrix Dv is
formed. This consists of a stacked set of past observed context
vectors, as well as vector bv that stacks the past rewards:

Dk
v =

[
x1
v,x

3
v, ...,x

w
v

]T
,bkv =

[
b1
v,b

3
v, ...,b

w
v

]T
(4)

The design matrix, the parameter vector, and the observed
rewards form a linear system of the form Ax = b:

Dk
vθ
k
v = bkv (5)

A maximum likelihood estimate of θv can then be computed
at time k via regularized least squares:

θv = ((Dk
v)TDk

v + Id)
−1(Dk

v)Tbkv (6)

where Id is the identity matrix of dimension d corresponding
to the number of observed context vectors and rewards.

This result can now be generalized to the full assistance
allocation problem, where contextual information is not solely
disjoint and independent between actors, since properties such
as the subtask difficulty will be common across all actors.
To accommodate common observations, the underlying linear
model is augmented with the set of shared observations zk at
time k and estimated environmental parameters βk to create
a hybrid linear multi-arm bandit of the form:

E[rkv | xkv , zk] = (zk)Tβ + (xkv)T θv (7)

Maximum likelihood estimates β and θv can be obtained sim-
ilarly as in Eq. 6. Once all context vectors {zk,xk1 , ...,xkNA

}
are observed, the implementation of the contextual MAB
follows Algorithm 2 of [25]. In particular, we re-estimate β
and θv after each time step.

The novel contribution of our work is the application and
evaluation of the hybrid linear contextual multi-arm bandit
to the assistant allocation problem, where each subtask type
has its own bandit. To our knowledge, this method has not
yet been applied to failure recovery in autonomous systems.

IV. EXAMPLE SIMULATED MISSION APPLICATION

We developed a simulation based on planetary exploration
analogue missions [26], [27] to validate and demonstrate
the implementation and necessity of our adaptive assistant
selection framework. Our simulation models aspects of the
exploration environment as well as two categories of human
actors: on-planet explorers and ground-support controllers. To
validate the necessity of an adaptive context-based learning
approach, we compare the performance of five policies for
assistant selection. We briefly describe the dynamics of our
simulation:
1) Subtask Types

In the current experiment, C =
{navigate,manipulate, handle sample}. We also define
the mapping C(tj)→ C to denote the ‘parent’ category task
of a given subtask tj .
2) State Variables

Our simulation includes two types of dynamics as func-
tions of simulator ticks t: environmental and human. Two
environmental state variables (es, et) are modeled: season

sleeping habitat EVA

0.2

0.8

0.7

0.1

0.2 0.5

0.5

Fig. 4: Local human state transition model

and light level. Season simulates the changing length of a
day in a rotating planetary body, defined as:

es(t) =
2πt

tththdtdy
mod 2π (8)

where tth, thd, and tdy are time constants encoding ticks per
hour, hours per day, and days per year respectively. Season
is continuous over the interval [-1,1] with a complete cycle
taking one year. Light level simulates the rising and setting
of the Sun and corresponding changes in lighting in the
environment. Light level is continuous over the interval [0,1]
with a cycle taking one day, computed as:

el(t) = max

(
sin 2πt

tththd
− sin es

2
, 0

)
(9)

The complete environment state vector at time k is thus
zk = [es, el].

Six human state variables are modeled: location, time
in location, time awake, time since last food, stress level,
and subtask proficiency [28]; a more complete human state
vector would provide in-depth observations of physiological,
cognitive, and psychological parameters of human crewmem-
bers. We use a simplified human model here as a means of
demonstrating the usefulness of our work.

Location (hl) is defined separately for local humans
(i.e. planetside humans) and remote humans (i.e. ground
controllers). For local humans, three states are defined:
sleeping, habitat, and EVA. To transition between the states,
a probability table is defined in Fig. 4. In the case of remote
ground controllers, location changes are dictated by their on-
and off-duty time. Ground controllers go off-duty after 8
hours of on-duty time and return for work 12 hours later.

Time in location (htl) is defined by the length of time
that an actor has not transitioned to a new location, in hours.
Time awake (hta) is the defined as the length of time that an
actor has not been in the sleeping state, in hours. Time since
last food (htf ) measures the amount of time that an actor has
gone without food. Food events are drawn from exp(λf ) to
obtain the next eating time. In the current simulation, λf = 3
hours. Human actors do not eat when they are asleep. Stress
level (hs) measures the duress of an actor, where location
transitions and a draw from exp(λs) add to stress, while
stress is otherwise reduced by a constant every time step.
In the current simulation, λs = 4 hours, adding 1 unit of
stress per event, while reducing stress by 0.1 unit per tick.
Proficiency (hp) models an actor’s improvement over time
as the same subtask is executed repeatedly. Over time, the
effect is increased productivity (assuming that the environment
and internal actor state is otherwise identical). This vector
quantity with an entry per subtask type is initialized to 1.0
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and increases at a rate of 0.1 per subtask assignment instance.
For each actor v at timestep k, their complete state vector is

xkv = [hta, htc, htf , hs]. Evolution of each of these variables
is shown in Fig. 5. Actor location hl and subtask proficiency
hp are accounted for separately in the costs and benefits.

0
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 Actor: human0
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Fig. 5: Representative simulation state evolution for a single actor.
3) Benefits

Benefit is the progress towards mission goals that an actor’s
assignment to a subtask yields. For example, the benefit
obtained in a navigation subtask might be the error in the final
position compared to the desired position. In the simulation,
the benefit is obtained as a dot product of the complete state
vector for an actor v, [zk xkv ], executing subtask tj with a
weight wj

v for that particular subtask.
In initialization, a Beta prior is placed on each human’s

performance for each subtask type, where the hyperparameters
α (indicating a failure count) and β (indicating a success
count) are drawn from U [1, 10] for local humans and U [5, 10]
for the remote humans. These parameter values are driven
by an assumption that ground controllers are able to dedicate
their time completely to performing a task and thus achieve
higher performance. The weight vector wv is then drawn from
Beta(αv,j , βv,j) for each subtask type j. The final benefit
bksv,j = ([zk xkv ]T ·wv)hj,p,v , where hj,p,v is the proficiency
term from hp corresponding to subtask type j.
4) Costs

We define costs as the resources which are expended when
an actor is assigned to a subtask. In the real world, these costs
could be objective measures such as consumables, bandwidth,
or time, or subjective measures such as mission impact. For
software agent actors, costs could include CPU and bandwidth
usage. In our simulation, costs are a fixed value per subtask
type c ∈ C, drawn from U [1, 10]. Additionally, we discourage
any subtask allocation request that awakens a sleeping human
by adding a penalty term of 100 units based on the current
value of hl. To model the relative difficulty in interacting
with computer controls in a spacesuit, any subtask assigned to
an actor outside the habitat is also penalized 10 units. These
costs are consistent with usability impact analysis for space
system design [28].
5) Productivity as a Reward Measure

Since subtask assignment to individual actors is expected
to yield different benefits and costs for each actor, we wish
to select the highest-performing actor per unit cost. We thus
introduce the idea of productivity [29] as our reward measure.

Reward rk,sv,j obtained by actor v at timestep k and subtask j
implementing task s is defined as:

rk,sv,j = bk,sv,j / c
k,s
v,j (10)

that is, the benefits of the assignment divided by the cost of
that assignment. This measure allows a policy to recognize
that choosing the cheapest or most beneficial assistance may
not yield the maximum progress towards higher-level goals.
Note that this measure only allocates subtasks; allocations at
the task level are outside the scope of this work.
6) Policies

In this work, five policies for assistant allocation are
considered: random, uninformed static, linear multi-arm
bandit, informed static, and KLempUCB. In the random policy,
an actor is assigned to a subtask uniformly over the set of all
actors. No state information is used to inform the selection.
In the linear multi-arm bandit policy, the current state vector
composed of world state and actor state is prepared for
each actor v at timestep k as [zk xkv ]. The linear multi-arm
bandit algorithm is then consulted to estimate the expected
reward of each actor v, with the actor estimated to return the
greatest reward selected for execution. The multi-arm bandit
is then updated with the actual observed reward earned by
the selected actor.

In the uninformed static policy, the Beta priors are used to
estimate overall performance of an actor given a subtask class.
This policy is representative of the static analysis proposed in
[11] as the state of the art. For each subtask type c in subtask
class set C, the ratio of every actor’s hyperparameters (αc, βc)
is compared. The actor with the lowest ratio, i.e. highest
number of successes vs. number of failures, is designated as
the static actor for that subtask type.

In the informed static policy, subtask assignments are
analyzed post-hoc to determine what an ideal static policy
should have been using the ground truth data. To prepare an
ideal static policy, a table is prepared to accumulate a count for
the highest-earning subtask/actor pairing for each assignment
event. After processing all assignment events, the actor with
the maximum count for each subtask is then selected as the
designated assistant. The simulation is then re-executed with
the same initial conditions and subtask history to evaluate
this policy’s performance. While this policy is not physically
realizable, the intent is to derive a high-performance static
policy as a comparison benchmark.

In the Kullback-Leibler Empirical Upper Confidence Bound
(KLempUCB [30]) policy, an empirical model of observations
is used to predict future performance. This algorithm was
chosen to represent an alternative multi-arm bandit policy
compatible with our problem.
7) Regret as a Metric

The performance of each policy is described by regret [24].
Regret expresses the difference between the reward earned by
the policy under study and the best possible reward that could
have been obtained by an omniscient oracle. Since decisions
of a policy affect future conditions based on the past history
of choices, we use one oracle per policy to compute regret.
For example, in order to assess n policies, n oracles would
be required (one per policy) even though all policies may be
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evaluating the same subtask sequence. This oracle is needed
to evaluate the quality of our results and is not a structural
requirement. We will use the metric of cumulative regret in
the next section to analyze the performance of five allocation
policies.

V. SIMULATION RESULTS AND DISCUSSION

To demonstrate the effectiveness of our adaptive approach
to assistant selection, we conducted a series of Monte Carlo
simulations exercising each of the policies in Section IV.
Our experiment investigates whether the multi-arm bandit
selection strategy has a significantly better regret performance
than alternative policies. We present an in-depth analysis of
a nominal mission profile with a fixed number of actors and
subtasks. We also assess the scalability of our algorithm by
conducting a sensitivity analysis with increasing numbers of
actors and subtasks. To provide a more direct comparison to
other learning methods, we present both simulated time and
the number of assignment events within each run. The number
of assignment events corresponds to the size of the training
set from which the multi-arm bandit draws its conclusions.

A. Baseline case: 3 subtasks
We use a nominal baseline scenario with three subtasks and

between 2-10 local and remote humans. Each scenario was
run 500 times, with a simulated assignment event occuring
every five minutes. In each simulation set, the set of Beta
parameters (α, β) are drawn only once to obtain weights for
each subtask class, which are then held constant between
runs. For each simulation, a one-way analysis of variance
(ANOVA) test on the mean regret per time step for each
policy was conducted to determine if the use of multi-arm
bandit yielded an improvement.

Fig. 6 shows simulations for 2 local and 2 remote humans
(a) and 10 local and 10 remote humans (c). In the 2 local and
2 remote case, we found a significant main effect of policy
on regret, F(4, 10074) = 4588.82, p < 0.001, η2 = 0.65. In
the 10 local and 10 remote case, we found a significant main
effect of policy on regret, F(4,10074) = 7779.33, p < 0.001,
η2 = 0.76. In each condition, post-hoc comparisons using
Tukey’s HSD test revealed that the multi-arm bandit was
significantly better in terms of minimizing regret than every
other policy (p < 0.001).

Fig. 7 examines a single run in detail. At selection event
100, the adaptive policy assigns a sample handling task
(subtask 2) to a sleeping actor. This poor choice creates a
large jump in the cumulative regret plot. Later at event 1540,
the adaptive policy once again assigns a sample handling task
(subtask 2) to the same actor who is not asleep, making an
optimal choice. The bandit has thus sensibly adapted to the
system dynamics, and updated θvk in Eq. 7 accordingly.

B. Scalability study
To investigate the scalability of the multi-arm bandit policy,

we set up a series of experiments varying both the number
of subtasks and the number of actors among which these
subtasks are allocated. To compare amongst subtask-actor
count combinations, we use the same significance point as the
baseline case, that is, the number of allocation events needed

for the multi-arm bandit policy to match the performance of
the informed static policy, shown in Fig. 8. Assignment events
until crossover indicates the number of subtask allocations
that are required before the bandit policy outperforms the
informed static policy, corresponding to the red lines in Fig.
6(a) & (c); ANOVA analyses are shown in Fig. 6(b) & (d).

C. Robustness and Comparisons to non-context-based RL
To investigate the robustness of our adaptive policy to

unpredictable variations in human behavior, we introduced a
stochastic variation in the probability transition tables used
to model human actor states. This variation was introduced
by using the transitions of Fig. 4 as a base distribution for a
Dirichlet prior to obtain random transition probabilities. A
set of 100 Monte Carlo simulations was then run with unique
human state transition tables per actor in the simulation drawn
from the prior. In the stochastic transition case, crossover
between the adaptive bandit policy and the informed static
policy occurred at a point similar to that of our base case with
known transition models. This simulation provides evidence
that our choice of an adaptive algorithm is robust to variations
in the human transition table.

Our simulations also included a non-contextual adaptive
multi-arm bandit policy, the Kullback-Leibler Empirical Up-
per Confidence Bound (KLempUCB) algorithm of [30]. This
algorithm was chosen in part because of its non-parametric
nature, which makes it nominally well-suited to our problem
of allocating tasks to dynamically constrained humans with
complex reward functions (Parker’s L-ALLIANCE [21] and
its derivatives are not suitable for comparison since they are
only valid for tasks with deterministic completion times). As
shown in Fig. 6 KLempUCB has performance that barely
outperforms random selection with scale C = 5 discretized
over 50 bins of reward on [0, 2.5]. We believe this is because
KLempUCB represents a family of upper confidence bound
algorithms that have specific tuning parameters and require
specific assumptions about the behavior of arms in the multi-
arm bandit problem; in particular, the requirement that non-
chosen arms remain stationary is not applicable when each
arm represents a human. While choosing optimal tuning
parameters for UCB-style algorithms is an interesting problem,
it is not the focus of our work. Indeed, it can be argued that
requiring a user to tune parameters in order to get superior
performance ties the particular adaptive policy too tightly to
the underlying dynamics of the problem. As such, while we
do not argue here that a linear hybrid model is per se the
best possible multi-arm bandit algorithm for failure recovery,
we can conclude that adaptive bandit algorithms that consider
performance dependencies can achieve higher performance
than those that do not.

D. Discussion
We have shown that a multi-arm bandit solution can

produce superior results over a long series of runs, but we
have not addressed the nature of individual runs. The multi-
arm bandit can only make superior decisions in a parameter
regime where sufficient information has been gathered to
make a reasonable extrapolation about expected reward. This
behavior is evident in the increasing number of simulation
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Fig. 6: Comparison of two sets of actor populations, each with three subtasks. In each condition, post-hoc comparisons using Tukey’s HSD test revealed
that the multi-arm bandit was significantly better in terms of minimizing regret than every other policy (p < 0.001)

0 200 400 600 800 1000 1200 1400
Selection Events

0

50

100

150

200

250

300

C
um

ul
at
iv
e
R
eg
re
t

Bandit
Informed Static
Random
Static
KLempUCB

1

Bad choice by bandit

Optimal choice by bandit
for same human

Fig. 7: An exploded view of a single run of the adaptive policy, zoomed in
to emphasize the adaptive policy’s performance at events 100 and 1450.

10 20 30 40 50
Actor Count

0

1000

2000

3000

4000

5000

A
s
s
ig

n
m

e
n

t 
E
v
e
n

ts
 

 U
n

ti
l 
P

o
li
c
y
 C

ro
s
s
o
v
e
r

Subtasks: 3

Subtasks: 6

Subtasks: 9

Subtasks: 12

Subtasks: 15

Fig. 8: Comparison of scaling with both actor count and number of subtasks

events required to outperform the informed static policy;
when additional actors have been added to the system, more
exploration is required in order to refine internal productivity
predictions. As shown in the scalability study (Fig. 8), the
number of assignment events required to match the informed
static policy is linear in both the number of subtasks and
the number of actors. The bandit has the advantage of being
an unsupervised learning technique that incorporates new
exemplars to the underlying matrices for each actor as new
assignments arrive without requiring the underlying matrices
to expand. To ensure that the system is functional out-of-the-
box, analogue missions and physics-based simulations could
be used to capture initial performance results of supporting
actors under varying conditions, seeding the multi-arm bandit.

One may question why a static policy cannot be augmented
to account for actor state. In simulation, the ad hoc approach
may yield reasonable results; however, a major challenge
is that in a space exploration application, the underlying
reward models are known to be incomplete and require further
refinement that can only be accomplished in situ. The multi-
arm bandit is capable of utilizing prior information that is
both uncertain and incomplete. Our system can inherit any
a priori assumptions or known training data about actor
performance by adjusting the initialization criteria of the
multi-arm bandit; in a similar fashion, the evaluation criteria
for subtask performance (corresponding to reward earned)
can be arbitrarily defined and need not be identical across
subtask classes. Once the system is activated, the multi-arm
bandit is capable of determining the relationship between
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conditions and rewards, resulting in superior performance.

VI. CONCLUSIONS AND FUTURE WORK

In this paper, we have developed a framework for robots
to request assistance that is capable of utilizing rich past
performance data to enlist the aid of the best assistant in
a changing world with difficult or impossible to model
dynamics. Our problem is motivated by a need to allow
robots to function in situations where failures will occur.
This framework has applications beyond space robotics to
any application where autonomy failures may occur that
require external intervention. Our framework enables onboard
agents to recognize actor specialization and direct assistance
requests to the most appropriate actor based on a black-box
performance model, in contrast to the state of the art that
relies on static analysis. Alternative allocation methods rely on
system details such as accurate performance models that are
simply not available in a space exploration scenario. We do
not attempt to estimate internal parameters of any particular
actor, as in a system identification problem, but rather only
estimate current performance based on past experiences. In
simulation, we have shown that our adaptive multi-arm bandit
policy is capable of outperforming an informed static policy
under changing actor and environmental conditions.

An important limitation of our algorithm, and of reinforce-
ment learning techniques in general, is an assumption that
even a poor selection of assistant will not result in mission-
ending damage. Safe reinforcement learning is currently an
active research topic.

Ongoing work includes validation of our approach via
user studies with analogue mission profiles. In recent work
[31], we have started to explore measurements of behavioral,
cognitive, and physiological responses that can form the actor-
specific context vectors. We also seek to implement realistic
autonomy algorithms to evaluate our adaptive policy with a
heterogenous set of specialized human and software agent
actors in simulation and the real world.
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