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STEM CELL THERAPIES FOR RETINAL REPAIR AND REGENERATION 

 

Abstract: Neural cell damage is the main feature of retina degenerative disorders and constitutes 
the major cause of blindness in patients affected by retinal disease.  Present treatments aim to 
prevent disease progression but do not reverse lost vision, for which stem cell-based therapies are 
the only hope for restoration or maintenance of visual function in patients affected by severe 
disease. This review summarizes recent progress in the stem cell field and describes advances made 
on the clinical application of these cells for treatment of retinal degenerative diseases. It also 
describes recent research in the field that is being actively pursued to promote endogenous 
regeneration of the neural retina.  
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1. Introduction 

New developments in the stem cell field have broadened the prospects of designing cell-based 
therapies to repair and restore visual function. Epidemiological studies on diseases such as age-
related macular degeneration (AMD) (1), glaucoma (2) and diabetic retinopathy (3), suggest that 
blindness and severe visual impairment caused by these conditions are on the rise, therefore 
creating significant economic burden to health care systems in the world. Current treatments can 
control disease progression but cannot restore lost function, for which new therapies are needed to 
repair the retina and restore visual function. Research undertaken in the stem cell field in recent 
years has raised the hope for the use of these cells as therapeutic agents to prevent blindness and 
restore visual.  

Most studies in the retina regenerative field have been aimed at replacing neurons by stem cell 
transplantation. However, neural replacement by cell grafting has not been successfully achieved as 
this process requires integration of transplanted cells within major neural networks.  Nonetheless, 
partial restoration of retinal function has been observed after experimental stem cell grafting, 
suggesting that stem cells may constitute an important source of neuroprotective factors to repair 
neural damage and this is a subject of current investigations in the field (4-6). Furthermore, 
following the discovery of the presence of Muller glia with stem cell characteristics in the adult 
human retina (7, 8), approaches to induce self-repair (endogenous regeneration) are at present 
being investigated by several groups. Current knowledge in the transplantation and endogenous 
regeneration research fields are discussed in the following sections. 

1.2 Retina degeneration as a cause of visual impairment and blindness   

Retina degenerative diseases are characterized by neural cell damage, which is the ultimately cause 
of visual impairment and blindness. The retina harbours six different types of neurons, namely cone 
and rod photoreceptors, bipolar, horizontal and amacrine cells, and retinal ganglion cells (Fig 1).  
Two macroglia populations, comprising Müller glia and astrocytes are also present in the retina, with 
Müller cells providing structural and metabolic support to all retinal neurons.  Müller glia and retinal 
neurons have a common progenitor (9) but the origin of retinal astrocytes has been debatable. 
Evidence has been presented that astrocyte migration along the already formed optic nerve appears 
to be dependent on the presence of vascular progenitors (10).  

During the visual process, rods and cones, the light sensitive neurons, respond to light photons by 
producing neural impulses that trigger a cascade of neuronal processes. This leads to retinal ganglion 
cells synapsing with their targets in the brain to allow visual perception. Adjacent to the neural 
retina is the retinal pigment epithelium (RPE), which forms the blood retinal barrier (11) and plays a 
very important role in the visual cycle and metabolic functions of retinal neurons (12). When 
damage occurs to the RPE or selective populations of retinal neurons, a reorganization of the neural 
circuit ensues. This results in death of most neural cell populations in the retina, causing loss of 
visual function and consequently blindness. These pathological features are clearly illustrated during 
the development and progression of prevalent retinal degenerative diseases. For example, during 
age related macular degeneration (AMD), initial damage is observed in the RPE, but during later 
stages photoreceptor cell death occurs due to impairment of their metabolic protection by RPE cells 
(13, 14). In other conditions, such as retinitis pigmentosa, degeneration of photoreceptors leads to 
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retinal ganglion cell (RGC) loss due to axon compression and neural reorganization(15), whilst 
damage to the optic nerve and RGC in glaucoma leads to photoreceptor and horizontal cell damage 
with consequent blindness (16).  

Due to the complex network of the neural retina, methods to promote retina regeneration by stem 
cell transplantation are exceptionally challenging.  During early retinal disease, regeneration of a 
single neural cell type may prove more feasible than in late disease when all neural cell types have 
been compromised and spread neural reorganization has occurred.  Any approach to regenerate the 
retina will require not only a better understanding of the molecular mechanisms that promote stem 
cell differentiation into functional neurons and glia, but also of the requirements for successful 
migration, integration and survival of the transplanted cells. This is of special importance as a retina 
in need of repair may have lost the developmental cues that allow permissiveness for neural 
integration, and it is most likely to exhibit pro-inflammatory and gliotic barriers that prevent 
successful regeneration by transplanted cells (17, 18).  

2. Stem cell potential for retina regenerative therapies   

Regenerative medicine promises vast benefits for patients with progressive retinal disease, and stem 
cells provide an unlimited source of different cell types for potential therapies, as well as for drug 
screening and new drug development.  Progress in the isolation and propagation of stem cells from 
various sources has opened the possibility of generating all types of retinal cells for therapeutic 
application.  It is however possible that stem cells obtained from different sources may differ in their 
ability to repair or restore retina function upon transplantation into the eye, and understanding the 
potential of various stem cell sources for their clinical application may aid in the development of 
effective retinal therapies.   

Pluripotent stem cells, including human embryonic stem cells (hESC) and induced pluripotent stem 
cells (iPSC) have been widely used to investigate the ability of these cells to repair or regenerate the 
retina in animal models of retina degeneration (19-21). Other stem cells being explored for their 
potential to regenerate the retina include adult stem cells such as human Müller stem cells (22-24), 
retinal progenitors (25), which are closely related to Müller glia (26), and mesenchymal stem cells 
derived from the umbilical cord and bone marrow (27, 28). Details on the use of these cell types in 
experimental studies to regenerate the retina will be described in the following section. 

2.1 Embryonic Stem Cells 

Embryonic stem cells (ESC) are derived from the inner cell mass of the blastocyst (29) and are 
capable of differentiating into most retinal cell types under specialized culture conditions in vitro.  
Because of their ability to self-renew and to differentiate into multiple neurons and glia (30), ESC 
have been widely recognized for their potential to developing retinal cell therapies.  Efficient 
differentiation of ESC into retinal progenitors has been obtained by inhibiting the Wnt and BMP 
pathways combined with the addition of IGF-1 or a combination of Nodal and Wnt antagonists (30). 
In addition, defined protocols to obtain differentiated RPE cells from human ESC for clinical 
application have been successfully established by various investigators (31, 32). These protocols 
have been applied to the preparation of RPE cells that have been used in initial clinical trials to treat 
patients affected by Stargardt’s macular dystrophy and age related macular degeneration (AMD) (33, 
34).  Transplantation of retinal neurons derived from hESC has been widely explored in rodent 
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models of retina degeneration (35-37) and normal non-human primate retina (38), but clinical 
application of these cells has not yet been achieved.   

2.2 Induced Pluripotent Stem Cells (iPSC) 

Pluripotency of adult somatic cells such as keratinocytes (39), hematopoietic stem cells (40) and 
dermal fibroblasts (41) can be achieved by transfection with four transcription factors associated 
with the embryonic stem cell state: Oct4, Sox2, cMyc, and Klf4 (42). However, because of the 
tumorigenic potential of c-Myc and the pathogenic risk of using viral vectors used to generate iPSC, 
various modified protocols have been designed to address these safety issues (42, 43).  Despite 
being derived from adult tissue cells, these pluripotent cells share many features of ESC, including 
DNA methylation, gene expression and chromatin state (44). A major advantage of iPSC over ESC is 
their potential for autologous use, which could avoid the need for immunosuppressive therapies 
upon transplantation. Although these properties make these cells more desirable for regenerative 
medicine, there is evidence that iPSC lines can harbor different genetic and epigenetic signatures 
(45). On this basis, extensive investigations to derive iPSC lines with stable genomic architecture are 
being undertaken for application into the clinic.  

2.3 Adult Stem Cells  

Ethical and tumorigenic concerns on the use of ESC and iPSC in cell therapies and limited  
methodology available to differentiate these cells into mature neural cell types, have driven 
investigators to explore the potential application of adult stem cells in retinal regenerative medicine.   
Mesenchymal stem cells derived from bone marrow and umbilical cord blood (46-48), adipose tissue 
(49), as well as Müller glia and progenitor cells (22-25) have been induced to differentiate in vitro 
into retinal neurons and have been transplanted into the retina.  RPE cells  have been reported to 
trans-differentiate towards retinal neurons (50), but convincing evidence that these cells have the 
potential to replace retinal neurons or RPE cells  has not yet been presented.  Adult neural stem cells 
derived from the adult hippocampus have also been transplanted into the eyes of experimental 
models of retinal disease with various outcomes (51, 52), and despite lack of evidence that 
mesenchymal or neural stem cells can regenerate the retina, these cells have been shown to be a 
potent source of trophic factors that aid in neural cell protection and recovery (46, 53). On this basis, 
their potential use may be likely to be restricted to cell-based neuroprotective strategies rather than 
neuronal replacement.  

Retinal specific stem cells, known as Müller glia, have been identified in the neural retina of the 
human eye (7, 54), and they have been investigated for their potential use in retina regenerative 
therapies.  Müller glial cells constitute the major glial cells of the neural retina. They expand across 
the whole width of the retina and provide structural and metabolic support to retinal neurons (55, 
56).  Müller glia are responsible for the spontaneous regeneration of the zebrafish observed 
throughout life (57). These cells have been found in all vertebrate species including the chick (58) 
and small rodents such as mice (59) and rats (60), but their endogenous regenerative ability is 
severely limited in chicks and small mammals (61).  Although Müller glial cells with stem cell 
characteristics are present in the adult human retina (7), there is no evidence for their endogenous 
regenerative ability.  However, human Müller stem cells can be cultured indefinitely in vitro and 
display features of pluripotent progenitor cells in that they have the potential of unlimited cell 
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renewal, express markers of stem cell and neural precursors and differentiate into cells with 
characteristic markers and functions of retinal neurons in vitro (7, 23, 24, 62). Experimental 
transplantation studies have shown that enriched populations of neural retinal precursors derived 
from Müller stem cells significantly improve visual function in animal models of retinal ganglion cell 
depletion (22, 24) and photoreceptor degeneration (23).  

 
3. Neural stem cells during retinal development and adult life 

       
3.1     Embryonic development of the retina      

During embryonic development, eye formation begins with evagination of the neural tube on either 
side of the developing forebrain. This leads to the formation of optic vesicles that further fold to 
form a double layered optic cup. Further invagination of the optic cup drives differentiation of the 
optic stalk, neural retina and retinal pigment epithelium(63). Cell lineage studies using tracers or 
retroviruses have shown that all neural retinal cells derive from a common multipotent retinal 
progenitor cell (RPC)(9, 64). Current studies suggest that here is an order to which the retinal 
neurons and glia are generated, however they do overlap with each other. Retinal ganglion cells are 
the first retinal neurons to develop, followed by horizontal cells, cone photoreceptors, amacrine 
cells, rod photoreceptors, bipolar and finally Müller glial cells (64). Several models have been 
hypothesised to describe cell fate specification in the retina. Progenitor cell division can therefore be 
asymmetric, symmetric mitotic or symmetric post mitotic during retinal cell differentiation. The 
‘competence model’ of retinal cell fate determination suggests that each RPC goes through different 
states driven by extrinsic cues (65). During these ‘competence’ states, the progenitor cells can form 
only a particular subtype of retinal cell, but also have the ability to switch states at any given time. 
Another model suggests that early transcription factor expression in RPCs determines the production 
of future retinal cell types  (66). It has been also suggested that all RPCs are comparable and extrinsic 
factors drive retinal fate specification (67). It is therefore likely that a combination of these models 
may drive retinal cell fate determination, and this is the subject of investigations in the retinal 
development field.   

Retinal progenitor cells are characterised by their expression of multiple transcription factors that 
drive their differentiation into mature retinal neurons through a sequence of activation driven by 
local and environmental signals (68, 69). Through activation of the downstream basic helix-loop-helix 
(bHLH) transcription factors Hes1 and Hes5, Notch pathway activation maintains the progenitor cell 
state. This prevents differentiation and promotes rapid proliferation which is thought to be required 
to complete the formation of all the retinal cell types (70, 71). To drive neural differentiation, Notch 
signalling is downregulated causing increased expression of bHLH (Mash1 / Math5 / Math3 / NeuroD 
/ Ascl1) and homeodomain (Chx10 / Pax6 / Six3 / Crx /Otx2 /Prox1) activators (72, 73).  Müller glia 
formation however, requires continual activation of Hes1 and Hes5 in the RPCs (74, 75), which is 
associated with the progenitor-like roles ascribed to Müller glia.  Retinal ganglion cell development is 
driven by sonic hedgehog (Shh) signalling in a positive feedback loop, where already formed RGCs 
secrete Shh to promote further differentiation. RGC differentiation is accompanied by the 
expression of Atoh7, Pou4f1/2/3 (previously Brn3), Isl 1 and NeuroD1, concomitant with a continued 
expression of the progenitor markers Pax6 and Math5 (70, 76). Horizontal cells are generated by co-
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expression of Math3 and Pax6 , and amacrine cells also express these factors in addition to NeuroD .  
Photoreceptor generation is characterised by expression of the transcription factors Otx2 and Crx, 
where NR2E3 is specific to rod cell fate, and thyroid hormone receptor β2 (TRβ2) determines the 
type of cones generated (77, 78). Although many studies have investigated the control of retinal cell 
fate determination, there is not a complete understanding of the interactions between intrinsic and 
extrinsic cues that direct neural differentiation in the human retina. It is therefore important for 
future studies to build upon the regulation of these factors and mechanisms involved, and new in 
vitro modelling of retinal organoid formation by ESC and iPSC may further confirm these 
mechanisms across different species. 

3.2     Retinal organoids formed by ESC and iPSC in vitro 

Recent advances in stem cell research have shown that through targeted differentiation, human iPSC 
and ESC can mimic early retinal development (79-81). There has been much progress in the growth 
of 3D models of retina in vitro which has not only facilitated investigations on  the mechanisms of 
retinal neuron specification (79, 82, 83) and retinal lamination (84), but also on the testing of new 
drugs for potential use in retinal therapies.  Retinal organoid formation in vitro allows mapping of 
the molecular timings associated with retinal neuron development that are difficult to observe in 
vivo. Investigations in the field have shown that both mouse and human ESC are able to form 3D 
optic cup-like structures following early inhibition of the Wnt signalling pathway, addition of 
matrigel, sonic hedgehog agonists and supplementation with foetal bovine serum (FBS) (79-81).  
Eiraku et al have described four phases during retinal organoid development of mouse ESC that 
mimic retinal organogenesis in vivo.  In the first stage, a spherical vesicle emerges from the embryoid 
body, which flattens in the second stage. During the third stage, the junction between neural retina, 
RPE and embryoid body narrows before invagination of the neural retina on the final stage (83). The 
process of optic cup formation by human ESC occurs at approximately 24 days from the start of the 
differentiation process (79). This also coincides with the expression of Pax6 and Brn3 positive cells 
which are early markers of retinal ganglion cell differentiation (RGC). Lineage studies using a venus 
cDNA knock in gene for the photoreceptor marker Crx have shown that photoreceptors start 
emerging at days 28-34 and their number gradually increase over time, expressing recoverin at day 
60 and rhodopsin and Nrl by day 126 after organoid initiation (79, 83, 85). There is limited 
knowledge of the development of other neural retinal cells including amacrine, bi-polar and 
horizontal cells, however markers such as ap2α (amacrine) Ptf1a, calretinin (horizontal/amacrine) 
and PCK, VSX2 (bi-polar) positive cells have been observed in retinal organoids following  seven to 
eighteen weeks after initiation of organoid formation (81, 85). It has been generally accepted that 
Müller glia are the last retinal cells to form during retina development (9), and in human ESC derived 
retinal organoids, Müller glia staining for glutamine synthetase has been observed in 90 day old 
organoids (85). Genes associated with mature Müller glia markers, including DBI, GNAI2, GLUL, and 
DKK3 have been also observed at 37 days following induction of organoid formation by human ESC 
(85), but it is not clear whether these are restricted to Müller glia or other cells present in the retinal 
organoids. A diagram illustrating the various stages observed during the development of retinal 
organoids from ESC and iPSC in vitro is shown in Fig 2.   

Another important question in biological studies of optic cup formation in vitro, is whether retinal 
organoids formed in the laboratory are able to exhibit retinal function. Using patch clamping, Zhong 
et al have shown that organoids derived from hiPSC not only contain photoreceptors with outer-
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segment-discs at 27 weeks after initiation of organoid formation, but that they respond to light 
stimulation in a comparable manner to rod photoreceptor cells in vivo (86).  Other groups have 
modified the original protocols developed by Nakano et al (79) to encourage the development of 
organoids which favour the production of particular retinal cell types, such as photoreceptors (4), or 
retinal ganglion cells (87) which may have potential uses for retinal cell transplantation and drug 
screening.  

 
4. Prospects for retinal repair and regeneration using stem cells 

4.1.  Stem cell transplantation 

Knowledge gained in the stem cell field during recent years has widened the prospects of developing 
cell-based therapies to repair the retina that has been irreversibly damaged by disease or injury.  
Stem cell transplantation has been extensively performed in several experimental models of retinal 
degeneration, but cell therapies to regenerate the human neural retina are far from being 
implemented in the clinic, and still constitute a major challenge.  Understandably, the majority of 
retinal transplantation studies published to date have been addressed to regenerate the retina in 
animal models of photoreceptor degeneration. This is possibly due to the fact that photoreceptor 
damage is the main feature of retinal degenerative diseases that prevail in large populations, and 
that include retinitis pigmentosa and age related macular degeneration.   Cells used for 
transplantation in animal models of photoreceptor degeneration have involved, amongst others, 
Schwann cells(88), brain-derived precursor cells (89, 90), photoreceptor precursors derived from the 
immature retina in vivo (91), or from pluripotent stem cells (4), ESC derived neural precursors (92), 
mesenchymal stem cells (93) and Müller stem cells (23).  Successful outcomes in models with 
photoreceptor degeneration with partial restoration of visual function have been reported following 
photoreceptor cell transplantation in the subretinal space, and these effects were originally 
attributed to anatomical integration of the grafted cells into the neural circuitry (91, 94, 95). 
However, recent observations from various groups have shown that transplanted photoreceptor 
cells do not integrate into the retina but that they transfer intracellular material to the host cells. As 
a result, fluorescent proteins used to trace transplanted cells are transferred into adjacent host 
retinal cells, giving the appearance of transplant integration (96-98).  These studies have led 
investigators to reconsider whether improved visual function by cell transplantation should be 
aimed to replace neurons or to deliver neuroprotective factors to repair the degenerated retina. 
Other factors limiting the success of stem cell transplantation into the degenerated retina constitute 
the glia scarring and microglia accumulation, often occurring as a result of degenerative disease (18, 
99). Addressing these problems may facilitate the migration and survival of transplanted stem cells.  

In contrast with the high number of transplantation studies aimed at restoring photoreceptor cell 
function, stem cell studies to repair or regenerate the retinal ganglion cell layer and optic nerve have 
been limited. Retinal ganglion cell (RGC) degeneration occurs in conditions such as glaucoma, 
ischaemic optic neuropathies and inherited optic neuropathies, which also constitute major causes 
of blindness and for which stem cell based therapies, may be beneficial. Various sources of stem 
cells have been investigated for their ability to repair RGC function in animal models of glaucoma-
like disease and include bone marrow mesenchymal stem cells (100), oligodendrocyte precursors 
(101), iPSC derived trabecular meshwork cells (102), olfactory ensheathing cells (103) and Müller 
stem cells (22, 24). As seen with transplantation involving photoreceptors, stem cell studies to repair 
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or regenerate the glaucomatous-like retina have proved to have a beneficial effect as demonstrated 
by improvement in RGC function. However, evidence for transplant cell integration with axon 
extension to the optic nerve and brain has not been achieved, for which it has been suggested that 
neurotrophic and neuroprotective factors released by the transplanted cells are responsible for the 
improvement of RGC function (22, 104).  

Unlike stem cell therapies to regenerate the neural retina, therapies to replace the retinal pigment 
epithelium (RPE), the pigmented cells that function as a retinal blood barrier and metabolically 
support photoreceptor neurons(105), have been taken to the clinic.  These cells have been derived 
from iPSC and ESC, for which easy and reproducible protocols for RPE differentiation and 
transplantation have been established (106-108). Initial clinical trials using ESC-derived RPE cells 
showed that transplanted RPE cells do not abnormally proliferate, form teratomas or trigger graft 
rejection or any other pathological reactions (109). This subsequently led to the implementation of 
larger phase I/II clinical trials and have provided evidence of medium to long-term safety and graft 
survival (34) . However, very little improvement in visual function has been achieved, for which it has 
been acknowledged that there is the need to implement more rigorous treatment strategies and 
more accurate clinical testing prior to implementation of these therapies in a large patient cohort 
(110). RPE cells with neural and mesenchymal progenicity have also been identified in the adult 
human retina (50), and because of their reported ability to differentiate in vitro to form stable RPE 
monolayers, it has been suggested that they could be used in cell replacement therapies to treat 
macular disease (111). This approach, however, may not be feasible for autologous or allogeneic 
human transplantation, because of health and regulatory risks associated with the use of human 
tissue and the high costs of manufacturing. In addition, the abundant sources of RPE cells easily 
obtained from pluripotent stem cells surpass the need for the use of cadaveric or autologous RPE 
cells. 

As with any organ transplantation, both, ESC and iPSC express major histocompatibility antigens 
(112), capable of eliciting immunological reactivity in the recipient.  Despite the eye being an 
immune-privileged site, issues with histocompatibility of the transplanted cells and the recipient 
need a special consideration.  Avoidance of immunoreactivity can be achieved by the use of 
autologous cells, for which the use of iPSC may provide a practical approach to transplantation. 
However, due to the high costs of manufacturing a cell line for a single application, the concept of 
‘cell banks’ to maximise the availability of histocompatible cells has gained support over the last few 
years,  and the establishment of cell banks are currently being developed. These will potentially 
provide cells that can be matched to the major HLA loci including A, B and DR of the transplant 
recipient to avoid immune rejection.  
 

5. Endogenous regeneration- Targeting factors with potential to induce regeneration 

To date, research in the retina regenerative field has focused on cell transplantation to replace 
damaged neurons in experimental models of retinal degeneration.  Despite many adult and 
pluripotent stem cells being used, a consensus on the most appropriate cell sources for retinal 
therapies has not yet been achieved. If this research is to be translated into humans there is still 
uncertainty on the long term cell survival of grafted cells, and concerns with efficacy and allogeneic 
reactivity are still in need of further investigations.  In addition, true regeneration by transplantation 
has not been yet demonstrated. Based on evidence that quiescent Müller glia with stem cell 
characteristics are harboured in the adult human retina, a more practical approach to regeneration 
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in preference to transplantation could involve the stimulation of neural cell renewal by resident 
Müller cells.    

It has been known for a long time that fish and amphibians regenerate the neural retina throughout 
life (113), however,  it was originally thought that warm-blooded vertebrates and mammals were 
incapable of retinal regeneration.  Investigations implicating Müller glia as a source of retinal 
neurons were first reported in the new born chick (58). Further studies in the rat retina showed that 
Müller glia could be stimulated to proliferate and differentiate into bipolar cells and rod 
photoreceptors in response to neurotoxic damage caused by the N-methyl-D-aspartate (NMDA)(60), 
and that Müller glia in the adult mouse retina could be induced to proliferate and express markers of 
neural progenitors upon neurotoxic damage and stimulation with growth factors in vivo (59).  
Subsequent investigations of retinal stem cells and their niches in the Tg(gfap: GFP) transgenic 
zebrafish provided compelling evidence for the role of Müller glia as the retinal cells responsible for 
the regeneration observed in this species (57, 114). These studies demonstrated that in the adult 
zebrafish Müller glia form the retinal stem cell niche, and that in response to local injury these cells 
partially and transiently dedifferentiate.  During these events, Müller glia re-enter the cell cycle, 
undergo interkinetic nuclear migration and divide asymmetrically to generate retinal 
progenitors  that give rise to new retinal neurons (57, 114).  More recent studies have further shown 
that newly generated neurons in the zebrafish retina can synaptically re-connect their dendrites and 
axons, suggesting that new neurons may achieve functional integration in the retina. However, 
stereotypic synaptic distributions do not resemble those of the original neural population, indicating 
that developmental cues may be required to achieve true regeneration  (115). 

Müller glia with stem cell characteristics have been identified in the adult human retina (7, 8), from 
where they can be isolated and cultured indefinitely in vitro. (7). As indicated above, this population 
of human Müller glia display stem cell characteristics, including unlimited cell renewal, expression of 
stem cell and neural precursor markers, as well as the potential to differentiate into various retinal 
neurons in vitro (23, 24).  In contrast to lower vertebrates, however, these cells lack regenerative 
capacity in vivo, and it can be speculated that this is possibly due to inhibitory factors present in the 
developed retina to prevent uncontrolled proliferation and tumour formation. Factors produced as a 
result of inflammatory processes occurring during retina degeneration may also prevent Müller glia 
from exerting a regenerative function.  It would be therefore important to identify these factors in 
order to develop strategies for the self-repair and regeneration of the diseased retina. 

Most human retinal diseases that lead to blindness are characterized by abnormal Müller glia 
proliferation, which does not lead to repair but to the formation of glial scarring (reactive gliosis) 
(116). Irrespective of aetiology, gliosis is accompanied by production of inflammatory cytokines such 
as tumour necrosis factor-α (TNFα), heparin-binding epidermal growth factor (HB-EGF), vascular 
endothelium growth factor (VEGF) and transforming growth factor- β (TGF-β) (116), and Müller glia 
itself has been shown to constitute a major source of cytokines and inflammatory factors present in 
the gliotic retina (117).  Although some of these factors have been shown to stimulate the formation 
of multipotent Müller -derived progenitors in the uninjured retina zebrafish retina and to promote 
the regenerative response in this species (118, 119) there is no evidence that they have a 
regenerative role in the human retina. On the contrary, it is possible that these factors may have 
autocrine effects that may prevent Müller cell progenicity.  This is suggested by observations that 
TGF-β, a cytokine found to be highly upregulated in the gliotic retina,  significantly downregulates 
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the canonical Wnt signalling pathway in Müller glia in vitro, inhibiting their differentiation into 
photoreceptors (120).  On this basis, it is reasonable to hypothesize that interaction of pathways 
involved in neurogenesis and inflammation may affect the ability of Müller glia to endogenously 
regenerate the diseased retina. Current views favour investigations into the feasibility of activating 
the potential neurogenesis of these cells in order to regenerate the mammalian retina (121-123) . 

Several genes expressed by retinal progenitors are known to be activated in the zebrafish retina in 
response to injury.  One of these genes, the achaete-scute complex-like 1a (ascl1a) factor has been 
shown to be a key regulator in the generation of Müller glia-derived progenitors responsible for 
retina regeneration in this species (124). Whilst evidence has been presented that TNFα is produced 
by dying retinal neurons and that it promotes Ascl1a expression required for Muller glia proliferation 
in the zebrafish retina (118), there is no suggestion that this cytokine may the same regenerative 
potential in the mammalian retina.  Ascl1 is not expressed in the mammalian Müller glia after injury , 
but its overexpression in mouse retinal explants in vitro and dissociated Müller glia, causes 
upregulation of retinal progenitor-specific genes, and induces differentiation of these cells into 
functional retinal neurons that respond to neurotransmitters (125).  In addition, overexpression of 
Ascl1a in the NMDA (N-methyl-d-aspartate) injured retina of young mice, causes Müller glia to 
differentiate into amacrine and bipolar cells and photoreceptors in vivo (126). Further studies in this 
field indicated that despite Ascl1 overexpression, the neurogenic ability of the mouse retina is lost 
by postnatal day 16. In addition, lack of neurogenesis was shown to be accompanied by decreased 
chromatin accessibility in mature Müller glia, suggesting that epigenetic factors limit retina 
regeneration by Müller glia (127). This was demonstrated by observations that overexpression of 
Ascl1 by Müller glia in the presence of a histone deacetylase inhibitor, enabled Müller glia in the 
adult mice to differentiate into cells expressing neural retinal markers, with ability to synapse with 
host retinal neurons, and respond to light (127).  

In view of the latest findings and evidence for the presence of Müller with potential neurogenic 
ability in the adult human retina, it may be possible that in the non-distant future, new approaches 
to induce endogenous regeneration of the human neural retina can be developed.  This would 
constitute a preferable alternative to stem cell transplantation currently being investigated, and will 
transform the lives of millions of people currently affected by retinal degenerative disease.   

 

6. Stem cells as a source of neuroprotective factors to promote neural survival and 
regeneration                 

 
In view of the data shown above, it is possible that stem cell transplantation to repair or regenerate 
the neural retina may not be aimed solely at replacing neurons, but that delivery of neuroprotective 
and reparative molecules by stem cells should be viewed as an important factor when developing 
such therapies. In addition, microglia control with anti-inflammatory agents may need to be 
considered as an adjunct to cell therapies in order to prolong cell survival and therefore the 
reparative potential of grafted stem cells within the host retina. 
 
Human neural progenitor cells have been shown to protect photoreceptors, maintain synaptic 
integrity and support horizontal cell survival when co-cultured with porcine retinal explants (128). 
Similarly, co-culture of neural progenitors with rat and mice retina in vitro have also shown to delay 
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photoreceptor degeneration (129), and this effect has been attributed to their release of 
neurotrophic factors.  Bone marrow-derived mesenchymal stem cell (MSC) (130)and 
oligodendrocyte precursors (101) have also been shown to exert a neuroprotective effect on retinal 
ganglion cells upon transplantation into the eye of rats with experimental glaucoma. In view of the 
evidence that transplanted stem cells do not integrate into the retina, but that they induce recovery 
of retinal function, it has been suggested that this effect is due to the stem cell neuroprotective 
ability. Hence, strategies for cell transplantation as a source of neurotrophins, or direct delivery of 
recombinant factors into the vitreous have gained much support.   
 
Various approaches to directly deliver retinal neuroprotective agents have been used by many 
investigators, and have included direct injection of recombinant proteins into the vitreous(131-133), 
non-viral or viral vector-based delivery of neurotrophin genes (134-136), or cell encapsulation in 
semipermeable biomaterials for delivery of neuroprotective factors (137, 138).  However, the effects 
of neurotrophins delivered by these methods have been shown to be only transient, and problems 
can arise by repeated intraocular injections of these factors, as shown by observations that multiple 
applications of BDNF do not have an additive effect because continuous application of BDNF causes 
downregulation of its receptor (139). It is not clear whether retinal specific stem cells would be more 
efficient at promoting endogenous repair and or regeneration of neurons and axonal networks in 
the degenerated retina, or whether any type of cell with the ability to produce neurotrophins would 
suffice as a source of trophic factors for retinal repair, and this is subject of current investigations in 
the field. 
 
Whilst investigations into the nature of neurotrophic factors released by mesenchymal stem cells 
(MSCs) have identified BDNF and β-NGF as the factors responsible for the neuroprotective effect of 
these cells when transplanted at sites of nerve injury (140), approaches to enhance the neurotrophic 
effects of stem cells have also been used.  Neural stem cells have been modified to secrete ciliary 
neurotrophic factor (CNTF), resulting in a significantly increase in RGC survival and axon regeneration 
upon their intravitreal transplantation in a mouse model of glaucoma (141).  Rat and human bone 
marrow-derived MSCs induced to secrete high levels of BDNF, GDNF and VEGF, exert a marked 
neuroprotective effect in rat eyes after optic nerve transection (142), whilst MSCs transfected with 
retrovirus to express high levels of BDNF, release high levels of this protein when transplanted into 
the axotomised rat retina (143).  Based on this evidence, justification for cell transplantation to 
repair or regenerate the retina may be mainly based on the assumption that cells do not integrate 
into the diseased tissue, but that neuroprotective factors produced by long lived stem cells within 
the tissue can maintain residual retinal function without achieving true regeneration.  
                                                                                                            

7. Conclusions and future trends 
 

Although progress on the understanding of the potential and limitations of stem cells has been 
achieved in recent years, much research is still needed before stem cell therapies can be 
implemented in the clinic. Encouraging data has demonstrated improvement of visual function after 
stem cell transplantation into experimental models of retina degeneration. However, neural cell 
replacement has not yet been achieved, with visual improvement being ascribed to neuroprotective 
factors released by transplanted cells.  Furthermore, evidence that the adult human retina harbours 
a population Müller glia with stem cell characteristics opens exciting avenues for research into 
methodologies to induce endogenous regeneration of the retina, as an alternative option to stem 
cell transplantation. 
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Figure legends 

 

Fig. 1 

The neural retina: Schematic representation of the anatomical localization of the retina and its 
neural and non-neural cellular components.  

 

Figure 2 

Retinal organoid differentiation from ESC and iPSC.  Schematic diagram illustrating the formation of 
retinal organoids from ESC and iPSC cells. (A) Undifferentiated ESC or iPSC, (B) Embryoid body 
formation at days 2-12, (C) Early protrusion of retinal organoid from embryoid body between days 
12-18, (D) Retinal organoid dissociated from undifferentiated cells between days 20-35 (E) Matured 
organoid between days 40-90 (F) Fluorescence microscopy image of retinal organoid section, stained 
for the Müller glia  cell marker CRALBP.    
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