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ABSTRACT

We investigate the training and performance of generative adversarial networks
using the Maximum Mean Discrepancy (MMD) as critic, termed MMD GANs.
As our main theoretical contribution, we clarify the situation with bias in GAN
loss functions raised by recent work: we show that gradient estimators used in the
optimization process for both MMD GANs and Wasserstein GANs are unbiased,
but learning a discriminator based on samples leads to biased gradients for the
generator parameters. We also discuss the issue of kernel choice for the MMD
critic, and characterize the kernel corresponding to the energy distance used for the
Cramér GAN critic. Being an integral probability metric, the MMD benefits from
training strategies recently developed for Wasserstein GANs. In experiments, the
MMD GAN is able to employ a smaller critic network than the Wasserstein GAN,
resulting in a simpler and faster-training algorithm with matching performance.
We also propose an improved measure of GAN convergence, the Kernel Inception
Distance, and show how to use it to dynamically adapt learning rates during GAN
training.

1 INTRODUCTION

Generative Adversarial Networks (GANs; Goodfellow et al., 2014) provide a powerful method for
general-purpose generative modeling of datasets. Given examples from some distribution, a GAN
attempts to learn a generator function, which maps from some fixed noise distribution to samples
that attempt to mimic a reference or target distribution. The generator is trained to trick a discrimi-
nator, or critic, which tries to distinguish between generated and target samples.

This alternative to standard maximum likelihood approaches for training generative models has
brought about a rush of interest over the past several years. Likelihoods do not necessarily cor-
respond well to sample quality (Theis et al., 2016), and GAN-type objectives focus much more
on producing plausible samples, as illustrated particularly directly by Danihelka et al. (2017). This
class of models has recently led to many impressive examples of image generation (e.g. Huang et al.,
2017a;b; Jin et al., 2017; Zhu et al., 2017).

GANs are, however, notoriously tricky to train (Salimans et al., 2016). This might be understood
in terms of the discriminator class. Goodfellow et al. (2014) showed that, when the discriminator is
trained to optimality among a rich enough function class, the generator network attempts to minimize
the Jensen-Shannon divergence between the generator and target distributions. This result has been
extended to general f -divergences by Nowozin et al. (2016). According to Arjovsky & Bottou
(2017), however, it is likely that both the GAN and reference probability measures are supported
on manifolds within a larger space, as occurs for the set of images in the space of possible pixel
values. These manifolds might not intersect at all, or at best might intersect on sets of measure zero.
In this case, the Jensen-Shannon divergence is constant, and the KL and reverse-KL divergences
∗These authors contributed equally.
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are infinite, meaning that they provide no useful gradient for the generator to follow. This helps to
explain some of the instability of GAN training.

The lack of sensitivity to distance, meaning that nearby but non-overlapping regions of high prob-
ability mass are not considered similar, is a long-recognized problem for KL divergence-based dis-
crepancy measures (e.g. Gneiting & Raftery, 2007, Section 4.2). It is natural to address this problem
using Integral Probability Metrics (IPMs; Müller, 1997): these measure the distance between prob-
ability measures via the largest discrepancy in expectation over a class of “well behaved” witness
functions. Thus, IPMs are able to signal proximity in the probability mass of the generator and
reference distributions. (Section 2 describes this framework in more detail.)

Arjovsky et al. (2017) proposed to use the Wasserstein distance between distributions as the dis-
criminator, which is an integral probability metric constructed from the witness class of 1-Lipschitz
functions. To implement the Wasserstein critic, Arjovsky et al. originally proposed weight clipping
of the discriminator network, to enforce k-Lipschitz smoothness. Gulrajani et al. (2017) improved
on this result by directly constraining the gradient of the discriminator network at points between the
generator and reference samples. This new Wasserstein GAN implementation, called WGAN-GP,
is more stable and easier to train.

A second integral probability metric used in GAN variants is the maximum mean discrepancy
(MMD), for which the witness function class is a unit ball in a reproducing kernel Hilbert space
(RKHS). Generative adversarial models based on minimizing the MMD were first considered by
Li et al. (2015) and Dziugaite et al. (2015). These works optimized a generator to minimize the
MMD with a fixed kernel, either using a generic kernel on image pixels or by modeling autoencoder
representations instead of images directly. Sutherland et al. (2017) instead minimized the statistical
power of an MMD-based test with a fixed kernel. Such approaches struggle with complex natural
images, where pixel distances are of little value, and fixed representations can easily be tricked, as
in the adversarial examples of Szegedy et al. (2014).

Adversarial training of the MMD loss is thus an obvious choice to advance these methods. Here the
kernel MMD is defined on the output of a convolutional network, which is trained adversarially. Re-
cent notable work has made use of the IPM representation of the MMD to employ the same witness
function regularization strategies as Arjovsky et al. (2017) and Gulrajani et al. (2017), effectively
corresponding to an additional constraint on the MMD function class. Without such constraints, the
convolutional features are unstable and difficult to train (Sutherland et al., 2017). Li et al. (2017b)
essentially used the weight clipping strategy of Arjovsky et al., with additional constraints to en-
courage the kernel distribution embeddings to be injective.1 In light of the observations by Gulrajani
et al., however, we use a gradient constraint on the MMD witness function in the present work (see
Sections 2.1 and 2.2).2 Bellemare et al. (2017)’s method, the Cramér GAN, also used the gradient
constraint strategy of Gulrajani et al. in their discriminator network. As we discuss in Section 2.3,
the Cramér GAN discriminator is related to the energy distance, which is an instance of the MMD
(Sejdinovic et al., 2013), and which can therefore use a gradient constraint on the witness function.
Note, however, that there are important differences between the Cramér GAN critic and the energy
distance, which make it more akin to the optimization of a scoring rule: we provide further details
in Appendix A. Weight clipping and gradient constraints are not the only approaches possible: vari-
ance features (Mroueh et al., 2017) and constraints (Mroueh & Sercu, 2017) can work, as can other
optimization strategies (Berthelot et al., 2017; Li et al., 2017a).

Given that both the Wasserstein distance and the MMD are integral probability metrics, it is of
interest to consider how they differ when used in GAN training. Bellemare et al. (2017) showed
that optimizing the empirical Wasserstein distance can lead to biased gradients for the generator,
and gave an explicit example where optimizing with these biased gradients leads the optimizer to
incorrect parameter values, even in expectation. They then claim that the energy distance does not
suffer from these problems. As our main theoretical contribution, we substantially clarify the bias
situation in Section 3. First, we show (Theorem 1) that the natural maximum mean discrepancy
estimator, including the estimator of energy distance, has unbiased gradients when used “on top” of
a fixed deep network representation. The generator gradients obtained from a trained representation,

1When distribution embeddings are injective, the critic is guaranteed to be able to distinguish any two
distributions, given an infinite number of samples.

2Li et al. also did this in a later revision of their paper, independent of this work.
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however, will be biased relative to the desired gradients of the optimal critic based on infinitely many
samples. This situation is exactly analogous to WGANs: the generator’s gradients with a fixed critic
are unbiased, but gradients from a learned critic are biased with respect to the supremum over critics.

MMD GANs, though, do have some advantages over Wasserstein GANs. Certainly we would not
expect the MMD on its own to perform well on raw image data, since these data lie on a low di-
mensional manifold embedded in a higher dimensional pixel space. Once the images are mapped
through appropriately trained convolutional layers, however, they can follow a much simpler dis-
tribution with broader support across the mapped domain: a phenomenon also observed in autoen-
coders (Bengio et al., 2013). In this setting, the MMD with characteristic kernels (Sriperumbudur
et al., 2010) shows strong discriminative performance between distributions. To achieve comparable
performance, a WGAN without the advantage of a kernel on the transformed space requires many
more convolutional filters in the critic. In our experiments (Section 5), we find that MMD GANs
achieve the same generator performance as WGAN-GPs with smaller discriminator networks, re-
sulting in GANs with fewer parameters and computationally faster training. Thus, the MMD GAN
discriminator can be understood as a hybrid model that plays to the strengths of both the initial
convolutional mappings and the kernel layer that sits on top.

2 LOSSES AND WITNESS FUNCTIONS

We begin with a review of the MMD and relate it to the loss functions used by other GAN variants.
Through its interpretation as an integral probability metric, we show that the gradient penalty of
Gulrajani et al. (2017) applies to the MMD GAN.

2.1 MAXIMUM MEAN DISCREPANCY AND WITNESS FUNCTIONS

We consider a random variableX with probability measure P, which we associate with the generator,
and a second random variable Y with probability measure Q, which we associate with the reference
sample that we wish to learn. Our goal is to measure the distance from P to Q using samples drawn
independently from each distribution.

The maximum mean discrepancy is a metric on probability measures (Gretton et al., 2012), which
falls within the family of integral probability metrics (Müller, 1997); this family includes the Wasser-
stein and Kolmogorov metrics, but not for instance the KL or χ2 divergences. Integral probability
metrics make use of a class of witness functions to distinguish between P and Q, choosing the
function with the largest discrepancy in expectation over P,Q,

DF (P,Q) = sup
f∈F

EP f(X)− EQ f(Y ). (1)

The particular witness function class F determines the probability metric.3 For example, the
Wasserstein-1 metric is defined using the 1-Lipschitz functions, the total variation by functions with
absolute value bounded by 1, and the Kolmogorov metric using the functions of bounded variation
1. For more on this family of distances, see e.g. Sriperumbudur et al. (2009b).

In this work, our witness function class F will be the unit ball in a reproducing kernel Hilbert space
H, with positive definite kernel k(x, x′). The key aspect of a reproducing kernel Hilbert space is
the reproducing property: for all f ∈ H, f(x) = 〈f, k(x, ·)〉H. We define the mean embedding of
the probability measure P as the element µP ∈ H such that EP f(X) = 〈f, µP〉H; it is given by
µP = EX∼P k(·, X).4

The maximum mean discrepancy (MMD) is defined as the IPM (1) with F the unit ball inH,
MMD(P,Q;H) = sup

f∈H,‖f‖H≤1

EP f(X)− EQ f(Y ).

The witness function f∗ that attains the supremum has a straightforward expression (Gretton et al.,
2012, Section 2.3),

f∗(x) ∝ EP k(X,x)− EQ k(Y, x). (2)
3We assume throughout that if f ∈ F , we also have −f ∈ F , so that DF is symmetric.
4This is well defined for Bochner-integrable kernels (Steinwart & Christmann, 2008, Definition A.5.20), for

which EP ‖k(x, ·)‖H <∞ for the class of probability measures P being considered. For bounded kernels, the
condition always holds, but for unbounded kernels, additional conditions on the moments might apply.
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Given samples X = {xi}mi=1 drawn i.i.d. from P, and Y = {yj}nj=1 drawn i.i.d. from Q, the
empirical witness function is

f̂(x) ∝ 1

m

m∑
i=1

k(xi, x)− 1

n

n∑
i=1

k(yi, x), (3)

and an unbiased estimator of the squared MMD is (Gretton et al., 2012, Lemma 6)

MMD2
u(X,Y ) =

1

m(m− 1)

m∑
i6=j

k(xi, xj)+
1

n(n− 1)

n∑
i 6=j

k(yi, yj)−
2

mn

m∑
i=1

n∑
j=1

k(xi, yj). (4)

When the kernel is characteristic (Sriperumbudur et al., 2010; 2011), the embedding µP is injective
(i.e., associated uniquely with P). Perhaps the best-known characteristic kernel is the exponentiated
quadratic kernel, also known as the Gaussian RBF kernel,

krbfσ (x, y) = exp

(
− 1

2σ2
‖x− y‖2

)
. (5)

Both the kernel and its derivatives decay exponentially, however, causing significant problems in
high dimensions, and especially when used in gradient-based representation learning. The rational
quadratic kernel

krqα (x, y) =

(
1 +
‖x− y‖2

2α

)−α
(6)

with α > 0 corresponds to a scaled mixture of exponentiated quadratic kernels, with a Gamma(α, 1)
prior on the inverse lengthscale (Rasmussen & Williams, 2006, Section 4.2). This kernel will be the
mainstay of our experiments, as its tail behaviour is much superior to that of the exponentiated
quadratic kernel; it is also characteristic.

2.2 WITNESS FUNCTION AND GRADIENT PENALTIES

The MMD has been a popular choice for the role of a critic in a GAN. This idea was proposed
simultaneously by Dziugaite et al. (2015) and Li et al. (2015), with numerous recent follow-up
works (Sutherland et al., 2017; Liu, 2017; Li et al., 2017b; Bellemare et al., 2017). As a key strategy
in these recent works, the MMD of (4) is not computed directly on the samples; rather, the samples
first pass through a mapping function h, generally a convolutional network. Note that we can think
of this either as the MMD with kernel k on features h(x), or simply as the MMD with kernel
κ(x, y) = k(h(x), h(y)). The challenge is to learn the features h so as to maximize the MMD,
without causing the critic to collapse to a trivial answer early in training.

Bearing in mind that the MMD is an integral probability metric, strategies developed for training
the Wasserstein GAN critic can be directly adopted for training the MMD critic. Li et al. (2017b)
employed the weight clipping approach of Arjovsky et al. (2017), though they motivated it using
different considerations. Gulrajani et al. (2017) found a number of issues with weight clipping,
however: it oversimplifies the loss functions given standard architectures, the gradient decays expo-
nentially as we move up the network, and it seems to require the use of slower optimizers such as
RMSProp rather than standard approaches such as Adam (Kingma & Ba, 2015).

It thus seems preferable to adopt Gulrajani et al.’s proposal of regularising the critic witness (3)
by constraining its gradient norm to be nearly 1 along randomly chosen convex combinations of
generator and reference points, αxi + (1 − α)yj for α ∼ Uniform(0, 1). This was motivated by
the observation that the Wasserstein witness satisfies this property (their Lemma 1), but perhaps its
main benefit is one of regularization: if the critic function becomes too flat anywhere between the
samples, the generator cannot easily follow its gradient. We will thus follow this approach, as did
Bellemare et al. (2017), whose model we describe next.5

5By doing so, we implicitly change the definition of the distance being approximated; we leave study of the
differences to future work. By analogy, Liu et al. (2017) give some basic properties for the distance used by
Gulrajani et al. (2017).
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2.3 THE ENERGY DISTANCE AND ASSOCIATED MMD

Liu (2017) and Bellemare et al. (2017, Section 4) proposed to use the energy distance as the critic
in an adversarial network. The energy distance (Székely & Rizzo, 2004; Lyons, 2013) is a measure
of divergence between two probability measures, defined as

De(P,Q) = −1

2
EP ρ(X,X ′)− 1

2
EQ ρ(Y, Y ′) + EP,Q ρ(X,Y ), (7)

where EP ρ(X,X ′) is an expectation over two independent samples from the generator P (likewise,
Y and Y ′ are independent samples from the reference Q), and ρ(x, y) is a semimetric of negative
type.6 We will focus on the case ρβ(x, y) = ‖x− y‖β for 0 < β ≤ 2. When β ≤ 1, ρβ is a metric.

Sejdinovic et al. (2013, Lemma 12) showed that the energy distance is an instance of the maximum
mean discrepancy, where the corresponding distance-induced kernel family for the distance (7) is

kdistρ,z0(x, y) =
1

2
[ρ(x, z0) + ρ(y, z0)− ρ(x, y)] (8)

for any choice of z0 ∈ X . (Often z0 = 0 is chosen to simplify notation, which corresponds to a
fractional Brownian motion kernel; Sejdinovic et al., 2013, Example 15.) Note that the resulting
kernel is not translation invariant. It is characteristic (when β < 2), and the MMD is well-defined
for a class of distributions P that satisfy a moment condition (Sejdinovic et al., 2013, Remark 21).7

To apply the regularization strategy of Gulrajani et al. (2017) in training the critic of an adversarial
network, we need to compute the form taken by the witness function (2) given the kernel (8). Bearing
in mind that

EP k(x,X) = ρ(x, z0) + EP ρ(X, z0)− EP ρ(x,X),

where the second term of the above expression is constant, and substituting into (2), we have

f∗(x) ∝ ρ(x, z0)− EP ρ(x,X)− ρ(x, z0) + EQ ρ(x, Y ) + C

= EQ ρ(x, Y )− EP ρ(x,X) + C.

This is in agreement with Bellemare et al.’s function f∗ (their page 5), via a different argument
(though note that the function g∗ in their footnote 4 is missing the constant terms).

We now turn to the divergence implemented by the critic in Bellemare et al.’s Algorithm 1, which is
somewhat different from the energy distance (7). The Cramér GAN witness function is defined as

fc(x) = EP ρ(x,X)− ρ(x, 0), (9)

which is regularized using Gulrajani et al.’s gradient constraint. The expected surrogate loss asso-
ciated with this witness function, and used for the Cramér critic, is

Dc(P,Q) = EP ρ(X,X ′) + EQ ρ(Y, 0)− EP ρ(X, 0)− EP,Q ρ(X ′, Y ). (10)

In brief, Y ′ in (7) is replaced by the origin: it is explained that this is necessary for instance in the
conditional case, where two independent reference samples Y, Y ′ are not available. Unfortunately,
following this change, it becomes straightforward to define P and Q which are different, yet have an
expected Dc(P,Q) loss of zero. For example, if P is a point mass at the origin in R, and Q is a point
mass a distance t from the origin, then P 6= Q and yet Dc(P,Q) = 0 because

EP ρ(X,X ′) = EP ρ(X, 0) = 0, EP,Q ρ(X ′, Y ) = EQ ρ(Y, 0) = t.

Nevertheless, good empirical performance has been obtained in practice for the Cramér critic, both
by Bellemare et al. (2017) and in our experiments of Section 5. Our Appendix A provides some
insight into this behavior by considering the Cramér critic’s relationship to the score function asso-
ciated with the energy distance.

6ρmust satisfy the properties of a metric besides the triangle inequality, and for all n ≥ 2, x1, . . . , xn ∈ X ,
and a1, . . . , an ∈ R with

∑
i ai = 0, it must hold that

∑n
i=1

∑n
j=1 aiajρ(xi, xj) ≤ 0.

7Namely, there must exist z0 ∈ X such that
∫
ρ(z, z0) dP(z) <∞ for all P ∈ P .
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2.4 OTHER RELATED MODELS

Many other GAN variants fall into the framework of IPMs (e.g. Mroueh et al., 2017; Mroueh &
Sercu, 2017; Berthelot et al., 2017). Notably, although Goodfellow et al. (2014) motivated GANs as
estimating the Jensen-Shannon divergence, they can also be viewed as minimizing the IPM defined
by the classifier family (Arora et al., 2017; Liu et al., 2017), thus motivating applying the gradient
penalty to original GANs (Fedus et al., 2018). Liu et al. (2017) in particular study properties of these
distances.

3 GRADIENT BIAS

The issue of biased gradients in GANs was brought to prominence by Bellemare et al. (2017, Section
3), who showed bias in the gradients of the empirical Wasserstein distance for finite sample sizes,
and demonstrated cases where this bias could lead to serious problems in stochastic gradient descent,
even in expectation. They then claimed that the energy distance used in the Cramér GAN critic does
not suffer from these problems. We will now both formalize and clarify these results.

First, Bellemare et al.’s proof that the gradient of the energy distance is unbiased was incomplete:
the essential step in the reasoning, the exchange in the order of the expectations and the derivatives,
is simply assumed.8 We show that one can exchange the order of expectations and derivatives, under
very mild assumptions about the distributions in question, the form of the network, and the kernel:
Theorem 1. Let Gψ : Z → X and hθ : X → Rd be deep networks, with parameters ψ ∈
Rmψ and θ ∈ Rmθ , of the form defined in Appendix C.1 and satisfying Assumptions C and D
(in Appendix C.2). This includes almost all feedforward networks used in practice, in particular
covering convolutions, max pooling, and ReLU activations.

Let P be a distribution on X such that E[‖X‖2] exists, and likewise Z a distribution on Z such that
E[‖Z‖2] exists. P and Z need not have densities.

Let k : Rd ×Rd → R be a kernel function satisfying the growth assumption Assumption E for some
α ∈ [1, 2]. All kernels considered in this paper satisfy this assumption; see the discussion after
Corollary 3.

For µ-almost all (ψ, θ) ∈ Rmψ+mθ , where µ is the Lebesgue measure, the function
(ψ, θ) 7→ EX∼P

Z∼Z
[k(hθ(X), hθ(Gψ(Z)))]

is differentiable at (ψ, θ), and moreover
EX∼P
Z∼Z

[∂ψ,θk(hθ(X), hθ(Gψ(Z)))] = ∂ψ,θ EX∼P
Z∼Z

[k(hθ(X), hθ(Gψ(Z)))] .

Thus for µ-almost all (ψ, θ),

EX∼Pm
Z∼Zn

[
∂ψ,θMMD2

u(hθ(X), hθ(Gψ(Z)))
]

= ∂ψ,θ
[
MMD2

u(hθ(P), hθ(Gψ(Z)))
]
. (11)

This result is shown in Appendix C, specifically as Corollary 3 to Theorem 5, which is a quite
general result about interchanging expectations and derivatives of functions of deep networks. The
proof is more complex than a typical proof that derivatives and integrals can be exchanged, due to
the non-differentiability of ReLU-like functions used in deep networks.

But this unbiasedness result is not the whole story. In WGANs, the generator attempts to minimize
the loss function

W(P,Q) = sup
f :‖f‖L≤1

EX∼P f(X)− EY∼Q f(Y ), (12)

based on an estimate Ŵ(X,Y): first critic parameters θ are estimated on a “training set” Xtr , Ytr ,
i.e. all points seen in the optimization process thus far, and then the distance is estimated on the
remaining “test set” Xte , Yte , i.e. the current minibatch, as

1

mte

mte∑
i=1

fθ(Xi)−
1

nte

nte∑
j=1

fθ(Yj). (13)

8Suppose f̂(x) is an unbiased estimator of a function f(x), so that E f̂(x) = f(x). Then, if we can
exchange expectations and gradients, it is immediate that E∇f̂(x) = ∇E f̂(x) = ∇f(x).

6
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(After the first pass through the training set, these two sets will not be quite independent, but for large
datasets they should be approximately so.) Theorem 2 (in Appendix B.2) shows that this estimator
Ŵ is biased; Appendix B.4 further gives an explicit numerical example. This almost certainly
implies that ∇ψŴ is biased as well, by Theorem 4 (Appendix B.3).9 Yet, for fixed θ, Corollary 1
shows that the estimator (13) has unbiased gradients; it is only the procedure which first selects a θ
based on training samples and then evaluates (13) which is a biased estimator of (12).

The situation with MMD GANs, including energy distance-based GANs, is exactly analogous. We
have (11): for almost all particular critic representations hθ, the estimator of MMD2 is unbiased.
But the population divergence the generator attempts to minimize is actually

η(P,Q) = sup
θ

MMD2 (hθ(P), hθ(Q)) , (14)

a distance previously studied by Sriperumbudur et al. (2009a) as well as Li et al. (2017b). An MMD
GAN’s effective estimator of η̂ is also biased by Theorem 2 (see particularly Appendix B.5); by
Theorem 4, its gradients are also almost certainly biased.

In both cases, the bias vanishes as the selection of θ becomes better; in particular, no bias is intro-
duced by the use of a fixed (and potentially small) minibatch size, but rather by the optimization
procedure for θ and the total number of samples seen in training the discriminator.

Yet there is at least some sense in which MMD GANs might be considered “less biased” than
WGANs. Optimizing the generator parameters of a WGAN while holding the critic parameters
fixed is not sensible: consider, for example, P a point mass at 0 ∈ R and Q a point mass at q ∈ R.
If q > 0, an optimal θ might correspond to the witness function f(t) = t; if we hold this witness
function f fixed, the optimal q is at −∞, rather than at the correct value of 0. But if we hold
an MMD GAN’s critic fixed and optimize the generator, we obtain the GMMN model (Li et al.,
2015; Dziugaite et al., 2015). Here, because the witness function still adapts to the observed pair of
distributions, the correct distribution P = Q will always be optimal. Bad solutions might also seem
to be optimal, but they can never seem arbitrarily better. Thus unbiased gradients of MMD2

u might
somehow be more meaningful to the optimization process than unbiased gradients of (13); exploring
and formalizing this intuition is an intriguing area for future work.

4 EVALUATION METRICS

One challenge in comparing GAN models, as we will do in the next section, is that quantitative
comparisons are difficult. Some insight can be gained by visually examining samples, but we also
consider the following approaches to evaluate GAN methods.

Inception score This metric, proposed by Salimans et al. (2016), is based on the classification out-
put p(y | x) of the Inception model (Szegedy et al., 2016). Defined as exp (Ex KL(p(y | x) ‖ p(y))),
it is highest when each image’s predictive distribution has low entropy, but the marginal predictive
distribution p(y) = Ex p(y | x) has high entropy. This score correlates somewhat with human
judgement of sample quality on natural images, but it has some issues, especially when applied to
domains which do not represent a variety of the types of classes in ImageNet. In particular, it knows
nothing about the desired distribution for the model.

FID The Fréchet Inception Distance, proposed by Heusel et al. (2017), avoids some of the prob-
lems of Inception by measuring the similarity of the samples’ representations in the Inception archi-
tecture (at the pool3 layer, of dimension 2048) to those of samples from the target distribution. The
FID fits a Gaussian distribution to the hidden activations for each distribution and then computes the
Fréchet distance, also known as the Wasserstein-2 distance, between those Gaussians. Heusel et al.
show that unlike the Inception score, the FID worsens monotonically as various types of artifacts are
added to CelebA images – though in our Appendix E we found the Inception score to be more mono-

9Bellemare et al.’s Appendix A.2 rather showed gradient bias in a different situation: ∇W(P̂m,Q), where
Q is a known distribution and P̂m is the empirical distribution of m samples from a distribution which changes
as m increases.
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Figure 1: Estimates of distances between the CIFAR-10 train and test sets. Each point is based
on 100 samples, estimating with replacement; sampling without replacement, and/or using the full
training set, gives similar results. Lines show means, error bars standard deviations, dark colored
regions a 2

3 coverage interval of the samples, light colored regions a 95% interval. Note the differing
n axes.

tonic than did Heusel et al., so this property may not be very robust to small changes in evaluation
methods. Note also that the estimator of FID is biased;10 we will discuss this issue shortly.

KID We propose a metric similar to the FID, the Kernel Inception Distance, to be the squared
MMD between Inception representations. We use a polynomial kernel, k(x, y) =

(
1
dx

Ty + 1
)3

where d is the representation dimension, to avoid correlations with the objective of MMD GANs
as well as to avoid tuning any kernel parameters.11 This can also be viewed as an MMD directly
on input images with the kernel K(x, y) = k(φ(x), φ(y)), with φ the function mapping images to
Inception representations. Compared to the FID, the KID has several advantages. First, it does not
assume a parametric form for the distribution of activations. This is particularly sensible since the
representations have ReLU activations, and therefore are not only never negative, but do not even
have a density: about 2% of components in Inception representations are typically exactly zero.
With the cubic kernel we use here, the KID compares skewness as well as the mean and variance.
Also, unlike the FID, the KID has a simple unbiased estimator.12 It also shares the behavior of the
FID as artifacts are added to images (Appendix E).

Figure 1 demonstrates the empirical bias of the FID and the unbiasedness of the KID by comparing
the CIFAR-10 train and test sets. The KID (Figure 1a) converges quickly to its presumed true value
of 0; even for very small n, simple Monte Carlo estimates of the variance provide a reasonable
measure of uncertainty. By contrast, the FID estimate (Figure 1b) does not behave so nicely: at
n = 2 000, when the KID estimator is essentially always 0, the FID estimator is still quite large.
Even at n = 10 000, the full size of the CIFAR test set, the FID still seems to be decreasing from its
estimate of about 8.1 towards zero, showing the strong persistence of bias. This highlights that FID
scores can only be compared to one another with the same value of n.

Yet even for the same value of n, there is no particular reason to think that the bias in the FID
estimator will be the same when comparing different pairs of distributions. In Appendix D, we
demonstrate two situations where FID(P1,Q) < FID(P2,Q), but for insufficent numbers of
samples the estimator usually gives the other ordering. This can happen even where all distributions
in question are one-dimensional Gaussians, as Appendix D.1 shows analytically. Appendix D.2 also
empirically demonstrates this on distributions more like the ones used for FID in practice, giving a

10This is easily seen when the true FID is 0: here the estimator may be positive, but can never be negative.
Note also that in fact no unbiased estimator of the FID exists; see Appendix D.3.

11k is the default polynomial kernel in scikit-learn (Pedregosa et al., 2011).
12Because the computation of the MMD estimator scales like O(n2d), we recommend using a relatively

small n and averaging over several estimates; this is closely related to the block estimator of Zaremba et al.
(2013). The FID estimator, for comparison, takes time O(nd2 + d3), and is substantially slower for d = 2048.
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simple example with d = 2048 where even estimating with n = 50 000 samples reliably gives the
wrong ordering between the models. Moreover, Monte Carlo estimates of the variance are extremely
small even when the estimate is very far from its asymptote, so it is difficult to judge the reliability
of an estimate, and practitioners may be misled by the very low variance into thinking that they have
obtained the true value. Thus comparing FID estimates bears substantial risks. KID estimates, by
contrast, are unbiased and asymptotically normal.

For models on MNIST, we replace the Inception featurization with features from a LeNet-like con-
volutional classifier13 (LeCun et al., 1998), but otherwise compute the scores in the same way.

We also considered the diagnostic test of Arora & Zhang (2017), which estimates the approximate
number of “distinct” images produced by a GAN. The amount of subjectivity in what constitutes
a duplicate image, however, makes it hard to reliably compare models based on this diagnostic.
Comparisons likely need to be performed both with a certain notion of duplication in mind and by a
user who does not know which models are being compared, to avoid subconscious biases; we leave
further exploration of this intriguing procedure to future work.

4.1 LEARNING RATE ADAPTATION

In supervised deep learning, it is common practice to dynamically reduce the learning rate of an
optimizer when it has stopped improving the metric on a validation set. So far, this does not seem
to be common in GAN-type models, so that learning rate schedules must be tuned by hand. We
propose instead using an adaptive scheme, based on comparing the KID score for samples from a
previous iteration to that from the current iteration.

To avoid setting an explicit threshold on the change in the numerical value of the score, we use a
p-value obtained from the relative similarity test of Bounliphone et al. (2016). If the test does not
indicate that our current model is closer to the validation set than the model from a certain number
of iterations ago at a given significance level, we mark it as a failure; when a given number of
failures occur in a row, we decrease the learning rate. Bounliphone et al.’s test is for the hypothesis
MMD(P1,Q) < MMD(P2,Q), and since the KID can be viewed as an MMD on image inputs, we
can apply it directly.14

5 EXPERIMENTS

We compare the quality of samples generated by MMD GAN using various kernels with samples
obtained by WGAN-GP (Gulrajani et al., 2017) and Cramér GAN (Bellemare et al., 2017) on four
standard benchmark datasets: the MNIST dataset of 28 × 28 handwritten digits15, the CIFAR-10
dataset of 32 × 32 photos (Krizhevsky, 2009), the LSUN dataset of bedroom pictures resized to
64 × 64 (Yu et al., 2015), and the CelebA dataset of celebrity face images resized and cropped to
160× 160 (Liu et al., 2015).

For most experiments, except for those with the CelebA dataset, we used the DCGAN architecture
(Radford et al., 2016) for both generator and critic. For MMD losses, we used only 16 top-layer
neurons in the critic; more did not seem to improve performance, except for the distance kernel
for which 256 neurons in the top layer was advantageous. As Bellemare et al. (2017) advised to
use at least 256-dimensional critic output, this enabled exact comparison between Cramér GAN
and energy distance MMD, which are directly related (Section 2.3). For the generator we used the
standard number of convolutional filters (64 in the second-to-last layer); for the critic, we compared
networks with 16 and 64 filters in the first convolutional layer.16

13
github.com/tensorflow/models/blob/master/tutorials/image/mnist/convolutional.py

14We use the slight corrections to the asymptotic distribution of the MMD estimator given by Sutherland
et al. (2017) in this test.

15
yann.lecun.com/exdb/mnist/

16In the DCGAN architecture the number of filers doubles in each consecutive layer, so an f -filter critic has
f , 2f , 4f and 8f convolutional filters in layers 1-4, respectively.
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For the higher-resolution model for the CelebA dataset, we used a 5-layer DCGAN critic and a
10-layer ResNet generator17, with 64 convolutional filters in the last/first layer. This allows us to
compare the performance of MMD GANs with a more complex architecture.

Models with smaller critics run considerably faster: on our systems, the 16-filter DCGAN networks
typically ran at about twice the speed of the 64-filter ones. Note that the critic size is far more
important to training runtime than the generator size: we update the critic 5 times for each generator
step, and moreover the critic network is run on two batches each time we use it, one from P and one
from Q. Given the same architecture, all models considered here run at about the same speed.

We evaluate several MMD GAN kernel functions in our experiments.18 The simplest is the linear
kernel: kdot(x, y) = 〈x, y〉, whose MMD corresponds to the distance between means (this is some-
what similar to the feature matching idea of Salimans et al., 2016). We also use the exponentiated
quadratic (5) and rational quadratic (6) functions, with mixtures of lengthscales,

krbf (x, y) =
∑
σ∈Σ

krbfσ (x, y), krq(x, y) =
∑
α∈A

krqα (x, y),

where Σ = {2, 5, 10, 20, 40, 80}, A = {.2, .5, 1, 2, 5}. For the latter, however, we found it advanta-
geous to add a linear kernel to the mixture, resulting in the mixed RQ-dot kernel krq∗ = krq + kdot .
Lastly we use the distance-induced kernel kdistρ1,0 of (8), using the Euclidean distance ρ1 so that the
MMD is the energy distance.19 We also considered Cramér GANs, with the surrogate critic (10),
and WGAN-GPs.

Each model was trained with a batch size of 64, and 5 discriminator updates per generator update.
For CIFAR-10, LSUN and CelebA we trained for 150 000 generator updates, while for MNIST we
used 50 000. The initial learning rate was set to 10−4 and followed the adaptive scheme described
in Section 4.1, with KID compared between the current model and the model 20 000 generator
steps earlier (5 000 for MNIST), every 2 000 steps (500 for MNIST). After 3 consecutive failures
to improve, the learning rate was halved. This approach allowed us to avoid manually picking a
different learning rate for each of the considered models.

We scaled the gradient penalty by 1, instead of the 10 recommended by Gulrajani et al. (2017) and
Bellemare et al. (2017); we found this to usually work slightly better with MMD models. With the
distance kernel, however, we scale the penalty by 10 to allow direct comparison with Cramér GAN.

Quantitative scores are estimated based on 25 000 generator samples (100 000 for MNIST), and
compared to 25 000 dataset elements (for LSUN and CelebA) or the standard test set (10 000 images
held out from training for MNIST and CIFAR-10). Inception and FID scores were computed using
10 bootstrap resamplings of the given images; the KID score was estimated based on 100 repetitions
of sampling 1 000 elements without replacement.

Code for our models is available at github.com/mbinkowski/MMD-GAN.

MNIST All of the models achieved good results, measured both visually and in quantitative
scores; full results are in Appendix F. Figure 2, however, shows the evolution of our quantitative
criteria throughout the training process for several models. This shows that the linear kernel dot and
rbf kernel rbf are clearly worse than the other models at the beginning of the training process, but
both improve eventually. rbf , however, never fully catches up with the other models. There is also
some evidence that dist, and perhaps WGAN-GP, converge more slowly than rq and Cramér GAN.
Given their otherwise similar properties, we thus recommend the use of rq kernels over rbf in MMD
GANs and limit experiments for other datasets to rq and dist kernels.

CIFAR-10 Full results are shown in Appendix F. Small-critic MMD GAN models approximately
match large-critic WGAN-GP models, at substantially reduced computational cost.

17As in Gulrajani et al. (2017), we use a linear layer, 4 residual blocks and one convolutional layer.
18Because these higher-resolution experiments were slower to run, for CelebA we trained MMD GAN with

only one type of kernel.
19We also found it helpful to add an activation penalty to the critic representation network in certain MMD

models. Otherwise the representations hθ sometimes chose very large values, which for most kernels does not
change the theoretical loss (defined only in terms of distances) but leads to floating-point precision issues. We
use a combined L2 penalty on activations across all critic layers, with a factor of 1 for rq∗ and 0.0001 for dist .
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Figure 2: Score estimates over the learning process for MNIST training.

LSUN Bedrooms Table 1 presents scores for models trained on the LSUN Bedrooms dataset;
samples from most of these models are shown in Figure 3. Comparing the models’ Inception scores
with the one achieved by the test set makes clear that this measure is not meaningful for this dataset –
not surprisingly, given the drastic difference in domain from ImageNet class labels.

In terms of KID and FID, MMD GANs outperform Cramér and WGAN-GP for each critic size.
Although results with the smaller critic are worse than with the large one for each considered model,
small-critic MMD GANs still produce reasonably good samples, which certainly is not the case for
WGAN-GP. Although a small-critic Cramér GAN produces relatively good samples, the separate
objects in these pictures often seem less sharp than the MMD rq* samples. With a large critic, both
Cramér GAN and MMD rq* give good quality samples, many of which are hardly distinguishable
from the test set by eye.

Table 1: Mean (standard deviation) of score evaluations for the LSUN models. Inception scores do
not seem meaningful for this dataset.

critic size
loss filters top layer Inception FID KID
rq 16 16 3.13 (0.01) 86.47 (0.29) 0.091 (0.002)
rq 64 16 2.80 (0.01) 31.95 (0.28) 0.028 (0.002)

dist 16 256 3.42 (0.01) 104.85 (0.32) 0.109 (0.002)
dist 64 256 2.79 (0.01) 35.28 (0.21) 0.032 (0.001)

Cramér GAN 16 256 3.46 (0.02) 122.03 (0.41) 0.132 (0.002)
Cramér GAN 64 256 3.44 (0.02) 54.18 (0.39) 0.050 (0.002)
WGAN-GP 16 1 2.40 (0.01) 292.77 (0.35) 0.370 (0.003)
WGAN-GP 64 1 3.12 (0.01) 41.39 (0.25) 0.039 (0.002)

test set – – 2.36 (0.01) 2.49 (0.02) 0.000 (0.000)

CelebA Scores for the CelebA dataset are shown in Table 2; MMD GAN with rq* kernel outper-
forms both WGAN-GP and Cramér GAN in KID and FID. Samples in Figure 4 show that for each
of the models there are many visually pleasing pictures among the generated ones, yet unrealistic
images are more common for WGAN-GP and Cramér.

Table 2: Mean (standard deviation) of score evaluations for the CelebA dataset.

critic size
loss filters top layer Inception FID KID
rq 64 16 2.61 (0.01) 20.55 (0.25) 0.013 (0.001)

Cramér 64 256 2.86 (0.01) 31.30 (0.17) 0.025 (0.001)
WGAN-GP 64 1 2.72 (0.01) 29.24 (0.22) 0.022 (0.001)

test set – – 3.76 (0.02) 2.25 (0.04) 0.000 (0.000)

These results illustrate the benefits of using the MMD on deep convolutional feaures as a GAN
critic. In this hybrid system, the initial convolutional layers map the generator and reference im-
age distributions to a simpler representation, which is well suited to comparison via the MMD. The
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(a) MMD rq, critic size 16 (b) WGAN-GP, critic size 16 (c) Cramér GAN, critic size 16

(d) MMD rq, critic size 64 (e) WGAN-GP, critic size 64 (f) Test set

Figure 3: Comparison of samples for the 64× 64 LSUN Bedroom database.

(a) MMD rq* (b) WGAN-GP (c) Cramér GAN

Figure 4: Comparison of samples with a ResNet generator for the 160× 160 CelebA dataset.

MMD in turn employs an infinite dimensional feature space to compare the outputs of these con-
volutional layers. By comparison, WGAN-GP requires a larger discriminator network to achieve
similar performance. It is interesting to consider the question of kernel choice: the distance kernel
and RQ kernel are both characteristic (Sriperumbudur et al., 2010), and neither suffers from the fast
decay of the exponentiated quadratic kernel, yet the RQ kernel performs slightly better in our exper-
iments. The relative merits of different kernel families for GAN training will be an interesting topic
for further study.

REFERENCES

M. Arjovsky and L. Bottou. Towards principled methods for training generative adversarial net-
works. In ICLR, 2017. arXiv:1701.04862.

M. Arjovsky, S. Chintala, and L. Bottou. Wasserstein generative adversarial networks. In ICML,
2017. arXiv:1701.07875.

12

https://arxiv.org/abs/1701.04862
https://arxiv.org/abs/1701.07875


Published as a conference paper at ICLR 2018

S. Arora and Y. Zhang. Do GANs actually learn the distribution? An empirical study, 2017.
arXiv:1706.08224.

S. Arora, R. Ge, Y. Liang, T. Ma, and Y. Zhang. Generalization and equilibrium in generative
adversarial nets (GANs). In ICML, 2017. arXiv:1703.00573.

M. G. Bellemare, I. Danihelka, W. Dabney, S. Mohamed, B. Lakshminarayanan, S. Hoyer,
and R. Munos. The Cramer distance as a solution to biased Wasserstein gradients, 2017.
arXiv:1705.10743.

Y. Bengio, G. Mesnil, Y. Dauphin, and S. Rifai. Better mixing via deep representations. In ICML,
2013. arXiv:1207.4404.

D. Berthelot, T. Schumm, and L. Metz. BEGAN: Boundary equilibrium generative adversarial
networks, 2017. arXiv:1703.10717.

P. J. Bickel and E. L. Lehmann. Unbiased estimation in convex families. The Annals of Mathematical
Statistics, 40(5):1523–1535, 1969.

D. Bouchacourt, P. K. Mudigonda, and S. Nowozin. DISCO nets: DISsimilarity COefficients net-
works. In NIPS, pp. 352–360. 2016.

W. Bounliphone, E. Belilovsky, M. B. Blaschko, I. Antonoglou, and A. Gretton. A test of relative
similarity for model selection in generative models. In ICLR, 2016. arXiv:1511.04581.

D.-A. Clevert, T. Unterthiner, and S. Hochreiter. Fast and accurate deep network learning by expo-
nential linear units (ELUs). In ICLR, 2016. arXiv:1511.07289.

I. Danihelka, B. Lakshminarayanan, B. Uria, D. Wierstra, and P. Dayan. Comparison of maximum
likelihood and GAN-based training of Real NVPs, 2017. arXiv:1705.05263.

G. K. Dziugaite, D. M. Roy, and Z. Ghahramani. Training generative neural networks via maximum
mean discrepancy optimization. In UAI, 2015. arXiv:1505.03906.

W. Fedus, M. Rosca, B. Lakshminarayanan, A. M. Dai, S. Mohamed, and I. Goodfellow. Many
paths to equilibrium: GANs do not need to decrease a divergence at every step. In ICLR, 2018.
arXiv:1710.08446.

T. Gneiting and A. E. Raftery. Strictly proper scoring rules, prediction, and estimation. JASA, 102
(477):359–378, 2007.

I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley, S. Ozair, A. Courville, and
Y. Bengio. Generative adversarial nets. In NIPS, 2014. arXiv:1406.2661.

A. Gretton, K. M. Borgwardt, M. J. Rasch, B. Schölkopf, and A. J. Smola. A kernel two-sample
test. JMLR, 13, 2012.

I. Gulrajani, F. Ahmed, M. Arjovsky, V. Dumoulin, and A. Courville. Improved training of Wasser-
stein GANs. In NIPS, 2017. arXiv:1704.00028.

M. Heusel, H. Ramsauer, T. Unterthiner, B. Nessler, G. Klambauer, and S. Hochreiter. GANs
trained by a two time-scale update rule converge to a Nash equilibrium. In NIPS, 2017.
arXiv:1706.08500.

R. Huang, S. Zhang, T. Li, and R. He. Beyond face rotation: Global and local perception GAN for
photorealistic and identity preserving frontal view synthesis. In ICCV, 2017a. arXiv:1704.04086.

X. Huang, Y. Li, O. Poursaeed, J. Hopcroft, and S. Belongie. Stacked generative adversarial net-
works. In CVPR, 2017b. arXiv:1612.04357.

Y. Jin, K. Zhang, M. Li, Y. Tian, H. Zhu, and Z. Fang. Towards the automatic anime characters
creation with generative adversarial networks, 2017. arXiv:1708.05509.

D. Kingma and J. Ba. Adam: A method for stochastic optimization. In ICLR, 2015.
arXiv:1412.6980.

13

https://arxiv.org/abs/1706.08224
https://arxiv.org/abs/1703.00573
https://arxiv.org/abs/1705.10743
https://arxiv.org/abs/1207.4404
https://arxiv.org/abs/1703.10717
https://arxiv.org/abs/1511.04581
https://arxiv.org/abs/1511.07289
https://arxiv.org/abs/1705.05263
https://arxiv.org/abs/1505.03906
https://arxiv.org/abs/1710.08446
https://arxiv.org/abs/1406.2661
https://arxiv.org/abs/1704.00028
https://arxiv.org/abs/1706.08500
https://arxiv.org/abs/1704.04086
https://arxiv.org/abs/1612.04357
https://arxiv.org/abs/1708.05509
https://arxiv.org/abs/1412.6980


Published as a conference paper at ICLR 2018

A. Klenke. Probability Theory: A Comprehensive Course. World Publishing Corporation, 2008.

A. Krizhevsky. Learning multiple layers of features from tiny images, 2009.

Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner. Gradient-based learning applied to document
recognition. Proceedings of the IEEE, 1998.

C. Li, D. Alvarez-Melis, K. Xu, S. Jegelka, and S. Sra. Distributional adversarial networks, 2017a.
arXiv:1706.09549.

C.-L. Li, W.-C. Chang, Y. Cheng, Y. Yang, and B. Póczos. MMD GAN: Towards deeper under-
standing of moment matching network. In NIPS, 2017b. arXiv:1705.08584.

Y. Li, K. Swersky, and R. Zemel. Generative moment matching networks. In ICML, 2015.
arXiv:1502.02761.

L. Liu. On the two-sample statistic approach to generative adversarial networks. Master’s thesis,
University of Princeton Senior Thesis, April 2017. URL http://arks.princeton.edu/
ark:/88435/dsp0179408079v.

S. Liu, O. Bousquet, and K. Chaudhuri. Approximation and convergence properties of generative
adversarial learning. In NIPS, 2017. arXiv:1705.08991.

Z. Liu, P. Luo, X. Wang, and X. Tang. Deep learning face attributes in the wild. In ICCV, 2015.

D. Lopez-Paz and M. Oquab. Revisiting classifier two-sample tests. In ICLR, 2017.
arXiv:1610.06545.

R. Lyons. Distance covariance in metric spaces. The Annals of Probability, 41(5):3051–3696, 2013.

B. Mityagin. The zero set of a real analytic function, 2015. arXiv:1512.07276.

Y. Mroueh and T. Sercu. Fisher GAN. In NIPS, 2017. arXiv:1705.09675.

Y. Mroueh, T. Sercu, and V. Goel. McGan: Mean and covariance feature matching GAN. In ICML,
2017. arXiv:1702.08398.

A. Müller. Integral probability metrics and their generating classes of functions. Advances in Applied
Probability, 29(2):429–443, 1997.

S. Nowozin, B. Cseke, and R. Tomioka. f-GAN: Training generative neural samplers using varia-
tional divergence minimization. In NIPS, 2016. arXiv:1606.00709.

F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel, P. Pretten-
hofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cournapeau, M. Brucher, M. Perrot,
and E. Duchesnay. Scikit-learn: Machine learning in Python. JMLR, 12:2825–2830, 2011.

G. Piranian. The Set of Nondifferentiability of a Continuous Function. The American Mathematical
Monthly, 73(4):57–61, 1966.

A. Radford, L. Metz, and S. Chintala. Unsupervised representation learning with deep convolutional
generative adversarial networks. In ICLR, 2016. arXiv:1511.06434.

C. E. Rasmussen and C. K. I. Williams. Gaussian Processes for Machine Learning. MIT Press,
Cambridge, MA, 2006.

S. Rosenbaum. Moments of a truncated bivariate normal distribution. JRSS B, 23:405–408, 1961.

T. Salimans, I. Goodfellow, W. Zaremba, V. Cheung, A. Radford, and X. Chen. Improved techniques
for training GANs. In NIPS, 2016. arXiv:1606.03498.

D. Sejdinovic, B. K. Sriperumbudur, A. Gretton, and K. Fukumizu. Equivalence of distance-based
and RKHS-based statistics in hypothesis testing. The Annals of Stastistics, 41(5):2263–2291,
2013. arXiv:1207.6076.

14

https://arxiv.org/abs/1706.09549
https://arxiv.org/abs/1705.08584
https://arxiv.org/abs/1502.02761
http://arks.princeton.edu/ark:/88435/dsp0179408079v
http://arks.princeton.edu/ark:/88435/dsp0179408079v
https://arxiv.org/abs/1705.08991
https://arxiv.org/abs/1610.06545
https://arxiv.org/abs/1512.07276
https://arxiv.org/abs/1705.09675
https://arxiv.org/abs/1702.08398
https://arxiv.org/abs/1606.00709
https://arxiv.org/abs/1511.06434
https://arxiv.org/abs/1606.03498
https://arxiv.org/abs/1207.6076


Published as a conference paper at ICLR 2018

B. K. Sriperumbudur, K. Fukumizu, A. Gretton, G. R. G. Lanckriet, and B. Schölkopf. Kernel
choice and classifiability for RKHS embeddings of probability distributions. In NIPS, 2009a.

B. K. Sriperumbudur, K. Fukumizu, A. Gretton, B. Schölkopf, and G. R. G. Lanckriet. On integral
probability metrics, phi-divergences and binary classification, 2009b. arXiv:0901.2698.

B. K. Sriperumbudur, A. Gretton, K. Fukumizu, G. R. G. Lanckriet, and B. Schölkopf. Hilbert space
embeddings and metrics on probability measures. JMLR, 11:1517–1561, 2010. arXiv:0907.5309.

B. K. Sriperumbudur, K. Fukumizu, and G. R. G. Lanckriet. Universality, characteristic kernels and
RKHS embedding of measures. JMLR, 12:2389–2410, 2011. arXiv:1003.0887.

B. K. Sriperumbudur, K. Fukumizu, A. Gretton, B. Schölkopf, and G. R. G. Lanckriet. On the
empirical estimation of integral probability metrics. Electronic Journal of Statistics, 6:1550–
1599, 2012.

I. Steinwart and A. Christmann. Support Vector Machines. Information Science and Statistics.
Springer, 2008.

D. J. Sutherland. What are the mean and variance of a 0-censored multivariate normal? Cross
Validated answer, 2018. URL https://stats.stackexchange.com/q/326347.

D. J. Sutherland, H.-Y. Tung, H. Strathmann, S. De, A. Ramdas, A. Smola, and A. Gretton. Gen-
erative models and model criticism via optimized maximum mean discrepancy. In International
Conference on Learning Representations, 2017. arXiv:1611.04488.

C. Szegedy, W. Zaremba, I. Sutskever, J. Bruna, D. Erhan, I. Goodfellow, and R. Fergus. Intriguing
properties of neural networks. In ICLR, 2014. arXiv:1312.6199.

C. Szegedy, V. Vanhoucke, S. Ioffe, J. Shlens, and Z. Wojna. Rethinking the Inception architecture
for computer vision. In CVPR, 2016. arXiv:1512.00567.

G. Székely and M. Rizzo. Testing for equal distributions in high dimension. InterStat, 5, 2004.

L. Theis, A. van den Oord, and M. Bethge. A note on the evaluation of generative models. In ICLR,
2016. arXiv:1511.01844.

F. Yu, Y. Zhang, S. Song, A. Seff, and J. Xiao. LSUN: Construction of a large-scale image dataset
using deep learning with humans in the loop, 2015. arXiv:1506.03365.

Z. Zahorski. Sur l’ensemble des points de non-dérivabilité d’une fonction continue. Bulletin de la
Société mathématique de France, 2:147–178, 1946.

W. Zaremba, A. Gretton, and M. B. Blaschko. B-tests: Low variance kernel two-sample tests. In
NIPS, 2013. arXiv:1307.1954.

J.-Y. Zhu, T. Park, P. Isola, and A. A. Efros. Unpaired image-to-image translation using cycle-
consistent adversarial networks. In ICCV, 2017. arXiv:1703.10593.
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It is not immediately obvious how to interpret the surrogate loss (10). An insight comes from
considering the score function associated with the energy distance, which we now briefly review
(Gneiting & Raftery, 2007). A scoring rule is a function S(P, y), which is the loss incurred when
a forecaster makes prediction P, and the event y is observed. The expected score is the expectation
under Q of the score,

S(P,Q) := EY∼Q S(P, Y ).

If a score is proper, then the expected score obtained when P = Q is greater or equal than the
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A strictly proper scoring rule shows an equality only when P and Q agree. We can define a diver-
gence measure based on this score,

DS(P,Q) = S(Q,Q)− S(P,Q). (15)

Bearing in mind the definition of the divergence (15), it is easy to see (Gneiting & Raftery, 2007,
eq. 22) that the energy distance (7) arises from the score function

S(P, y) =
1

2
EP ρ(X,X ′)− EP ρ(X, y).

The interpretation is straightforward: the score of a reference sample y is determined by comparing
its average distance to a generator sample with the average distance among independent generator
samples, EP ρ(X,X ′). If we take an expectation over Y ∼ Q, we recover the scoring rule optimized
by the DISCO Nets algorithm (Bouchacourt et al., 2016, Section 3.3).

As discussed earlier, the Cramér GAN critic does not use the energy distance (7) directly on the
samples, but first maps the samples through a function h, for instance a convolutional network; this
should be chosen to maximize the discriminative performance of the critic. Writing this mapping as
h, we break the energy distance down as De(P,Q) = S(Q,Q)− S(P,Q), where

S(Q,Q) = −1

2
EQ ρ(h(Y ), h(Y ′)) (16)

and
S(P,Q) =

1

2
EP ρ(h(X), h(X ′))− EP,Q ρ(h(X), h(Y )). (17)

When training the discriminator, the goal is to maximize the divergence by learning h, and so both
(16) and (17) change: in other words, divergence maximization is not possible without two indepen-
dent samples Y, Y ′ from the reference distribution Q.

An alternative objective in light of the score interpretation, however, is to simply optimize the av-
erage score (17). In other words, we would find features h that make the average distance from
generator to reference samples much larger than the average distance between pairs of generator
samples. We no longer control the term encoding the “variability” due to Q, EQ ρ(h(Y ), h(Y ′)),
which might therefore explode: for instance, h might cause h(Y ) to disperse broadly, and far from
the support of P, assuming sufficient flexibility to keep EP ρ(h(X), h(X ′)) under control. We can
mitigate this by controlling the expected norm EQ ρ(h(Y ), 0), which has the advantage of only
requiring a single sample to compute. For example, we could maximize

− 1

2
EP ρ(h(X), h(X ′)) + EP,Q ρ(h(X), h(Y ))− EQ ρ(h(Y ), 0).

This resembles the Cramér GAN critic (10), but the generator-to-generator distance is scaled dif-
ferently, and there is an additional term: EP ρ(h(X), 0) is being maximized in (10), which is more
difficult to interpret. An argument has been made (in personal communication with Bellemare et al.)
that this last term is required if the function fc in (9) is to be a witness of an integral probability
metric (1), although the asymmetry of this witness in P vs Q needs to be analyzed further.

B BIAS OF GENERALIZED IPM ESTIMATORS

We will now show that all estimators of IPM-like distances and their gradients are biased. Ap-
pendix B.1 defines a slight generalization of IPMs, used to analyze MMD GANs in the same frame-
work as WGANs, and a class of estimators that are a natural model for the estimator used in GAN
models. Appendix B.2 both shows that not only are this form of estimators invariably biased in
nontrivial cases, and moreover no unbiased estimator can possibly exist; Appendix B.3 then demon-
strates that any estimator with non-constant bias yields a biased gradient estimator. Appendices B.4
and B.5 demonstrate specific examples of this bias for the Wasserstein and maximized-MMD dis-
tances.

B.1 GENERALIZED IPMS AND DATA-SPLITTING ESTIMATORS

We will first define a slight generalization of IPMs: we will use this added generality to help analyze
MMD GANs in Appendix B.5.
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Definition 1 (Generalized IPM). Let X be some domain, withM a class of probability measures
on X .20 Let F be some parameter set, and J : F ×M ×M → R an objective functional. The
generalized IPM D :M×M→ R is then given by

D(P,Q) = sup
f∈F

J(f,P,Q). (18)

For example, if F is a class of functions f : X → R, and J is given by
JIPM (f,P,Q) = EX∼P f(X)− EY∼Q f(Y ), (19)

then we obtain integral probability metrics (1). Given samples X ∼ Pm and Y ∼ Qn, let P̂ denote
the empirical distribution of X (an equal mixture of point masses at each Xi ∈ X), and similarly Q̂
for Y. Then we have a simple estimator of (19) which is unbiased for fixed f :

ĴIPM (f,X,Y) = JIPM (f, P̂, Q̂) =
1

m

m∑
i=1

f(Xi)−
1

n

n∑
j=1

f(Yj).

Definition 2 (Data-splitting estimator of a generalized IPM). Consider the distance (18), with ob-
jective J and parameter class F . Suppose we observe iid samples X ∼ Pm, Y ∼ Qn, for any
two distributions P, Q. A data-splitting estimator is a function D̂(X,Y) which first randomly splits
the sample X into Xtr , Xte and Y into Ytr , Yte , somehow selects a critic function f̂Xtr ,Ytr ∈ F
independently of Xte , Yte , and then returns a result of the form

D̂(X,Y) = Ĵ(f̂Xtr ,Ytr ,Xte ,Yte),

where Ĵ(f,X ,Y) is an estimator of J(f,P,Q).

These estimators are defined by three components: the choice of relative sizes of the train-test split,
the selection procedure for f̂Xtr ,Ytr , and the estimator Ĵ . The most obvious selection procedure is

f̂Xtr ,Ytr ∈ argmax
f∈F

Ĵ(f,Xtr ,Ytr ), (20)

though of course one could use regularization or other techniques to select a different f ∈ F , and
in practice one will use an approximate optimizer. Lopez-Paz & Oquab (2017) used an estimator of
exactly this form in a two-sample testing setting.

As noted in Section 3, this training/test split is a reasonable match for the GAN training process. As
we optimize a WGAN-type model, we compute the loss (or its gradients) on a minibatch, while the
current parameters of the critic are based only on data seen in previous iterations. We can view the
current minibatch as Xte ,Yte , all previously-seen data as Xtr ,Ytr , and the current critic function
as f̂Xtr ,Ytr . Thus, at least in the first pass over the training set, WGAN-type approaches exactly
fit the data-splitting form of Definition 2; in later passes, the difference from this setup should be
relatively small unless the model is substantially overfitting.

B.2 ESTIMATOR BIAS

We first show, in Theorem 2, that data-splitting estimators are biased downwards. Although this
provides substantial intuition about the situation in GANs, it leaves open the question of whether
some other unbiased estimator might exist; Theorem 3 shows that this is not the case.
Theorem 2. Consider a data-splitting estimator (Definition 2) of the generalized IPM D (Defini-
tion 1) based on an unbiased estimator Ĵ of J: for any fixed f ∈ F ,

EX∼Pm
Y∼Qn

[
Ĵ(f,X,Y)

]
= J(f,P,Q).

Then either the selection procedure is almost surely perfect,

Pr
(
J
(
f̂Xtr ,Ytr ,P,Q

)
= D(P,Q)

)
= 1, (21)

or else the estimator has a downward bias:
E D̂ (X,Y) < D (P,Q) . (22)

20All results in this section could be trivially extended to support P and Q over different domains X and Y ,
if desired.
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Proof. Since Xtr ,Ytr are independent of Xte , Yte ,

E D̂(X,Y) = EXtr ,Ytr

Xte ,Yte

[
Ĵ(f̂Xtr ,Ytr ,Xte ,Yte)

]
= EXtr ,Ytr

[
J(f̂Xtr ,Ytr ,P,Q)

]
.

Define the suboptimality of f̂Xtr ,Ytr as

ε := D(P,Q)− J
(
f̂Xtr ,Ytr ,P,Q

)
,

so that E D̂(X,Y) = D(P,Q)−E[ε]. Note that ε ≥ 0, since D(P,Q) = supf∈F J(f,P,Q) and so
for any f ∈ F we have

J(f,P,Q) ≤ D(P,Q).

Thus, either Pr(ε = 0) = 1, in which case (21) holds, or else E[ε] > 0, giving (22).

Theorem 2 makes clear that as f̂Xtr ,Ytr converges to its optimum, the bias of D̂ should vanish (as in
Bellemare et al., 2017, Theorem 3). Moreover, in the GAN setting the minibatch size only directly
determines Xte ,Yte , which do not contribute to this bias; bias is due rather to the training procedure
and the number of samples seen through the training process. As long as f̂Xtr ,Ytr is not optimal,
however, the estimator will remain biased.

Many estimators of IPMs do not actually perform this data splitting procedure, instead estimating
D(P,Q) with the distance between empirical distributions D(P̂, Q̂). The standard biased estimator
of the MMD (Gretton et al., 2012, Equation 5), the IPM estimators of Sriperumbudur et al. (2012),
and the empirical Wasserstein estimator studied by Bellemare et al. (2017) are all of this form. These
estimators, as well as any other conceivable estimator, are also biased:
Theorem 3. Let P be a class of distributions such that {(1 − α)P0 + αP1 : 0 ≤ α ≤ 1} ⊆ P ,
where P0 6= P1 are two fixed distributions. Let D be an IPM (1). There does not exist any estimator
of D which is unbiased on P .

Proof. We use a technique inspired by Bickel & Lehmann (1969). Suppose there is an unbiased
estimator D̂(X,Y) of D: for some finite m and n, if X = {X1, . . . , Xm} ∼ Pm, Y ∼ Qn, then
E[D̂(X,Y)] = D(P,Q).

Fix P0, P1, and Q ∈ P , and consider the function
R(α) = D((1− α)P0 + αP1,Q)

=

∫
X1

· · ·
∫
Xm

∫
Y

D̂(X,Y) d [(1− α)P0 + αP1] (X1) · · · d [(1− α)P0 + αP1] (Xm) dQ(Y)

=

∫
X1

· · ·
∫
Xm

∫
Y

D̂(X,Y) [(1− α) dP0(X1) + α dP1(X1)] · · · dQ(Y)

= (1− α)m EX∼Pm0
Y∼Qn

[
D̂(X,Y)

]
+ · · ·+ αm EX∼Pm1

Y∼Qn

[
D̂(X,Y)

]
.

Thus R(α) is a polynomial in α of degree at most m.

But taking Q = 1
2P0 + 1

2P1 gives

R(α) = D
(
(1− α)P0 + αP1,

1
2P0 + 1

2P1

)
= sup
f∈F

E(1−α)P0+αP1
f(X)− E 1

2P0+
1
2P1

f(Y )

= sup
f∈F

(1− α)EP0 f(X) + αEP1 f(X)− 1
2 EP0 f(X)− 1

2 EP1 f(X)

= sup
f∈F

(
1
2 − α

)
EP0

f(X)−
(

1
2 − α

)
EP1

f(X)

=
∣∣ 1

2 − α
∣∣ sup
f∈F

EP0
f(X)− EP1

f(X) (23)

=
∣∣ 1

2 − α
∣∣D(P0,P1), (24)

where (23) used our general assumption about IPMs that if f ∈ F , we also have−f ∈ F . ButR(α)

is not a polynomial with any finite degree. Thus no such unbiased estimator D̂ exists.
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Note that the proof of Theorem 3 does not readily extend to generalized IPMs, and so does not tell us
whether an unbiased estimator of the MMD GAN objective (14) can exist. Also, attempting to apply
the same argument to squared IPMs would give the square of (24), which is a quadratic function in
α. Thus tells us that although no unbiased estimator for a squared IPM can exist with only m = 1
sample point, one can exist for m ≥ 2, as indeed (4) does for the squared MMD.

B.3 GRADIENT ESTIMATOR BIAS

We will now show that biased estimators, except for estimators with a constant bias, must also have
biased gradients.

Assume that, as in the GAN setting, Q is given by a generator network Gψ with parameter ψ and
inputs Z ∼ Z, so that Y = Gψ(Z) ∼ Qψ . The generalized IPM of (18) is now a function of ψ,
which we will denote as

D(ψ) := D(P,Qψ).

Consider an estimator D̂(ψ) of D(ψ). Theorem 4 shows that when D̂(ψ) and D(ψ) are differen-
tiable, the gradient∇ψD̂(ψ) is an unbiased estimator for∇ψ D(ψ) only if the bias of D̂(ψ) doesn’t
depend on ψ. This is exceedingly unlikely to happen for the biased estimator D̂(W ) defined in
Theorem 2, and indeed Theorem 3 shows cannot happen for any IPM estimator.

Theorem 4. Let D : Ψ→ R be a function on a parameter space Ψ ⊆ Rd, with a random estimator
D̂ : Ψ→ R which is almost surely differentiable. Suppose that D̂ has unbiased gradients:

E[∇ψD̂(ψ)] = ∇ψ D(ψ).

Then, for each connected component of Ψ,

E D̂(ψ) = D(ψ) + const,

where the constant can vary only across distinct connected components.

Proof. Let ψ1 and ψ2 be an arbitrary pair of parameter values in Ψ, connected by some smooth
path r : [0, 1] → Ψ with r(0) = ψ1, r(1) = ψ2. For example, if Ψ is convex, then paths of the
form r(t) = tψ1 + (1− t)ψ2 are sufficient. Using Fubini’s theorem and standard results about path
integrals, we have that

E[D̂(ψ1)− D̂(ψ2)] = E
[∫ 1

0

(
∇D̂(r(t))

)
· r′(t) dt

]
=

∫ 1

0

E
[
∇D̂(r(t))

]
· r′(t) dt

=

∫ 1

0

(∇D(r(t))) · r′(t) dt

= D(ψ1)−D(ψ2).

This implies that E[D̂(ψ)] = D(ψ) + const for all ψ in the same connected component of Ψ.

B.4 WGANS

Theorems 2 and 3 hold for the original WGANs, whose critic functions are exactly L-Lipschitz,
considering F as the set of L-Lipschitz functions so that DF is L times the Wasserstein distance.
They also hold for either WGANs or WGAN-GPs with F the actual set of functions attainable
by the critic architecture, so that D is the “neural network distance” of Arora et al. (2017) or the
“adversarial divergence” of Liu et al. (2017).

It should be obvious that for nontrivial distributions P and Q and reasonable selection criteria for
f̂Xtr ,Ytr , (21) does not hold, and thus (22) does (so that the estimate is biased downwards). Theo-
rem 3 also shows this is the case on reasonable families of input distributions, and moreover that the
bias is not constant, so that gradients are biased by Theorem 4.
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Example For an explicit demonstration, consider the Wasserstein case, F the set of 1-Lipschitz
functions, with P = N (1, 1) and Q = N (0, 1). Here DF (P,Q) = 1; the only critic functions
f ∈ F which achieve this are f(t) = t+ C for C ∈ R.

If we observe only one training pair Xtr ∼ P and Y tr ∼ Q, when Xtr > Y tr , f1(t) = t
is a maximizer of (20), leading to the expected estimate J(f1,P,Q) = 1. But with probability
Φ
(
−1/
√

2
)
≈ 0.24 it happens that Xtr < Y tr . In such cases, (20) could give e.g. f−1(t) = −t,

giving the expected response J(f−1,P,Q) = −1; the overall expected estimate of the estimator us-
ing this critic selection procedure is then E D̂F (X,Y) =

(
1− Φ

(
−1/
√

2
))
−Φ

(
−1/
√

2
)
≈ 0.52.

The only way to achieve E D̂F (X,Y) = 1 would be a “stubborn” selection procedure which
chooses f1 + C no matter the given inputs. This would have the correct output E D̂F (X,Y) = 1
for this (P,Q) pair. Applying this same procedure to P = N (−1, 1) and Q = N (0, 1), however,
would then give E D̂F (X,Y) = −1, when it should also be 1.

B.5 MAXIMAL MMD ESTIMATOR

Recall the distance η(P,Q) = supθMMD2(hθ(P), hθ(Q)) defined by (14). MMD GANs can be
viewed as estimating η according to the scheme of Theorem 2, with F the set of possible parameters
θ, J(θ,P,Q) = MMD2(hθ(P), hθ(Q)), and Ĵ(θ,X,Y) = MMD2

u(hθ(X), hθ(Y)). Clearly our
optimization scheme for θ does not almost surely yield perfect answers, and so again we have

E η̂(X,Y) < η(P,Q).

As mtr , ntr → ∞, as for Wasserstein it should be the case that η̂ → η. This is shown for certain
kernels, along with the rate of convergence, by Sriperumbudur et al. (2009a, Section 4).

It should also be clear that in nontrivial situations, this bias is not constant, and hence gradients are
biased by Theorem 4.

Example For a particular demonstration, consider

P = N
([

1
0

]
, I

)
, Q = N

([
0
0

]
, I

)
,

with hθ : R2 → R given by hθ(x) = θTx, ‖θ‖ = 1, so that hθ chooses a one-dimensional
projection of the two-dimensional data. Then use the linear kernel kdot , so that the MMD is simply
the difference in means between projected features:

MMD2(hθ(P), hθ(Q)) = ‖E θTX − E θTY ‖2 = θ2
1,

and

E η̂(X,Y) = EXtr ,Ytr

[(
θ̂Xtr ,Ytr

)2

1

]
.

Clearly η(P,Q) = 1, which is obtained by θ ∈ {(−1, 0), (1, 0)}; any other valid θ will yield a
strictly smaller value of MMD2(hθ(P), hθ(Q)).

The MMD GAN estimator of η, if the optimum is achieved, uses

θ̂Xtr ,Ytr = argmax
θ:‖θ‖=1

MMD2
u(Xtr ,Ytr )

= argmax
θ:‖θ‖=1

1

mtr (mtr − 1)

mtr∑
i 6=j

(θTXtr
i )(Xtr

j
T
θ) +

1

ntr (ntr − 1)

ntr∑
i6=j

(θTY tr
i )(Y tr

j
T
θ)

− 2

mtrntr

mtr∑
i=1

ntr∑
j=1

(θTXtr
i )(Y tr

j
T
θ)

= argmax
θ:‖θ‖=1

θTAXtr ,Ytr θ,
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where AXtr ,Ytr ∈ R2×2. θ̂Xtr ,Ytr is then the normalized first eigenvector of AXtr ,Ytr . For Gaussian
Xtr , Ytr with finitemtr , ntr , θ̂Xtr ,Ytr is a continuous random variable and so does not almost surely
lie in {(−1, 0), (1, 0)}; thus by Theorem 2, E η̂(X,Y) < η(P,Q) = 1. (A numerical simulation for
the former gives a value around 0.6 when mtr = ntr = 2.)

C PROOF OF UNBIASED GRADIENTS

We now proceed to prove Theorem 1 as a corollary to the Theorem 5, our main result about ex-
changing gradients and expectations of deep networks.

Exchanging the gradient and the expectation can often be guaranteed using a standard result in
measure theory (see Proposition 1), as a corollary of the Dominated Convergence theorem (Propo-
sition 2). This result, however, requires the property Proposition 1.(ii): for almost all inputs X , the
mapping is differentiable on the entirety of a neighborhood around θ. This order of quantifiers is
important: it allows the use of the mean value theorem to control the average rate of change of the
function, and the result then follows from Proposition 2.

For a neural network with the ReLU activation function, however, this assumption doesn’t hold in
general. For instance, if θ = (θ1, θ2) ∈ R2 with θ2 6= 0 and X ∈ R, one can consider this very
simple function: hθ(X) = max(0, θ1 + θ2X). For any fixed value of θ, the function hθ(X) is
differentiable in θ for all X in R except for Xθ = −θ1/θ2. However, if we consider a ball of
possible θ values B(θ, r), the function is not differentiable on the set {−θ′1/θ′2 ∈ R | θ′ ∈ B(θ, r)},
which can have positive measure for many possible distributions for X .

In Theorem 5, we provide a proof that derivatives and expectations can be exchanged for all param-
eter values outside of a “bad set” ΘP, without relying on Proposition 1.(ii). This can be done using
Lemma 1, which takes advantage of the particular structure of neural networks to control the average
rate of change without using the mean value theorem. Dominated convergence (Proposition 2) can
then be applied directly.

We also show in Proposition 3 that the set ΘP, of parameter values where Theorem 5 might not hold,
has zero Lebesgue measure. This relies on the standard Fubini theorem (Klenke, 2008, Theorem
14.16) and Lemma 4, which ensures that the network θ 7→ hθ(X) is differentiable for almost all
parameter values θ whenX is fixed. Although Lemma 4 might at first sight seem obvious, it requires
some technical considerations in topology and differential geometry.
Proposition 1 (Differentiation Lemma (e.g. Klenke, 2008, Theorem 6.28)). Let V be a nontrivial
open set in Rm and let P be a probability distribution on Rd. Define a map h : Rd × V 7→ Rn with
the following properties:

(i) For any θ ∈ V , EP[‖hθ(X)‖] <∞.

(ii) For P-almost all X ∈ Rd, the map V → Rn, θ 7→ hθ(X) is differentiable.

(iii) There exists a P-integrable function g : Rd 7→ R such that ‖∂θhθ(X)‖ ≤ g(X) for all
θ ∈ V .

Then, for any θ ∈ V , EP[‖∂θhθ(X)‖] < ∞ and the function θ 7→ EP[hθ(X)] is differentiable with
differential:

∂θ EP[hθ(X)] = EP[∂θhθ(X)].

Proposition 2 (Dominated Convergence Theorem (e.g. Klenke, 2008, Corollary 6.26)). Let P be
a probability distribution on Rd and f a measurable function. Let (fn)n∈N be a sequence of of
integrable functions such that for P-almost all X ∈ Rd, fn(X) → f(X) as n goes to∞. Assume
that there is a dominating function g: ‖fn(X)‖ ≤ g(X) for P-almost all X ∈ Rd for all n ∈ N,
and EP[g(X)] <∞. Then f is P-integrable, and EP[fn(X)]→ EP[f(X)] as n goes to∞.

C.1 NETWORK DEFINITION

We would like to consider general feed-forward networks with a directed acyclic computation graph
G. Here, G consists of L + 1 nodes, with a root node i = 0 and a leaf node i = L. We denote
by π(i) the set of parent nodes of i. The nodes are sorted according to a topological order: if j is a
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parent node of i, then j < i. Each node i for i > 0 computes a function fi, which outputs a vector
in Rdi based on its input in Rdπ(i) , the concatenation of the outputs of each layer in π(i). Here
dπ(i) =

∑
j∈π(i) dj , and d0 = d > 0.

We define the feed-forward network that factorizes according the graph G and with functions fi
recursively:

h0 = X

hi = fi(h
π(i)) ∀ 0 < i ≤ L,

where hπ(i) is the concatenation of the vectors hj for j ∈ π(i). The functions fi can be of two
types:

• Affine transform (Linear Module):

fi(Y ) = gi(W
i)

[
Y
1

]
W i is a vector of dimension mi. The function gi : Rmi → Rdi×(dπ(i)+1) is a known
linear operator on the weights W i, which can account for convolutions and similar linear

operations. We will sometimes use Ỹ to denote the augmented vector
[
Y
1

]
, which accounts

for bias terms.
• Non-linear: These fi have no learnable weights. fi can potentially be non-differentiable,

such as max pooling, ReLU, and so on. Some conditions on fi will be required (see As-
sumption D); the usual functions used in practice satisfy these conditions.

Denote by C the set of nodes i such that fi is non-linear. θ is the concatenation of parameters
of all linear modules: θ = (W k)k∈Cc , where Cc is the complement of C in [L] = {1, ..., L}.
Call the total number of parameters m =

∑
i∈Cc mi, so that θ ∈ Rm. The feature vector of the

network corresponds to the output of the last node L and will be denoted hθ := hLθ ∈ RdL . The
subscript θ stands for the parameters of the network. We will sometimes use hθ(X) to denote
explicit dependence on X , or omit it when X is fixed.

Also define a “top-level function” to be applied to hθ, K : RdL → R. This function might simply
be K (U) = U , as in Corollaries 1 and 2. But it also allows us to represent the kernel function of an
MMD GAN in Corollary 3: here we takeX to be the two inputs to the kernel stacked together, apply
the network to each of the two inputs with the same parameters in parallel, and then compute the
kernel value between the two representations with K . K will have different smoothness assumptions
than the preceding layers (Assumption B).

C.2 ASSUMPTIONS

We will need the following assumptions at various points, where α ≥ 1:

A (Moments) EP[‖X‖α] <∞.
B The function K is continuously differentiable, and satisfies the following growth conditions

where C0 and C1 are constants:

|K (U)| ≤ C0(‖U‖α + 1)

‖∇K (U)‖ ≤ C1(‖U‖α−1 + 1).

C (Lipschitz nonlinear layers) For each i ∈ C, fi is M -Lipschitz.
D (Analytic pieces) For each nonlinear layer fi, i ∈ C, there are Ki functions (fki )k∈[Ki],

each real analytic on Rdπ(i) , which agree with fi on the closure of a set Dki :

fi(Y ) = fki (Y ) ∀Y ∈ D̄ki .

These setsDki are disjoint, and cover the whole input space:
⋃Ki
k=1 D̄

k
i = Rdπ(i) . Moreover,

each Dki is defined by Si,k real analytic functions Gi,k,s : Rdπ(i) → R as

Dki =
{
Y ∈ Rdπ(i) | ∀s ∈ [Si,k], Gi,k,s(Y ) > 0

}
.
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(a) Domains of analyticity for the ReLU function in R2.

Y1
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(b) Domains of analyticity for max-pooling in R2.

Figure 5: Illustrations of the domains of analyticity for two functions used in deep learning. Panel
a represents the domains of analyticity for the ReLU function in R2. Each of the four domains D1,
D2, D3 and D4 can be described by two inequalities of the form Gk,1(Y ) > 0 and Gk,2(Y ) > 0,
where k is the index of each domain. Here,Gk,1(Y ) = ±Y1 andGk,2(Y ) = ±Y2 which are analytic
functions. Panel b represents the domains of analyticity for the max-pooling function in R2. D1 and
D2 are each one described by one inequality of the form Gk,1(Y ) > 0 with G1,1(Y ) = Y1−Y2 and
G2,1(Y ) = Y2 − Y1, which are both analytic functions.

Note that Assumption B is satisfied by the function K(U) = U , used in Corollaries 1 and 2, with
α = 1. It is also satisfied by the top-level functions of an MMD GAN with each of the kernels we
consider in this work; see Corollary 3.

Assumptions C and D are satisfied by the vast majority of deep networks used in practice.

For example, if fi computes the ReLU activation function on two inputs, then we have Ki = 4,
with each Dki corresponding to a quadrant of the real plane (see Figure 5a). These quadrants might
each be defined by Si,k = 2 inequalities of the form Gi,k,1(Y ) > 0 and Gi,k,2(Y ) > 0, where
Gi,k,s(Y ) = ±Y1 and Gi,k,s(Y ) = ±Y2 are analytic. Moreover, on each of these domains fi
coincides with an analytic function:

fi(Y ) =


(Y1, Y2); Y ∈ D1

i

(Y1, 0); Y ∈ D2
i

(0, 0); Y ∈ D3
i

(0, Y2); Y ∈ D4
i

.

Another example is when fi computes max-pooling on two inputs. In that case we have Ki = 2,
and each domain Dki corresponds to a half plane (see Figure 5b ). Each domain is defined by one
inequality Gi,k,1(Y ) > 0 with Gi,1,1(Y ) = Y1 − Y2 and Gi,2,1(Y ) = Y2 − Y1. Again, Gi,k,1 are
analytic functions and fi coincides with an analytic function on each of the domains:

fi(Y ) =

{
Y1; Y ∈ D1

i

Y2; Y ∈ D2
i

.

When fi is analytic on the whole space, Di = Rdπ(i) , we can choose Ki = 1 to get D1
i = Rdπ(i) ,

which can be defined by a single function (Si,k = 1) of Gi,1,1(Y ) = 1. This case corresponds to
most of the differentiable functions used in deep learning, such as the softmax, sigmoid, hyperbolic
tangent, and batch normalization functions.

Other activation functions, such as the ELU (Clevert et al., 2016), are piecewise-analytic and also
satisfy Assumptions C and D.
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C.3 MAIN RESULTS

We first state the main result, which implies Theorem 1 via Corollaries 1 to 3. The proof depends
on various intermediate results which will be established afterwards.

Theorem 5. Under Assumptions A to D, for µ-almost all θ0 ∈ Rm the function θ 7→ EP[K (hθ(X))]
is differentiable at θ0, and

∂θ EP[K (hθ(X))] = EP[∂θ K (hθ(X))],

where µ is the Lebesgue measure.

Proof. Let θ0 be such that the function θ 7→ hθ(X) is differentiable at θ0 for P-almost all X . By
Proposition 3, this is the case for µ-almost all θ0 in Rm.

Consider a sequence (θn)n∈N that converges to θ0; there is then an R > 0 such that ‖θn − θ0‖ < R
for all n ∈ N. Letting X be in Rd, Lemma 2 gives that

|K (hθn(X))−K (hθ0(X))| ≤ F (X)‖θn − θ0‖

with EP[F (X)] <∞. It also follows that:

|∂θK(hθ0(X))| ≤ F (X)

for P-almost all X ∈ Rd. The sequenceMn(X) defined by:

Mn(X) =
1

‖θn − θ0‖
|K (hθn(X))−K (hθ0(X))− ∂θ K (hθ0(X))(θn − θ0)|

converges point-wise to 0 and is bounded by the integrable function 2F (X). Therefore by the
dominated convergence theorem (Proposition 2) it follows that

EP[Mn(X)]→ 0.

Finally we define the sequence

Rn =
1

‖θn − θ0‖
∣∣EP[K (hθn(X))]− EP[K (hθ0(X))]− EP[∂θ K (hθ0(X))](θn − θ0)

∣∣,
which is upper-bounded by EP[Mn(X)] and therefore converges to 0. By the sequential characteri-
zation of limits in Lemma 3, it follows that EP[K (hθ(X))] is differentiable at θ0, and its differential
is given by EP[∂θ K (hθ(X))].

These corollaries of Theorem 5 apply it to specific GAN architectures. Here we use the distribution
Z to represent the noise distribution.

Corollary 1 (WGANs). Let P and Z be two distributions, on X and Z respectively, each satisfying
Assumption A for α = 1. Let Gψ : Z → X be a generator network and Dθ : X → R a critic
network, each satisfying Assumptions C and D. Then, for µ-almost all (θ, ψ), we have that

EX∼Pm
Z∼Zn

∂θ,ψ
 1

m

m∑
i=1

Dθ(Xi)−
1

n

n∑
j=1

Dθ(Gψ(Zj))

 = ∂θ,ψ [EX∼PDθ(X)− EZ∼ZDθ(Gψ(Z))] .

Proof. By linearity, we only need the following two results:

EX∼P ∂θDθ(Xi) = ∂θ EX∼PDθ(X) and EZ∼Z ∂θ,ψDθ(Gψ(Zj)) = ∂θ,ψ EZ∼ZDθ(Gψ(Z)).

The first follows immediately from Theorem 5, using the function K (U) = U (which clearly satis-
fies Assumption B for α = 1). The latter does as well by considering that the augmented network
h(θ,ψ)(Z) = Dθ(Gψ(Z)) still satisifes the conditions of Theorem 5.
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Corollary 2 (Original GANs). Let P and Z be two distributions, on X and Z respectively, each
satisfying Assumption A for α = 1. Let Gψ : Z → X be a generator network, and Dθ : X → R a
discriminator network, each satisfying Assumptions C and D. Further assume that the output of D
is almost surely bounded: there is some γ > 0 such that for µ-almost all (θ, ψ),

Pr
X∼P

(γ ≤ Dθ(X) ≤ 1− γ) = 1 and Pr
Z∼Z

(γ ≤ Dθ(Gψ(Z)) ≤ 1− γ) = 1.

Then we have the following:
EX∼P [∂θ [logDθ(X)]] = ∂θ [EX∼P [logDθ(X)]]

EZ∼Z [∂θ,ψ [log (1−Dθ(Gψ(Z)))]] = ∂θ,ψ [EZ∼Z [log (1−Dθ(Gψ(Z)))]]

EZ∼Z [∂θ,ψ [logDθ(Gψ(Z))]] = ∂θ,ψ [EZ∼Z [logDθ(Gψ(Z))]] .

Thus, by linearity, gradients of all the loss functions given in Goodfellow et al. (2014, Section 3) are
unbiased.

Proof. The log function is real analytic and (1/γ)-Lipschitz on (γ, 1 − γ). The claim therefore
follows from Theorem 5, using the networks log ◦Dθ, log ◦[x 7→ (1−x)]◦Dθ◦Gψ , and log ◦Dθ◦Gψ
with K(U) = U .

The following assumption about a kernel k implies Assumption B when used as a top-level function
K :

E Suppose k is a kernel such that there are constants C0, C1 where

|k(U, V )| ≤ C0

((
‖U‖2 + ‖V ‖2

)α/2
+ 1
)

‖∇U,V k(U, V )‖ ≤ C1

((
‖U‖2 + ‖V ‖2

)(α−1)/2
+ 1
)
.

Corollary 3 (MMD GANs). Let P and Z be two distributions, on X and Z respectively, each
satisfying Assumption A for some α ≥ 1. Let k be a kernel satisfying Assumption E. Let Gψ :
Z → X be a generator network and Dθ : X → R a critic representation network each satisfying
Assumptions C and D. Then

EX∼Pm
Z∼Zn

[
∂θ,ψMMD2

u(Dθ(X), Dθ(Gψ(Z)))
]

= ∂θ,ψMMD2(Dθ(P), Dθ(Gψ(Z))).

Proof. Consider the following augmented networks:

h
(1)
(θ,ψ)(X,Z) = (Dθ(X), Dθ(Gψ(Z)))

h
(2)
(θ,ψ)(Z,Z

′) = (Dθ(Gψ(Z)), Dθ(Gψ(Z)))

h
(3)
θ (X,X ′) = (Dθ(X), Dθ(X)).

h(1) has inputs distributed as P× Z, which satisfies Assumption A with the same α as P and Z, and
h(1) satisfies Assumptions C and D. The same is true of h(2) and h(3). Moreover, the function

K

([
U
V

])
= k(U, V )

satisfies Assumption B. Thus Theorem 5 applies to each of h(1), h(2), and h(3). Considering the
form of MMD2

u (4), the result follows by linearity and the fact that MMD2
u is unbiased (Gretton

et al., 2012, Lemma 6).

Each of the kernels considered in this paper satisfies Assumption E with α at most 2:

• kdot(x, y) = 〈x, y〉 works with α = 2, C0 = 1, C1 = 1.

• krbfσ of (5) works with α = 2, C0 = 1, C1 =
√

2σ−2.

• krqα′ of (6) works with α = 2, C0 = 1, C1 =
√

2.

• kdistρβ ,0
of (8), using ρβ(x, y) = ‖x − y‖β with 1 ≤ β ≤ 2, works with α = β, C0 = 3,

C1 = 4β.

Since the existence of a moment implies the existence of all lower-order moments by Jensen’s in-
equality, this finalizes the proof of Theorem 1.
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C.4 BOUNDS ON NETWORK GROWTH

The following lemmas were used in the proof of Theorem 5. We start by stating a result on the
growth and Lipschitz properties of the network.
Lemma 1. Under Assumption C, there exist continuous functions θ 7→ b(θ), a(θ) and (θ, θ′) 7→
(α(θ, θ′), β(θ, θ′)) such that:

‖hθ(X)‖ ≤ b(θ) + a(θ)‖X‖

‖hθ(X)− hθ′(X)‖ ≤ ‖θ − θ′‖
(
β(θ, θ′) + α(θ, θ′)‖X‖

)
for all X in Rd and all θ, θ′ in Rm.

Proof. Let X in Rd and θ, θ′ in Rm. We proceed by recursion on the nodes of the network. For
i = 0 the inequalities hold trivially b0 = 0, a0 = 1, β0 = 0 and α0 = 0. Assume now that:

‖hπ(i)
θ (X)‖ ≤ bπ(i)(θ) + aπ(i)(θ)‖X‖

‖hπ(i)
θ (X)− hπ(i)

θ′ (X)‖ ≤ ‖θ − θ′‖
(
βπ(i)(θ, θ

′) + απ(i)(θ, θ
′)‖X‖

)
where aπ(i)(θ), bπ(i)(θ), απ(i)(θ, θ

′) and βπ(i)(θ, θ
′) are continuous functions. If i is a linear layer

then:

‖hiθ‖ ≤ ‖gi(W i)h̃
π(i)
θ )|

≤ ‖gi‖‖W i‖
(
‖hπ(i)

θ ‖+ 1
)

≤ bi(θ) + ai(θ)‖X‖

with ai(θ) = ‖gi‖‖W i‖aπ(i)(θ) and bi(θ) = ‖gi‖‖W i‖bπ(i)(θ). Moreover, we have that:

‖hiθ(X)− hiθ′(X)‖ = ‖gi(Wi)h̃
π(i)
θ (X)− gi(W ′i )h̃

π(i)
θ′ (X)‖

≤ ‖gi(Wi)
(
h̃
π(i)
θ′ (X)− h̃π(i)

θ (X)
)
‖+ ‖

(
gi(Wi −W ′i )

)
h̃
π(i)
θ′ (X)‖

≤ ‖gi‖
(
‖Wi‖‖hπ(i)

θ′ (X)− hπ(i)
θ (X)‖+ ‖Wi −W ′i‖(‖h

π(i)
θ′ (X)‖+ 1)

)
≤ ‖θ − θ′‖

(
βi(θ, θ

′) + αi(θ, θ
′)‖X‖

)
with:

αi(θ, θ
′) = ‖gi‖

(
(‖Wi‖+ ‖W ′i‖)απ(i)(θ, θ

′) + (aπ(i)(θ) + aπ(i)(θ
′))
)

βi(θ, θ
′) = ‖gi‖

(
(‖Wi‖+ ‖W ′i‖)βπ(i)(θ, θ

′) + (bπ(i)(θ) + bπ(i)(θ
′)) + 1

)
.

When i is not a linear layer, then by Assumption C fi is M -Lipschitz. Thus we can directly get the
needed functions by recursion: αi = Mαπ(i), βi = Mβπ(i), ai = Maπ(i) and bi = Mbπ(i).

Lemma 2. Let R be a positive constant and θ ∈ Rm. Under Assumptions A to C, the following
hold for all θ′ ∈ B(θ,R) and all X in Rd :

|K (hθ′(X))−K (hθ(X))| ≤ F (X)‖θ − θ′‖
with EP[F (X)] <∞.

Proof. We will first prove the following inequality:

|K (U)−K (V )| ≤ C1

(
(‖U − V ‖+ ‖V ‖)α−1

+ 1
)
‖U − V ‖

for all U and V in RL.

Let t be in [0, 1] and define the function f by

f(t) = K (tU + (1− t)V )

Then f(0) = K (V ) and f(1) = K (U). Moreover, f is differentiable and its derivative is given by:

f ′(t) = ∇K ((tU + (1− t)V ))(U − V )
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Using Assumption B one has that:

|f ′(t)| =
∥∥∇K ((tU + (1− t)V )(U − V )

∥∥
≤ ‖∇K (tU + (1− t)V )‖‖(U − V )‖
≤ C1

(
‖t(U − V ) + V ‖α−1 + 1

)
‖U − V ‖

≤ C1

(
(‖U − V ‖+ ‖V ‖)α−1

+ 1
)
‖U − V ‖.

The conclusion follows using the mean value theorem. Now choosing U = hθ′(X) and V = hθ(X)
one gets the following:

|K (hθ′(X))−K (hθ(X))| ≤ C1((‖hθ′(X)− hθ(X)‖+ ‖hθ(X)‖)α−1
+ 1
)
‖hθ′(X)− hθ(X)‖

Under Assumption C, it follows by Lemma 1 that:

‖hθ′(X)− hθ(X)‖ ≤
(
β(θ, θ′) + α(θ, θ′)‖X‖

)
‖θ − θ′‖

‖hθ(X)‖ ≤ b(θ) + a(θ)‖X‖

The functions a, b, α, β defined in Lemma 1 are continuous, and hence all bounded on the ball
B(θ,R); choose D > 0 to be a bound on all of these functions. It follows after some algebra that

|K (hθ′(X))−K (hθ(X))| ≤ C1(Dα(R+ 1)α−1(1 + ‖X‖)α +D(1 + ‖X‖))‖θ′ − θ‖.

Set F (X) = C1(Dα(R + 1)α−1(1 + ‖X‖)α + D(1 + ‖X‖)). Since α ≥ 1, t 7→ (1 + t1/α)α is
concave on t ≥ 0, and so we have that

E [(1 + ‖X‖)α] ≤
(

1 + E [‖X‖α]
1/α
)α

<∞

via Jensen’s inequality and Assumption A. We also have E [1 + ‖X‖] <∞ by the same assumption.
Thus F (X) is integrable.

Lemma 3. Let f : Rm → R be a real valued function and g a vector in Rm such that:

1

‖θn − θ0‖
|f(θn)− f(θ0)− g · (θn − θ0)| → 0

for all sequences (θn)n∈N converging towards θ0 with θn 6= θ0. Then f is differentiable at θ0, and
its differential is g.

Proof. Recall the definition of a differential: g is the differential of f at θ0 if

lim
h→0

1

‖h‖
|f(θ0 + h)− f(θ0)− g · h| = 0.

The result directly follows from the sequential characterization of limits.

C.5 CRITICAL PARAMETERS HAVE ZERO MEASURE

The last result required for the proof of Theorem 5 is Proposition 3. We will first need some addi-
tional notation.

For a given node i, we will use the following sets of indices to denote “paths” through the network’s
computational graph:

P :=
{

(i, k, s) ∈ N3 | i ∈ {0} ∪ [L], k ∈ [Ki], s ∈ [Si,k]
}

¬i = {(j, k, s) ∈ P | j is an ancestor of i or j = i}

¬π(i) =
⋃

j∈π(i)

¬j = {(j, k, s) ∈ P | j is an ancestor of i}

∂i = {(i, u, s) ∈ P}.
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Note that ∂i ⊆ ¬i, and that ¬i = ∂i ∪ ¬π(i).

If a(i) is the set of ancestors of node i, we define a backward trajectory starting from node i as an
element q of the form:

q := (j, kj)j∈a(i)∪{i}

where kj are integers in [Kj ]. We call T (i) the set of such trajectories for node i.

For p ∈ P of the form p = (i, k, s), the set of parameters for which we lie on the boundary of p is

Sp = {θ ∈ Rm | Gi,k,s(hπ(i)
θ ) = 0}.

We also denote by ∂Sp the boundary of the set Sp. If Q is a subset of P , we use the following
notation for convenience:

SQ :=
⋃
q∈Q

Sq, ∂SQ :=
⋃
q∈Q

∂Sq. (25)

For a given θ0 ∈ Rm, the set of input vectors X ∈ Rd such that hθ0 is not differentiable is

N (θ0) =
{
X ∈ Rd | θ 7→ hθ(X) is not differentiable at θ0

}
.

Consider a random variable X in the input space Rd, following the distribution P. For a given
distribution P, we introduce the following set of "critical" parameters:

ΘP =
{
θ | P(N (θ)) > 0

}
.

This is the set of parameters θ where the network is not differentiable for a non-negligible set of
datasets X .

Finally, for a given X ∈ Rd, set of parameters for which the network is not differentiable is

ΘX =
{
θ0 ∈ Rm | θ 7→ hθ(X) is non-differentiable in θ0

}
.

We are now ready to state and prove the remaining result.
Proposition 3. Under Assumption D, the set ΘP has 0 Lebesgue measure for any distribution P.

Proof. Consider the following two sets:

D =
{

(θ,X) ∈ Rm × Rd | θ ∈ ΘP and X ∈ N (θ)
}

Q =
{

(θ,X) ∈ Rm × Rd | θ ∈ ΘX

}
.

By virtue of Theorem I in Zahorski (1946); Piranian (1966), it follows that the set of non-
differentiability of continuous functions is measurable. It is easy to see then, that D and Q are
also measurable sets since the network is continuous. Note that we have the inclusion D ⊆ Q.
We endow the two sets with the product measure ν := µ × P, where µ is the Lebesgue measure.
Therefore ν(D) ≤ ν(Q). On one hand, Fubini’s theorem tells us:

ν(Q) =

∫
Rd

∫
ΘX

dµ(θ) dP(X)

=

∫
Rd
µ(ΘX)dP(X).

By Lemma 4, we have that µ(ΘX) = 0; therefore ν(Q) = 0 and hence ν(D) = 0. On the other
hand, we use again Fubini’s theorem for ν(D) to write:

ν(D) =

∫
ΘP

∫
N (θ)

dP(X) dµ(θ)

=

∫
ΘP

P(N (θ)) dµ(θ).

For all θ ∈ ΘP, we have P(N (θ)) > 0 by definition. Thus ν(D) = 0 implies that µ(ΘP) = 0.
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Lemma 4. Under Assumption D, for anyX in Rd, the set ΘX has 0 Lebesgue measure: µ(ΘX) = 0.

Proof. We first show that ΘX ⊆ ∂SP , which was defined by (25).

Let θ0 be in ΘX . By Assumption D, it follows that θ0 ∈ SP . Assume for the sake of contradiction
that θ0 /∈ ∂SP . Then applying Lemma 5 to the output layer, i = L, implies that there is a real
analytic function f(θ) which agrees with hθ on all θ ∈ B(θ0, η) for some η > 0. Therefore the
network is differentiable at θ0, contradicting the fact that θ0 ∈ ΘX . Thus ΘX ⊆ ∂SP .

Lemma 6 then establishes that µ(∂SP ) = 0, and hence µ(ΘX) = 0.

Lemma 5. Let i be a node in the graph. Under Assumption D, if θ ∈ Rm \ ∂S¬i, then there exist
η > 0 and a trajectory q ∈ T (i) such that hiθ′ = fq(θ′) for all θ′ in the ball B(θ, η). Here fq is the
real analytic function on Rm defined with the same structure as hθ, but replacing each nonlinear fj
with the analytic function fkjj for (j, kj) ∈ q.

Proof. We proceed by recursion on the nodes of the network. If i = 0, we trivially have h0
θ = X ,

which is real analytic on Rm. Assume the result for ¬π(i) and let θ ∈ Rm \ ∂S¬i. In particular
θ ∈ Rm \ ∂S¬π(p). By the recursion assumption, we get:

(∃η > 0)(∃q ∈ T (i))(∀θ′ ∈ B(θ, η)) h
π(i)
θ′ = fq(θ′) (26)

with fq real analytic in Rm.

If θ /∈ S∂i, then there is some sufficiently small η′ > 0 such that B(θ, η′) does not intersect S∂i.
Therefore, by Assumption D, there is some k ∈ [Ki] such that hiθ′ = fki (h

π(i)
θ′ ) for all θ′ ∈ B(θ, η′),

where fki is one of the real analytic functions defining fi. By (26) we then have

hiθ′ = fki (fq(θ′)) ∀θ′ ∈ B(θ,min(η, η′)). (27)

Otherwise, θ ∈ S∂i. Then, noting that by assumption θ /∈ ∂S∂i, it follows that for small enough
η′ > 0, we have B(θ, η′) ⊆ S∂i. Denote by A the set of index triples p ∈ ∂i such that θ ∈ Sp;
A is nonempty since θ ∈ S∂i. Therefore θ ∈

⋂
p∈A S

p, and θ /∈
⋃
p∈Ac S

p. We will show that
for η′ small enough, B(θ, η′) ⊆

⋂
p∈A S

p. Assume for the sake of contradiction that there exists a
sequence of (parameter, index-triple) pairs (θn, pn) such that pn ∈ Ac, θn ∈ Spn , and θn → θ. pn
is drawn from a finite set and thus has a constant subsequence, so we can assume without loss of
generality that pn = p0 for some p0 ∈ Ac. Since Sp0 is a closed set by continuity of the network
and Gp0 , it follows that θ ∈ Sp0 by taking the limit. This contradicts the fact that θ /∈

⋃
p∈Ac S

p.
Hence, for η′ small enough, B(θ, η′) ⊆

⋂
p∈A S

p. Again, by Assumption D there is a k ∈ [Ki]
satisfying (27).

By setting fq0 = fki (fq) with q0 = ((i, k) ⊕ q), where ⊕ denotes concatenation, it finally follows
that hiθ′ = fq0(θ′) for all θ′ in B(θ,min(η, η′)), and fq0 is the real analytic function on Rm as
described.

Lemma 6. Under Assumption D,
µ(∂SP ) = 0.

Proof. We will proceed by recursion. For i = 0 we trivially have ∂S¬0 = ∅, thus µ(∂S¬0) = 0.
Thus assume that

µ(∂S¬π(i)) = 0.

For s = (p, q), the pair of an index triple p ∈ ∂i and a trajectory q ∈ T (i), define the set

Ms = {θ ∈ Rm | Gp(fq(θ)) = 0},

where fq is the real analytic function defined in Lemma 5 which locally agrees with hπ(i)
θ .

We will now prove that for any θ in ∂S∂i \ ∂S¬π(i), there exists s ∈ ∂i × T (i) such that θ ∈ Ms

and µ(Ms) = 0. We proceed by contradiction.
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Let θ ∈ ∂S∂i \∂S¬π(i); then for small enough η > 0, B(θ, η) ⊆ Rm \∂S¬π(i). By Lemma 5, there
is a trajectory q ∈ T (i) such that

h
π(i)
θ′ = fq(θ′) ∀θ′ ∈ B(θ, η). (28)

Moreover, since θ ∈ ∂S∂i, there exists p ∈ ∂i such that Gp(h
π(i)
θ ) = 0. This means that for

s = (p, q), we have θ ∈ Ms. If µ(Ms) > 0, then by Lemma 7Ms = Rm, hence we would have
B(θ, η) ⊆Ms. By (28) it would then follow that B(θ, η) ⊆ S∂i. This contradicts the fact that θ is
in ∂S∂i, and hence µ(Ms) = 0.

We have shown that ∂S∂i \ ∂S¬π(i) ⊆
⋃
s∈AMs, where the setsMs have zero Lebesgue measure

and A ⊆ P ×
⋃L
j=0 T (j) is finite. This implies:

µ(∂S∂i \ ∂S¬π(i)) ≤
∑
s∈A

µ(Ms) = 0.

Using the recursion assumption µ(∂S¬π(i)) = 0, one concludes that µ(∂S¬i) = 0. Hence for the
last node L, recalling that ¬L = P one gets µ(∂SP ) = 0.

Lemma 7. Let θ 7→ F (θ) : Rm → R be a real analytic function on Rm and define the set:

M := {θ ∈ Rm | F (θ) = 0}.
Then either µ(M) = 0 or F is identically zero.

Proof. This result is shown e.g. as Proposition 0 of Mityagin (2015).

D FID ESTIMATOR BIAS

We now further study the bias behavior of the FID estimator (Heusel et al., 2017) mentioned in
Section 4.

We will refer to the Fréchet Inception Distance between two distributions, letting µP denote the
mean of a distribution P and ΣP its covariance matrix, as

FID(P,Q) = ‖µP − µQ‖2 + Tr(ΣP) + Tr(ΣQ)− 2 Tr
(

(ΣPΣQ)
1
2

)
.

This is motivated because it coincides with the Fréchet (Wasserstein-2) distance between normal
distributions. Although the Inception coding layers to which the FID is applied are not normally
distributed, the FID remains a well-defined pseudometric between arbitrary distributions whose first
two moments exist.

The usual estimator of the FID based on samples {Xi}mi=1 ∼ Pm and {Yj}nj=1 ∼ Pn is the plug-in
estimator. First, estimate the mean and covariance with the standard estimators:

µ̂X =
1

n

n∑
i=1

Xi, Σ̂X =
1

n− 1

n∑
i=1

(Xi − µ̂X)(Xi − µ̂X)T.

Letting P̂X be a distribution matching these moments, e.g. N
(
µ̂X , Σ̂X

)
, the estimator is given by

FID
(
P̂X , Q̂Y

)
= ‖µ̂X − µ̂Y ‖2 + Tr(Σ̂X) + Tr(Σ̂Y )− 2 Tr

((
Σ̂XΣ̂Y

) 1
2

)
.

In Appendices D.1 and D.2, we exhibit two examples where FID(P1,Q) < FID(P2,Q), but the
estimator FID(P̂1,Q) is usually greater than FID(P̂2,Q) with an equal number of samples m from
P1 and P2, for a reasonable number of samples. (As m→∞, of course, the estimator is consistent,
and so the order will eventually be correct.) We assume here an infinite number of samples n from
Q for simplicity; this reversal of ordering is even easier to obtain when n = m. It is also trivial to
achieve when the number of samples from P1 and P2 differ, as demonstrated by Figure 1b.

Note that Appendices D.1 and D.2 only apply to this plug-in estimator of the FID; it remains con-
ceivable that there would be some other estimator for the FID which is unbiased. Appendix D.3
shows that this is not the case: there is no unbiased estimator of the FID.
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D.1 ANALYTIC EXAMPLE WITH ONE-DIMENSIONAL NORMALS

We will first show that the estimator can behave poorly even with very simple distributions.

When P = N (µP,ΣP) and Q = N (µQ,ΣQ), it is well-known that

µ̂X ∼ N
(
µP,

1

m
ΣP

)
and (m− 1)Σ̂X ∼ W (ΣP,m− 1) ,

whereW is the Wishart distribution. Then we have

EXY
[
‖µ̂X − µ̂Y ‖2

]
= ‖µP − µQ‖2 +

1

m
Tr(ΣP) +

1

n
Tr(ΣQ)

EXY
[
Tr(Σ̂X) + Tr(Σ̂Y )

]
= Tr(ΣP) + Tr(ΣQ).

The remaining term ETr

((
Σ̂XΣ̂Y

) 1
2

)
is more difficult to evaluate, because we must consider

the correlations across dimensions of the two estimators. But if the distributions in question are
one-dimensional, denoting ΣP = σ2

P and Σ̂X = σ̂2
X , the matrix square root becomes simple:

EXY
[
Tr

((
Σ̂XΣ̂Y

) 1
2

)]
= EX [σ̂X ]EY [σ̂Y ] .

Since
√
m−1
σP

σ̂X ∼ χm−1, we get that

EX [σ̂X ] =
σP√
m− 1

√
2

Γ
(
m
2

)
Γ
(
m−1

2

) = dmσP where dm :=

√
2 Γ
(
m
2

)
√
m− 1 Γ

(
m−1

2

) .
Thus the expected estimator for one-dimensional normals becomes

EX,Y
[
FID

(
P̂X , Q̂Y

)]
= (µP − µQ)2 +

m+ 1

m
σ2
P +

n+ 1

n
σ2
Q − 2dmdnσPσQ. (29)

Now, consider the particular case

P1 := N

(
0,

(
1− 1

m

)2
)

P2 := N (0, 1) Q := P2 = N (0, 1).

Clearly

FID(P1,Q) =
1

m2
> 0 = FID(P2,Q).

But letting n→∞ in (29) gives

EX∼Pm1 FID
(
P̂X ,Q

)
− EY∼Pm2 FID

(
P̂Y ,Q

)
=

1

m

(
1

m2
− 1

m
+ 2(dm − 1)

)
< 0,

where the inequality follows because 1
m2 < 1

m and dm < 1 for all m ≥ 2. Thus we have the
undesirable situation

FID(P1,Q) > FID(P2,Q) but EX∼Pm1 FID
(
P̂X ,Q

)
< EY∼Pm2 FID

(
P̂Y ,Q

)
.

D.2 EMPIRICAL EXAMPLE WITH HIGH-DIMENSIONAL CENSORED NORMALS

The example of Appendix D.1, though indicative in that the estimator can behave poorly even with
very simple distributions, is somewhat removed from the situations in which we actually apply the
FID. Thus we now empirically consider a more realistic setup.

First, as noted previously, the hidden codes of an Inception coding network are not well-modeled
by a normal distribution. They are, however, reasonably good fits to a censored normal distribution
ReLU(X), where X ∼ N (µ,Σ) and ReLU(X)i = max(0, Xi). Using results of Rosenbaum
(1961), it is straightforward to derive the mean and variance of ReLU(X) (Sutherland, 2018), and
hence to find the population value of FID(ReLU(X),ReLU(Y )).
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Let d = 2048, matching the Inception coding layer, and consider
P1 = ReLU(N (0, Id)) P2 = ReLU(N (1, .8Σ + .2Id)) Q = ReLU(N (1, Id))

where Σ = 4
dCC

T , with C a d × d matrix whose entries are chosen iid standard normal. For one
particular random draw of C, we found that FID(P1,Q) ≈ 1123.0 > 1114.8 ≈ FID(P2,Q).
Yet with m = 50 000 samples, FID(P̂1,Q) ≈ 1133.7 (sd 0.2) < 1136.2 (sd 0.5) ≈ FID(P̂2,Q).
The variance in each estimate was small enough that of 100 evaluations, the largest FID(P̂1,Q)

estimate was less than the smallest FID(P̂2,Q) estimate. At m = 100 000 samples, however, the
ordering of the estimates was correct in each of 100 trials, with FID(P̂1,Q) ≈ 1128.0 (sd 0.1) and
FID(P̂2,Q) ≈ 1126.4 (sd 0.4). This behavior was similar for other random draws of C.

This example thus gives a case where, for the dimension and sample sizes at which we actually
apply the FID and for somewhat-realistic distributions, comparing two models based on their FID
estimates will not only not reliably give the right ordering – with relatively close true values and high
dimensions, this is not too surprising – but, more distressingly, will reliably give the wrong answer,
with misleadingly small variance. This emphasizes that unbiased estimators, like the natural KID
estimator, are important for model comparison.

D.3 NON-EXISTENCE OF AN UNBIASED ESTIMATOR

We can also show, using the reasoning of Bickel & Lehmann (1969) that we also employed in
Theorem 3, that there is no estimator of the FID which is unbiased for all distributions.

Fix a target distribution Q, and define the quantity F (P) = FID(P,Q). Also fix two distributions
P0 6= P1. Suppose there exists some estimator F̂ (X) based on a sample of size n for which

EX∼Pn
[
F̂ (X)

]
= F (P)

for all P ∈ {(1− α)P0 + αP1 | α ∈ [0, 1]}.
Now consider the function
R(α) = F (αP1 + (1− α)P2)

=

∫
x1

· · ·
∫
xn

F̂ (X) d [αP1 + (1− α)P1] (x1) · · · d [αP1 + (1− α)P1] (xn)

=

∫
x1

· · ·
∫
xn

F̂ (X) [α dP1(x1) + (1− α) dP2(x1)] · · · [α dP1(xn) + (1− α) dP2(xn)]

= αn EX∼Pn1

[
F̂ (X)

]
+ · · ·+ (1− α)n EX∼Pn2

[
F̂ (X)

]
.

This function R(α) is therefore a polynomial in α of degree at most n.

But let’s consider the following one-dimensional case:
P0 = N (µ0, σ

2
0) P1 = N (µ1, σ

2
1) Q = N (µ, σ2).

The mean and variance of (1− α)P0 + αP1 can be written as
µα = (µ1 − µ0)α+ µ0

σ2
α = −(µ0 − µ1)2α2 +

(
(µ0 − µ1)2 − σ2

0 + σ2
1

)
α+ σ2

0 .

Thus
R(α) = (µα − µ)

2
+ σ2

α + σ2 − 2σσα.

Note that (µα − µ)
2

+σ2
α+σ2 is a quadratic function of α. However, σα is polynomial in α only in

the trivial case when P0 = P1. Thus R(α) is not a polynomial when P0 6= P1, and so no estimator
of the FID to an arbitrary fixed normal distribution Q can be unbiased on any class of distributions
which includes two-component Gaussian mixtures.

There is also no unbiased estimator is available in the two-sample setting, where Q is also unknown,
by the same trivial extension to this argument as in Theorem 3.

Unfortunately, this type of analysis can tell us nothing about whether there exists an estimator which
is unbiased on normal distributions. Given that the distributions used for the FID in practice are
clearly not normal, however, a practical unbiased estimator of the FID is impossible.
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Figure 6: Gaussian noise; α is the mixture weight of the Gaussian noise.
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Figure 7: Gaussian blur; α is the standard deviation of the Gaussian filter.

E COMPARISON OF EVALUATION METRICS’ RESILIENCE TO NOISE

We replicate here the experiments of Heusel et al.’s Appendix 1, which examines the behavior of the
Inception and FID scores as images are increasingly “disturbed,” and additionally consider the KID.
As the “disturbance level” α is increased, images are altered more from the reference distribution.
Figures 6 to 11 show the FID, KID, and negative (for comparability) Inception score for both CelebA
(left) and CIFAR-10 (right); each score is scaled to [0, 1] to be plotted on one axis, with minimal and
maximal values shown in the legend.

Note that Heusel et al. compared means and variances computed on 50 000 random disturbed
CelebA images to those computed on the full 200 000 dataset; we instead use the standard train-
test split, computing the disturbances on the 160 000-element training set and comparing to the
20 000-element test set. In this (very slightly) different setting, we find the Inception score to be
monotonic with increasing noise on more of the disturbance types than did Heusel et al. (2017).
We also found similar behavior on the CIFAR-10 dataset, again comparing the noised training set
(size 50 000) to the test set (size 10 000). This perhaps means that the claimed non-monotonicity of
the Inception score is quite sensitive to the exact experimental setting; further investigation into this
phenomenon would be intriguing for future work.

F SAMPLES AND DETAILED RESULTS FOR MNIST AND CIFAR-10

MNIST After training for 50 000 generator iterations, all variants achieved reasonable results.
Among MMD models, only the distance kernel saw an improvement with more neurons in the top
layer. Table 3 shows the quantitative measures, computed on the basis of a LeNet model. All have
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Figure 8: Black rectangles; α is the portion of the image size each rectangle contains.
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Figure 9: Swirl: α is the strength of the swirl effect.
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Figure 10: Salt and pepper noise: α is the portion of pixels which are noised.
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Figure 11: ImageNet contamination: α is the portion of images replaced by ImageNet samples.

achieved KIDs of essentially zero, and FIDs around the same as that of the test set, with Inception
scores slightly lower. Model samples are shown in Figure 12.

Table 3: Mean (standard deviation) of score evaluations for the MNIST models.

critic size
loss filters top layer Inception FID KID
rq 16 16 9.11 (0.01) 4.206 (0.05) 0.005 (0.004)
rbf 16 16 8.98 (0.02) 8.264 (0.02) 0.011 (0.006)
dot 16 16 8.86 (0.02) 6.245 (0.06) 0.006 (0.004)
dist 16 256 9.13 (.004) 6.179 (0.05) 0.005 (0.004)

Cramér GAN 16 256 9.25 (0.02) 3.385 (0.10) 0.006 (0.005)
WGAN-GP 16 1 9.12 (0.02) 6.915 (0.10) 0.009 (0.004)

test set – – 9.78 (0.02) 4.305 (0.16) 0.003 (0.003)

Examining samples during training, we observed that rbf more frequently produces extremely
“blurry” outputs, which can persist for a substantial amount of time before eventually resolving.
This makes sense, given the very fast gradient decay of the rbf kernel: when generator samples are
extremely far away from the reference samples, slight improvements yield very little reward for the
generator, and so bad samples can stay bad for a long time.

CIFAR-10 Scores for various models trained on CIFAR-10 are shown in Table 4. The scores for
rq with a small critic network approximately match those of WGAN-GP with a large critic network,
at substantially reduced computational cost. With a small critic, WGAN-GP, Cramér GAN and the
distance kernel all performed very poorly. Samples from these models are presented in Figure 13.

Table 4: Mean (standard deviation) of score evaluations for the CIFAR-10 models.

critic size
loss filters top layer Inception FID KID
rq 16 16 5.86 (0.06) 48.10 (0.16) 0.032 (0.001)
rq 64 16 6.51 (0.03) 39.90 (0.29) 0.027 (0.001)

dist 16 256 4.53 (0.03) 80.48 (0.19) 0.061 (0.001)
dist 64 256 6.39 (0.04) 40.25 (0.19) 0.028 (0.001)

Cramér GAN 16 256 4.67 (0.02) 74.93 (0.32) 0.060 (0.001)
Cramér GAN 64 256 6.39 (0.01) 40.27 (0.15) 0.028 (0.001)
WGAN-GP 16 1 3.15 (0.01) 147.09 (0.31) 0.116 (0.002)
WGAN-GP 64 1 6.53 (0.02) 37.52 (0.19) 0.026 (0.001)

test set – – 11.21 (0.13) 6.11 (0.05) 0.000 (0.000)
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(a) MMD rq (b) MMD rbf (c) MMD dot

(d) Cramer GAN (e) WGAN-GP (f) MNIST test set

Figure 12: Samples from the models listed in Table 3. Rational-quadratic and Gaussian kernels ob-
tain retain sample quality despite reduced discriminator complexity. Each of these models generates
good quality samples with the standard DCGAN discriminator (critic size 64).

(a) MMD rq*, critic size 16 (b) WGAN-GP, critic size 16 (c) Cramér GAN, critic size 16

(d) MMD rq*, critic size 64 (e) Cramér GAN, critic size 64 (f) Test set

Figure 13: Comparison of samples from various models, as well as true samples from the test set.
WGAN-GP samples with critic size 16 are quite bad. Cramér GAN samples with critic size 16 are
more appealing to the eye, but seem to have pixel-level issues. Large-critic Cramér and MMD rq*
GAN are of similar quality.
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