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Reduced-basis output bound methods for heat transfer problems
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Abstract

We describe a technique for the rapid and reliable prediction of outputs of interest, of elliptic partial differential
equations with affine parameter dependence. To achieve efficiency, the reduced-basis method is used; reliability is obtained
by the development of relevant a posteriori error estimators. We apply this method to the problem of designing a thermal
fin, to effectively remove heat from a surface. A number of design parameters/inputs are considered. Each possible
configuration, corresponding to different choices of the design parameters, needs to be evaluated by solving the heat
conduction equation and calculating certain outputs of interest like the average temperature on the fin base.
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1. Introduction

In engineering and science, the use of numerical simula-
tion is becoming increasingly important. The physical prob-
lems in consideration are often modeled by a set of par-
tial differential equations and related boundary conditions;
then, a discrete form of the mathematical problem is de-
rived and a solution is obtained by numerical solution meth-
ods. As the physical problems become more complicated
and the mathematical models more involved, current com-
putational resources prove inadequate; the time required
to perform the computation becomes unacceptably large.
Especially in the field of optimization or design, where
the evaluation of many different possible configurations is
required — corresponding to different choices of the de-
sign parameters/inputs — reliable methods that reduce the
complexity of the problem while at the same time preserve
all relevant information, are becoming very important.

2. Numerical method

The method used in this paper is the reduced-basis
output bound method developed in [1-4]; for details related
to the implementation, see [2]. In designing new methods,
certain qualities must be considered: efficiency, relevance

and reliability.
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2.1. Efficiency

To achieve efficiency, we pursue the reduced-basis
method; a weighted residual Galerkin-type method, where
the solution is projected onto low-dimensional spaces with
certain problem-specific approximation properties.The re-
duced-basis method has been proposed first by Nagy in [6],
for the nonlinear analysis of structures. It has been further
investigated and extended by Noor and Peters [7]. A priori
theory has been developed by Fink and Rheinboldt [10],
Porsching [11] and Barret and Redien [9].

2.2. Relevance

Usually in a design or optimization procedure, we are
not interested in the field solution or norms of it, but rather
in certain design measures, such as the drag coefficient
in the case of flow past a bluff body, or the average
temperature on a surface in the case of heat conduction.
The methods considered give accurate approximations to
these outputs of interest, defined as functional outputs of
the field solution.

2.3. Reliability
To quantify the error introduced by the reduced-basis
method, a posteriori error analysis techniques must be

invoked. There has recently been much interest in methods
for a posteriori error estimation, especially to estimate the
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discretization error for the finite element method; a review
can be found in [8]. Most error estimators developed give
bounds for abstract norms of the error. A posteriori error
estimators for outputs of interest have been developed in
the reduced-basis context; for more details see [3].

Special affine parameter dependence of the differential
operator is exploited to develop a two-stage offline/online
blackbox computational method. In the online stage, for
every new set of design parameters, an approximation to
the output of interest and an associated error bound is cal-
culated. The computational complexity of the online stage
of the procedure scales only with the dimension of the
reduced-basis space (which is usually O(10)) and the para-
metric complexity of the partial differential operator; for
more details see [2]. Solution of the governing equations in
‘real-time’, can thus be achieved.

3. Thermal fin problem

In this example, we consider a three-dimensional ther-
mal fin used to effectively remove heat from a surface. The
three-dimensional fin, shown in Fig. 1, consists of a vertical
central ‘post’ and four horizontal ‘subfins’; the fin conducts
heat from a prescribed uniform flux ‘source’ at the root,
through the large-surface-area subfins to surrounding flow-
ing air.

The fin is characterized by a seven-component parame-
ter vector, . = (u', ..., 1), where u' = k', i =1,...,4;
w’ = Bi; u® = L; and u’ = t; 1 may take on any value
in a specified design space D C R’. Here k' is the thermal
conductivity of the i-th subfin (normalized relative to the
post conductivity k® = 1); Bi is the Biot number, a non-
dimensional heat transfer coefficient reflecting convective
transport to the air at the fin surfaces; and L and ¢ are the
length and thickness of the subfins (normalized relative to

Bi: heat transfer coefficient
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Fig. 1. 3D thermal fin.

the post width). The fin is one unit deep (the root is square)
and four units tall.

We consider several outputs of interest. The first output,
Tt € R, is taken to be the average temperature of the
fin root normalized by the prescribed heat flux into the fin
root. This output relates directly to the cooling efficiency of
the fin — lower values of T, imply better performance.
Another output is the volume of the fin, which represents
weight and material cost — thus lower values are preferred.
In order to optimize the design, we must be able to rapidly
evaluate T;oo (1) and the volume of the fin V for a large
number of parameter values u € D.

The steady-state temperature distribution within the fin,
u(x), is governed by the elliptic partial differential equation

—kVui=0inQ, i=0,...,4, (D

where V? is the Laplacian operator, and u’ refers to the
restriction of u to Q. Here Q' is the region of the fin with
conductivity k'; i =0, ..., 4: Q" is thus the central post,
and Qi =1,...,4, corresponds to the four subfins. We
must also ensure continuity of temperature and heat flux at
the conductivity—discontinuity interfaces I = 9Q° N 3%,
i=1,...,4, where Q' denotes the boundary of Q'
u® =u ;

) ) onl, i=1,....4; (2
—(Vul -0 =~k (Vu' - R')

here ft’ is the outward normal on 92’ Finally, we introduce
a Neumann flux boundary condition on the fin root

—(Vu® -2 = —1 on s 3)

which models the heat source; and a Robin boundary
condition

—k'(Vu' -0y =Biu' onT! i=0,...4, 4)

ext?

which models the convective heat losses. Here T is that
part of the boundary of Q' exposed to the fluid that is
92\ o

For every choice of the design parameter-vector © —
which determines the k', Bi, and also the fin geometry
through L and r — solution of the above system of equa-
tions yields the temperature distribution u(X; u) in the
fin. The output of interest, T.,,(t), can be expressed as

Toot () = ng(u(x; ,LL)), where

£0,() = / v (5)

Froot

(Tyoot s of area unity). As for the volume, it is given by
the following formula

V =4+ 8Lt. (6)
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4. Results

In multi-criterion optimization, we consider various
(competing) outputs of interest, say volume, V, and root
temperature, 7T,o. Changing the dimensions of the fin by
selecting different L and ¢ will (say) decrease the volume
of the fin, and hence material requirements — but also
(typically) increase the fin base temperature. It is thus of
interest to determine all possible operating points, that is,
to generate the map of the ‘achievable set’. In general, this
will be prohibitively expensive unless one has recourse to a
very low-dimensional representation, such as the reduced-
basis approximation.

We consider this problem for constant conductivities
ki =1,i = 0,...,4, and Biot number Bi = 0.1. We
then select 100 points in the two dimensional design space
[t, L] = [0.2,0.4] x [2.0, 3.0] and evaluate our bounds for
Tioor With an error tolerance of 1%. Since in this design
we wish to be sure that the actual temperature will be
less than our prediction, we choose to construct our map
based on the upper bound obtained by the error estimator.
We are thus insured that at each design point, the actual
temperature will be lower than that on our curve.

Each evaluation produces a point on the 7,,,—V plane,
thus generating the achievable set. Obvious optimality con-
ditions require that we remain on the left or lower bound-
aries of the achievable set, known as the efficient frontier
or trade-off curve in Pareto analysis. As we can see from
Fig. 2, we can decrease the volume with relatively small
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Fig. 2. Achievable set.

increase in temperature up to the point were the left and
lower boundaries cross; after that a small further possible
volume reduction results in a steep rise in base temperature.
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