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Abstract
Understandinghowdiffusion takes placewithinnanocrystals is of great importance for their stability and
for controlling their synthesis. In this study,weused the strain sensitivity ofBragg coherent diffraction
imaging (BCDI) to study thediffusionof iron into individual goldnanocrystals in situ at elevated
temperatures. TheBCDI experimentswere performedat the I-07beamline atDiamondLight Source,UK.
Thediffractionpatternof individual goldnanocrystalswasmeasured around the (11-1)Braggpeakof gold
before and after irondeposition as a functionof temperature and time. Phase retrieval algorithmswere
used toobtain real space reconstructions of thenanocrystals from theirmeasureddiffractionpatterns.
Alloyingof ironwith gold at sample temperatures of 300 °C–500 °Canddealloyingof iron fromgold at
600 °Cwere observed. The volumeof the alloyed region in thenanocrystalswas found to increasewith the
dose of iron.However, no significant timedependencewas observed for the structure following each iron
deposition, suggesting that the samples reached equilibriumrelatively quickly. The resultingphase
distributionwithin the goldnanocrystals after the irondepositions suggests a contractiondue todiffusion
of iron.Our results show thatBCDI is a useful technique for studyingdiffusion in threedimensions and
alloyingbehaviour in individual crystalline grains.

Introduction

Understanding and controlling how the diffusion process works at the atomic scale is an important question in
synthesis ofmaterials. For nanoparticles, the stability, size, structure, composition, and atomic ordering all
become dependent on position inside the particle and diffusion not only affects all of these properties but is itself
affected by them [1–4].Much of the interest in nanotechnology arises from the ability to limit or control
diffusion, for example in the construction ofmultilayers or core–shell nanoparticle systems [5–7].Much of the
commercial interest in nanoparticle catalysts, for example, comes frombeing able to locate an expensive element
strategically at locationswhich aremost effective for reaction [8–10]. The properties itemised above are
fundamental in determining the suitability of a particular nanocrystal construct for applications. Thus,
investigating themechanisms and effects of diffusion in nanocrystals will help in their controlled synthesis to
obtain the desired properties.

Conventionalmethods for studying diffusion in solids all have limitations [11]. Directmethods such as
mechanical and sputter profiling [12], secondary ionmass spectrometry [13, 14], and electronmicroprobe
analysis [15, 16] investigate diffusion bymeasuring the profile of the diffusing element in a solidmaterial. These
methods provide only amacroscopic quantity, the diffusion coefficient. On the other hand, indirectmethods
such as quasielastic neutron spectroscopy [17–19] andMössbauer spectroscopy [20–22] can provide
microscopic information on the diffusion process but are limited to a narrow number of isotopes and relatively
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fast diffusivity values.Moreover, these existingmethods for diffusion studies in solids tend to average the signals
over a number of structures. Spatially resolved diffusionmeasurements are important for nanocrystals because
sample heterogeneity is significant and can affect results. Transmission electronmicroscopy (TEM) allows
diffusion to be studied in individual nanoparticles [23, 24]. However, TEM is limited to thin samples (<100 nm)
and the thinning during sample preparation can be destructive. Hence, due to the limitations described above,
there is a need for imaging techniques which are sensitive to slower dynamics and allow the diffusion behaviour
in individual nanocrystals to be investigated at the atomic scale and in three dimensions (3D).

Bragg coherent diffraction imaging (BCDI) is a developing technique utilising coherent x-rays which allows
strainwithin individual nanocrystals to bemapped in 3D [25–27]. Due to the coherence of the x-ray beam,
optical elements are not required to probe the structure of an individual nanocrystal. The diffraction pattern of
an object ismeasured and from that, the 3D structure of the object in real space is reconstructed using iterative
phase retrieval algorithms [28–30]. The phase retrieval algorithms involve switching between the real and
Fourier domain through the use of fast Fourier transform and application of themeasured data or known
constraints in each domain until convergence is reached.

The reconstructed electron density consists ofmagnitude, usually referred to as amplitude, and phasewhich
correspond to the crystalmorphology and strain, respectively.When a region in a crystal is strained, the atoms
displaced from the ideal lattice will diffract x-rayswith a phase shifted from that of the unstrained regions. The
phase shift can be expressed as

fD =( ) · ( )r Q u r ,

where u(r) is the displacement vector andQ is the scattering vector. Hence, the strained region in the crystal will
bemanifested in the final image as a region of complex density with the samemagnitude as the rest of the crystal
butwith a phase shift ofΔf(r). BCDI has a picometre strain sensitivity which is higher than the spatial resolution
of the technique (10–20 nm). The ability to image strain below the spatial resolution is due to the fact that strain
fields are long-ranged and therefore, atomic level displacements or distortions can be identified by their strain
signatures. Since the phase shift is the scalar product of the scattering vector and displacement field, only the
projection of the displacement field onto the selectedQ-vector ismeasured.

The ability of BCDI to image strain in 3D in individual nanocrystals is extremely useful and highly novel.
BCDI has been used to obtain the full strain tensor in nanocrystals [31, 32] and to study the structure of and
strainwithin nanowires [33–35] and othermaterials [36–38]. It has also been applied in the study of dynamic
processes such as investigation of lattice dynamics [39].

The strain sensitivity of BCDI can be utilised to investigate the diffusion of atoms into a nanocrystal.
Diffusion is expected to induce lattice distortions which are thenmeasurable by BCDI thus giving insight into
the process. The use of BCDI in studying diffusionwas previously investigated byXiong et al [40] by looking at
copper diffusion in an individual gold nanocrystal.

This study builds on the previouswork and utilises BCDI to investigate the 3Ddiffusion behaviour in
another gold alloy system: gold–iron. Incorporation of iron into nanoparticles can be used to introduce
interestingmagnetic properties: pure iron is ferromagnetic with high saturationmagnetisation.However, it is
prone to oxidation and has high cell toxicity when used in amedical context. On the other hand, gold
nanoparticles have interesting optical properties and their surface can be functionalised.Hence, by synthesising
gold–iron nanoparticles, one can obtain amaterial with bothmagnetic and optical properties which has the
capability of beingmade biocompatible and protected fromoxidation. Gold–iron nanoparticles have potential
for applications inmagnetic resonance imaging, hyperthermia, and targeted drug delivery [41–44].

Methodology

Preparation of gold nanocrystals
Gold nanocrystal samples were prepared using the dewettingmethod to obtain an array of isolated particles on a
silicon-wafer substrate. Siliconwafers werefirst cleanedwith a Pirahna solution, which is amixture of 3:1
concentratedH

2
SO

4
to 30%H

2
O

2
. A 5 nm titanium layerwas then deposited onto the silicon-wafer followed by

the deposition of an 18 nmgold layer through thermal evaporation. The thinfilmwas then annealed in air at
980 °C for 12 h in a laboratory furnace to dewet the film from the substrate to form isolated gold nanocrystals.
The titanium film acted as an adhesion layer to help sample stabilisation [45, 46].

The gold nanocrystals were imaged using a JEOL JSM-660LV scanning electronmicroscope (SEM) at a
voltage of 25 kV. Figure 1 is an SEM image of a sample containing the dewetted gold nanocrystals, which have
spherical or curved regions and flat facets. The average Feret diameter (longest distance between any two points
along a region of interest boundary) of the sample is 428±211 nm.
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BCDI experimental set-up

The BCDI experiments were performed at the I-07 Beamline at theDiamond Light Source, UK. The sample was
mounted on a hexapod sample stage in the vertical scattering geometry. Themotions of the hexapod sample
stagewere passed through thewall of an ultra-high vacuum chamber, whichwas kept at a pressure of 10–10mbar,
through the use of bellows and rotary vacuum seal [47]. The energy of the incident x-ray beamwas set to 9 keV,
selected using a Si-(111)double crystalmonochromator with an energy resolution (ΔE/E) of<1×10−4. This
gives a longitudinal coherence length of 690 nm, larger than themaximumoptical path length difference of the
x-rays passing through the sample. The spatial coherence length is 2.76μmand 1.10μm in the horizontal and
vertical direction, respectively. These values are larger than the size of the gold nanocrystals in the sample thus
ensuring spatial coherence in the experiments.

A pair of high-resolution slits (JJ x-ray, Denmark)was placed before the sample to define the size of the
beam. The horizontal and vertical slit sizes were set between 15 and 20μmdepending on the density of the
diffracting nanocrystals in the sample. The incidence angle of the x-ray beam at the sample surface normal was
set to 4° to reduce the beam footprint and avoid getting crowded or overlapping diffraction patterns on the
detector frame.

The evaporation of iron onto the samplewas achieved using an EGN4mini electron beam evaporator from
OxfordApplied Research, UK. Iron rods of 2 mmdiameter and 23 mm in lengthwere used for the iron
deposition.

The diffraction from the samplewasmeasured using a Pilatus 100 Kdetector (Dectris Ltd, Switzerland)with
487×195 pixels of 172×172μmpixel size. The detector was positioned 1.52 maway from the sample. This
ensured the diffraction from the sample was in the far-field and gave sufficient diffraction oversampling,
required for phase retrieval during the reconstruction process, ofmore than two pixels-per-fringe for all
samples. Aflight tube, whichwas under vacuum,was placed between the sample and the detector to reduce the
absorption of x-rays by gasmolecules whichwould otherwise decrease the number of photons reaching the
detector.

Samplemeasurements

The gold nanocrystals weremeasured before the deposition of iron. The sample and detector were oriented
along the off-specular (11-1)Bragg reflection of gold. The {111} family of planes of fcc gold is the strongest
preferred orientation of gold at silicon substrate. An isolated diffraction pattern, which represents an individual
nanocrystal, from the sample was selected. A rocking curve of the Bragg diffractionwas then obtained by anω-
scan to yield a 3Ddata set, rotating the sample around the Bragg peak over a small angular range of less than half
a degree with a step size of 0.005°. The selected diffraction patternwasmeasured continuously around the (11-1)
Bragg reflection of gold for several hours after the deposition of iron finished.

Three samples were examined in this study. Ironwas deposited onto the samples at different sample
temperatures in several stages as shown in table 1.Nanocrystal 3was heated to a sample temperature of 600 °C
after the two stages of iron deposition. The sample stage was heated to the desired sample temperature by

Figure 1. SEM image of the gold nanocrystals, at amagnification of×10000, obtained by the dewettingmethod.
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electron bombardment of afilament placed behind the sample. The sample temperature was controlled by
varying the filament current. A thermocouple was used to read the temperature at the sample stage.

Reconstruction of the gold nanocrystals

The iterative phase retrieval algorithmswere performed inMATLABR2013a using a version of the
‘matlabPhasing’ package. An initial estimate of the object wasmade froman arraywith the same size as the
measured data. Inside the array was the support of the object consisting of a uniformdistribution of random
numbers from zero to one. The support of the object defined the boundary inwhich the object was allowed to
exist andwas used as the real space constraint. This support was allowed to evolve during the iterations using
Shrinkwrap [48]. Shrinkwrapwas applied everyfive iterations of the algorithm and the support was kept fixed in
between. Themagnitude of themeasured diffraction patternwas used as the Fourier space constraint.

A guided approach [28]was used togetherwith the error reduction (ER) andHybrid InputOutput (HIO)
algorithms [29]. A feedback parameter of 0.9was used for theHIO algorithm. Sixteen independent runs
consisting of 200 iterations eachwere performed. Each run had a different random start. The 200 iterations
startedwith ER. The algorithmwas switched toHIO at the 5th iteration andwas switched back to ER at the 180th
iteration. After the 16 independent runs of the ER/HIOalgorithm, the solutionwith theminimum sharpness,
defined as the fourth power of the amplitude, in real spacewas selected as the template for the next generation of
16 independent runs of the ER/HIOalgorithm. The template was used to generate the new set of initial guesses
for the next generation. This was performed by taking the geometric average of the template and the remaining
solutions. The new set of initial guesses consisted of the template and the fifteen resulting solutions after the
breeding. Eight generations of sixteen independent runs of the ER/HIOalgorithmwere performed in total.
After the eight generations, the average of the five solutionswith the lowest sharpness was calculated and
considered to be thefinal solution.

The real space pixel size, s, of the reconstructions, was determined through the following equations

l
D =s

D

N d
,x

x

l
D =s

D

N d
,y

y

l
q

D =
D

s
N

,z
z

whereD=1.52 m is the sample to detector distance, d=172μm is the pixel size of the detector,N is the array
size of the data, andΔθ=0.005° is the step size of the rocking curve scan.

3D images of the reconstructions were viewed using the software ParaView version 4.1.

Results and discussion

The diffusion of iron into individual gold nanocrystals was examined at sample temperatures of 300 °C–600 °C
as shown in table 1.

Figure 2 shows the change in the diffraction pattern of nanocrystals 1 and 3 after the iron depositions. Before
iron deposition, it can be observed that the pattern is locally symmetric about the centre of its Bragg peak. This
apparent centrosymmetry is a known symmetry of the Fourier transformof a real object, hence suggests the
sample image is real at this stage, i.e. without strain. Furthermore, the diffraction pattern of the nanocrystals is
characterised by radialflares of intensity with fringes ofmodulation. Theflares in the diffraction patterns point
along the directions of the crystal facets and result from the enhancement of intensity along these directions,
which is awell-knowndiffraction effect called a crystal truncation rod [49, 50].Meanwhile, the fringes of

Table 1.Parameters for iron deposition.

Layer thickness of iron, nm

Nanocrystal

Sample

temperature,

°C 1st stage 2nd stage 3rd stage

1 400 4.72 9.44 9.44

2 300 4.72 9.44 —

3 500 4.72 9.44 —
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modulation arise from the coherence of the beam incident on the sample, causing interference of the scattered
waves from all parts of the sample.

After the iron depositions, the diffraction pattern of the nanocrystals becamemore asymmetrical. The
asymmetry of the diffraction pattern signifies the presence of strain, which could be due to the diffusion and
insertion of iron atoms into the gold lattice leading to lattice distortions from the ideal lattice of gold. In the
inverted image, the presence of strain causes the image density to become complex-valued resulting in the loss of
its centrosymmetry in its diffraction pattern. Furthermore, it can also be observed in the diffraction pattern of
the nanocrystals that the flares were reduced after the iron depositions. This suggests that the flat facets were
disappearing and that the nanocrystal surfacewas becoming rounder or rougher asmore iron alloyedwith gold.
A similar change in the diffraction pattern of nanocrystal 2 after iron deposition at 300 °Cwas observed (see
figure S1 is available online at stacks.iop.org/NJP/20/113026/mmedia in supplementarymaterials).

For nanocrystal 3, it can be observed that after increasing the sample temperature to 600 °C, the diffraction
pattern becamemore symmetrical, resembling the diffraction pattern of the nanocrystal before the iron
deposition at 500 °C. Theflares of intensity in the diffraction pattern point towards the nanocrystal facet
directions again. This suggests that the distortions in the nanocrystal were relieved after the increase in
temperature.

Figure 2.Changes in the diffraction pattern of the nanocrystals after iron deposition.
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Figure 3 shows the amplitude and phase of the reconstructed images of the nanocrystals before and after iron
deposition. The images shown are xz-cut planes, which are parallel to the substrate plane, taken near the centre
ofmass. Refer tofigures S2 and S3 in supplementarymaterials for all the images during the time series performed
after each stage of iron deposition. Positive phase values represent displacements along theQ-vector, which is
(11-1) here, while negative phase values represent displacements along the opposite direction. The total
amplitudes and root-mean-squared (rms) phases in the nanocrystals during the time series after each stage of
iron depositionwere calculated and are shown infigure 4. The total amplitude values shownwere normalised
against the total amplitude for the control samples.

Figure 3.Reconstructed amplitude and phase images near the centre of the nanocrystals before and after iron deposition
(1 pixel=16.28 nm). The direction of theQ-vector, which is along the (11-1)direction, is shown by the arrow in the control phase
images.
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It can be observed from the amplitude images and calculated total amplitudes of the nanocrystals that the
amplitude decreased after each stage of iron deposition. The amplitude in the shell decreased significantly
causing a broader distribution of amplitude values. The density fluctuations (striped pattern) that can be
observed in the reconstruction of nanocrystal 1 before the iron depositions is a well-known artefact of BCDI
which arise fromFourier series termination errors in the reconstructions, particularly of sharp-edged objects
[51, 52].Meanwhile, the phase images and calculated rms phases of the nanocrystals show that the phase
increased after each stage of iron deposition, indicating deviation from the ideal lattice of gold attributed to the
diffusion of iron into the gold nanocrystals. The diffusion of iron is presumed to cause substitutional alloying of
ironwith goldwhich then resulted into a different lattice parameter.

In here themeasurements were done at the (11-1)Bragg peak of gold and hence, the phase in the alloyed
region of the nanocrystals would be shifted from that of the unalloyed region due to the change in the lattice
parameter. Furthermore, for nanocrystals 1 and 2, the amplitude and phase did not change significantly during
the time series after each stage of iron deposition. This suggests that the diffusion of iron into the nanocrystals
occurred very fast at 300 °Cand 400 °C, relative to themeasurement time.No time series was performed for
nanocrystal 3.

It can be further observed that after each stage of iron deposition, the sharp edges where the crystal facets
meet, became rounder and the surface became rougher as the facets disappeared due to the decrease in
amplitude in the shell. This is consistent with the changes in the diffraction patterns noted above.

The decrease in the amplitude in the shell after the iron depositions was not necessarily due to disappearance
ofmaterial. It can be attributed to the alloying of ironwith the gold nanocrystals leading to the loss of the gold
crystalline order. The scattering amplitude of amaterial is the Fourier transformof the electron density. Since
iron atoms have fewer electrons than gold, the scattering amplitudes of the nanocrystals were reduced in the
regionswhere goldwas alloyedwith iron. Furthermore, since the lattice parameter of the gold–iron alloy
becomes smaller with increasing iron content, this will cause distortions. Hence, the alloying of ironwith gold
in the nanocrystals results in lattice contraction. Since themeasurements of the nanocrystals were done at the
(11-1)Bragg peak of gold, a significant change in the lattice constant in the alloyed regions in the gold
nanocrystals could cause these regions to not contribute to the signal in the detector frame thus leading to a
decrease in themeasured amplitude. If a new crystal phase of alloywere to form, as in the case of gold–copper
[40], this would take away from the gold diffraction peak, but iron and gold are continuouslymiscible.

Furthermore, it can be observed from the phase images of the nanocrystals that the increase in phase after the
first iron depositionwas confined in the shell signifying that the core region remained unalloyedwith iron and
that the iron diffusion only reached a certain depth from the surface. Aftermore ironwas added, the depth of the
distorted region continued to increase signifying that ironwas diffusing further into the nanocrystals and that
the volume of the alloyed regionwas increasing. It is possible that given enough iron concentration, thewhole

Figure 3. (Continued.)
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crystal would alloywith iron after some time. In addition, it can be observed that the decrease in amplitude in the
shell after the iron depositions overlaps with the distorted regions confirming that the core remained unalloyed;
the alloyed regionwas confined in the nanocrystal shell.We note that the strain observed in BCDI is a differential
quantity, which directly sees gradients; if thewhole crystal were uniformly alloyed, the Bragg peakwould simply
shift and retain its unstrained shape.

In addition, it can also be observed that after the sample temperature was increased to 600 °C for nanocrystal
3, the crystal returned toward its original shape before deposition and the phase in the nanocrystal decreased.
This could be due to dealloying of iron at the higher temperature thus restoring the gold crystallinematerial in
the nanocrystal and relieving the distortions. Complete phase segregation of iron and gold in gold–iron

Figure 4.Changes in the amplitude and phase of the nanocrystals over time after iron deposition.
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nanoparticles at 600 °Chas been observed byVelasco et al [53]. Amore interesting possibility is that the iron
simply becomesmore uniformly distributedwithin the crystal. So as long as the overall shape has not changed by
alloying, the homogeneous distribution of ironwill give thewhole crystal a smaller lattice parameter, but no
strain gradients. The Bragg peakwill be shifted, but thismight not be noticed because thermal expansion acts in
the opposite direction.

Line-outs of the phase innanocrystal 1were taken along the z-axis direction andare shown infigure 5(a). The
phase is seen todecrease from the surface to the core showing the variation in thedistortionswithdepth. It canbe
further observed that the boundarybetween the alloyed andunalloyed regionof thenanocrystal becameclearer as
more ironwasdeposited.This is evident from the change in the gradient of the curveswhenmore ironwasdeposited.
These observations report the gradient in the iron concentration, decreasingwithdepth. Both the increase inphase
and the increase in volumeof the alloyed region at each stage of irondeposition are clearly evident in the line-out
profiles. The sameobservationswere found for the other nanocrystals (seefigure S4 in supplementarymaterials).

If a line-out of the phase along theQ-vector, as sketched infigure 6(a), for each stage of iron deposition in
nanocrystal 1 is taken, the line-out profiles shown infigure 5(b) are obtained. This direction passes through the
facets which align or almost alignwith theQ-vector unlike the z-axis line-outs. The phase obtained from this
line-out is less than the phase observed for the other facets in the nanocrystal; the strong negative phase is
associatedwith the facets not-alignedwith theQ-vector. It can be further observed from figure 5(b) that after the
second and third iron depositions, the phase goes frompositive to negative from the left side to the right side of
the nanocrystal. This phase pattern signifies an inward contraction, sketched infigure 6(b). Thismeans that after
the second and third iron depositions, there is enough iron concentration to cause a significant change in the
lattice constant in the alloyed region in the nanocrystal. This quantitative way of presenting the data agrees
generally with the interpretation of the phase images. The contraction can also be seen for the other nanocrystals
andwas already observed after the first iron deposition for nanocrystal 3. Thismay be understood as coming
fromvery different diffusion rates at 500 °C than at 300 °C and 400 °C.Note that the Bragg density only records
the atoms on lattice sites which contribute to the Bragg peak.When disorder is introduced, the total amount of
Bragg density is reduced, unlike the real physical density. There is no conversation of Bragg density expected.
Bragg density is not the same as physical density and sees only the crystalline ordered part.

The radial inward contractionwould not be visible in the not-aligned facets because BCDI is only sensitive to
displacements along theQ-vector of the chosen Bragg peak and, therefore, perpendicular displacement
components would not be observed [54, 55]. Hence, the strong negative phase observed in these not-aligned

Figure 5. Line-out of phase of nanocrystal 1 before and after iron deposition.

Figure 6.Phase patterns expected for different distortions. (a) Line-out taken along theQ-direction. (b) Inward contraction of the
nanocrystal and the corresponding phase pattern that should be observed. (c)Overall phase pattern observed for the nanocrystals.
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facets of nanocrystals 1 and 2 (positive phase for nanocrystal 3) cannot be explained by the radial contraction.
The phase pattern in the shell region near these facets occupies a cylindrical shell with displacements opposite to
theQ-vector (towards theQ-vector for nanocrystal 3). Again, the difference in the sign of the displacement

Figure 7.Phase isosurface images of the nanocrystals before and after iron deposition (1 pixel=16.28 nm). The colour of the
isosurface image represents the phase of the complex amplitude.

10
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between nanocrystal 3 and the other nanocrystalsmay arise fromvery different diffusion rates at 500 °C than at
300 °Cand 400 °C.The overall phase pattern for the nanocrystals is illustrated infigure 6(c). If a lateral
contractionwere present in the facets not-alignedwith theQ-vector, the phase patternwould consist of both
positive and negative phases in the corners of the facets [55].

Figure 7. (Continued.)
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The phase pattern of the nanocrystals and decrease in amplitude after each stage of iron deposition can be
seenmore clearly in the 3Dphase isosurface images shown infigure 7. A threshold level of 25%was usedwhere
amplitude values below this level were not shown. The isosurface images clearly show a strong negative phase
(positive phase for nanocrystal 3) on the shell except on the two facets along theQ-vector. Furthermore, it can be
observed clearly that the alloyed region in the nanocrystal increased after each stage of iron deposition. See figure
S5 in supplementarymaterials for the 3Dphase isosurface image of nanocrystal 2.

The presence of dislocations alone also cannot produce the strong phase pattern observed in the nanocrystal
facets not alignedwith theQ-vector. This is because of the symmetry in the distortions around dislocations. A
dislocationwould cause the bending of the lattice planes surrounding the dislocation. These distortions would
cause opposing signs of phase shifts [35, 56] since the directions of the distortions around the dislocation are of
opposing signs. Indeed, dislocations have a signature phase pattern of a 2π rotation. A dislocation loopwould
produce the same phase pattern in 3D and these have indeed been seen in BCDI experiments [57, 58]. However,
the presence of dislocations in the nanocrystals cannot be completely eliminated as it is possible that the
resolution in the experiments is not enough to view a single dislocation. Hence, the net amount of phase shift
fromdislocationsmeasured over a larger volume of the nanocrystals would be zero.

It is possible that there are other defects present in the nanocrystals that cause the strong phase pattern. Since
the diffusion of iron into the gold nanocrystals results in a smaller lattice constant in the alloyed region (the
nanocrystal shell), there will be a latticemisfit between the alloyed region and gold core. The interface between
the two is therefore highly unstable. To accommodate the latticemisfit,misfit dislocationsmay occur. Such
misfit dislocations become energetically favourable above a certain critical thickness of the alloyed region [59].
The formation ofmisfit dislocations for gold–ironfilm on gold substrate has been observed experimentally for
gold–iron film thickness of 10 Å [60].Misfit dislocations can then dissociate into Shockley partial dislocations
when they glide which leave behind intrinsic stacking faults in the nanocrystals [61, 62].

Stacking faults can break the symmetry in the phase shift observed from the simple radial contraction
pattern and formation of dislocations described above and produce an overall negative phase shift (or positive
phase shift) in the facets not alignedwith theQ-vector. The x-rays passing through the faulted region below or
above the stacking fault planewill be diffractedwith a phase shift ofQ·R, whereR is the displacement vector
[59, 63]. For fccmetals, the phase shift is restricted to 2πn/3where n=0,±1,±2,K. The faulted region
becomes invisible when the displacement vector is perpendicular to theQ-vector because in such case, the phase
shift is zero. The choice of faulting slip direction is not random in the presence of strain and is biased in the
direction of strain relief. Indeed, the strong negative phase shift (positive phase shift for nanocrystal 3)was not
observed in the facets whose directions almost alignwith theQ-vector because in this caseR is perpendicular to
theQ-vector and hence,Q·R=0.However, additional imaging experiments are required to confirm the
presence of stacking faults or other defects in the nanocrystals.

Similar changes in amplitude and phase were observed for another nanocrystal after three stages of iron
deposition at a sample temperature of 400 °C (see figures S6 and S7 and table S1 in supplementarymaterials).

Conclusions

The results from the study show the ability of BCDI to study the 3Ddiffusion and alloying behaviour in
individual nanocrystals at the atomic scale. The changes in the structure of individual gold nanocrystals as a
result of diffusion of and alloyingwith iron at different temperatures andmetal doses were successfully
investigatedwith picometre strain resolution.

Alloying of the gold nanocrystals with ironwas observed at sample temperatures of 300 °C–500 °Cwhile
dealloying of iron fromgoldwas observed at 600 °C.The diffusion of ironwas found to be confined to a shell of
the nanocrystal, whose volume increased after each stage of iron deposition. No significant changes were
observed in the gold nanocrystals during the time series performed after each iron deposition thus suggesting
that a state of quasi-equilibriumhad been reachedwith a fewminutes after each stage of iron deposition.

The phase pattern in the facets of the nanocrystals which are alignedwith theQ-vector showed contraction
within the nanocrystals. The contractionwithin the nanocrystals, however, cannot explain the strong phase
pattern observed in the facets which do not alignwith theQ-vector. The phase associatedwith these facets
decreasedwith depth from the nanocrystal surface which can be due to the iron gradient decreasingwith depth
in the alloyed regions.
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