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Abstract:  

Outer hair cells (OHCs) of the mammalian cochlea behave like actuators:  they feed energy into the 

cochlear partition and determine the overall mechanics of hearing.  They do this by generating 

voltage-dependent axial forces. The resulting change in the cell length, observed by microscope, has 

been termed ‘electromotility’. The mechanism of force generation OHCs can be traced to a specific 

protein, prestin, a member of a superfamily SLC26 of transporters.  This short review will identify 

some of the more recent findings on prestin. Although prestin’s molecular structure has yet to be 

determined, results from the presence of its homologs in non-mammalian species suggest how it 

may be conformed, how it can act like a transport protein and how it may have evolved.  

 

Introduction 

The outer hair cells (OHCs) of the mammalian cochlea are an identifiable group of cells of the inner 

ear which are responsible for many of the distinct features of our hearing. These features include 

the absolute sensitivity to low sound levels, the selectivity to sound frequencies over a many octaves 

and the dependence of their continued performance on the physiological state of the cochlea.  

These properties have collectively become known as ‘cochlear amplification’.  Although other orders 

of terrestrial animals also have cells homologous to the mammalian OHCs, it seems that the 

evolutionary stages to construct a hearing organ have taken slightly different routes between 

different species.  Thus although analogous molecules can  be found shared between many hair cells 

in all vertebrates, there have been particular specialisations in mammalian hearing to enable and  

favour high frequency hearing.  This chapter will focus specifically on mammalian OHCs. The loss of 

OHC function is the major cause of hearing loss, particularly with age.  Although several reviews have 

been published (Ashmore 2008; He et al. 2014; Corey et al. 2017; Santos-Sacchi et al. 2017) the 

emphasis here will be on several outstanding issues. 

 

Electromotility 

Mammalian OHCs, as cells of the organ of Corti, are organised in three (and sometimes four) rows 

along the full length of the cochlear partition.  Scrutinising sections of the partition, they are placed 

so as to mechanically influence the flexure of the basilar membrane.    



The original observation that OHCs were cells that were ‘motile’ is due to Brownell and his 

coworkers in Geneva  (Brownell et al. 1985). They showed, using intracellular recording electrodes,  

that  the cells could be driven to change length when the membrane potential was changed.  The 

term ‘electromotility’ to describe this behaviour was shorthand for the behaviour (although it might 

be claimed that ‘motile’ implies the cells are moving somewhere) but it has stuck.  It required the 

much wider electrical bandwidth possible with patch clamp recording  to show that such  length 

changes were rapid and certainly fast enough to claim that OHCs could be force generating elements 

at acoustic frequencies involved in shaping cochlear mechanics (Ashmore 1987). Since a variety of 

different techniques  have shown that the electromotile mechanism can be driven over the full 

range of frequencies found in mammalian hearing and certainly up to 80 kHz (Frank et al. 1999). 

It is strictly more accurate to describe the OHC as an ‘actuator’ as the source of the energy for the 

force generation derives from the potential across the transducer channels: it is not produced 

seemingly from energy sources within the cell. A short calculation shows that the maintenance of 

the membrane potential at -50 mV allows sufficient extraction of work from the electric field to 

explain the work done by the OHC against the constraints of the tissue in which they are embedded.    

Mammalian OHCs possess a very characteristic V-shaped bundle of stereocilia , serving to inject 

current into the cells when deflected.  As sensors of the movement of the basilar membrane, OHCs 

thus form part of a local mechanical-electrical-mechanical feedback loop to control the basilar 

membrane tuning.  The intimate role of OHCs in such feedback has meant that their role in the in-

vivo cochlea often has to be interpreted by appeal to cochlear models. When studied in isolation a 

property such as electromotility gives an exaggerated impression of the length change which an OHC 

exhibits in a fully functioning cochlea.  

A number of other features of OHCs should also be considered when considering electromotility.  

First, although they are neuroepithelial cells, specialised so that the apical surface facing scala media 

is mechanosensitive and the basal surface contains synaptic machinery, OHCs are relatively sparsely 

innervated compared to inner hair cells.  It is clear that OHCs can generate activity in the Type II 

auditory  nerve fibres  (Weisz et al. 2009) but this information may be used in a very different way 

from the major sensory pathways from the sharply-tuned  Type I fibres forming the majority of the 

auditory nerve. Second, OHCs are the target of a descending pathway, fibres of the medial olivo-

cochlear bundle. These fibres, releasing acetylcholine, ACh, act on OHCs via a heteromeric  

alpha9/10 AChR, and serve to control the membrane conductance of the cell.  The net effect is to 

reduce membrane potential excursions in the cell and thus to reduce the mechanical OHC loop gain 

and overall cochlear sensitivity.  The role of the efferent system is  contentious but the  effect of 

their activation  on mechanical tuning and distortion product emissions is clear (e.g. (Maison et al. 

2007)) and there is the suggestion, from  mouse studies where the receptor has been deleted, that 

the efferent system activity might slow auditory ageing (Liberman et al. 2014). 

 

Identification of the mechanism 

A number of hypotheses could explain the phenomenon of OHC electromotility. There are several 

constraining observations: 1)  the lateral membrane of the OHC is packed with a particle about 8 nm 

in diameter; 2) a change in the OHC membrane potential is accompanied by a gating charge 

movement, or equivalently the cell membrane capacitance is voltage dependent; 3) the charge 

movement is blocked by the amphiphilic anion salicylate (the methylated form being aspirin) and 4) 

OHCs only acquire motile properties progressively during a during a short period of development.    



The identification of prestin (Zheng et al. 2000) by using a subtraction cDNA library for isolated hair 

cells in principle solves most of these problems. Mammalian prestin is a 744 amino acid protein with 

a molecular weight of 81 kDa, but when expressed in a heterologous system exhbits voltage 

dependent movements and a non-linear capacitance (NLC), indicative of protein rearrangements 

when under the influence of the membrane potential.  The surprise is that prestin  is  member of a 

superfamily of membrane transporters SLC26A5, a family whose other members are chloride-

bicarbonate exchangers (Lohi et al. 2000).   

There are some differences in the NLC between expression in a cell system (e.g. HEK293, TSA201 or 

CHO cells) and the behaviour ex vivo. The difference seems to depend on the molecular packing 

density: in cell systems where the prestin is at a relatively low level (e.g. giving rise to a maximum 

NLC of 0.4 pF)  corresponding to a copy number of about 2.5x105 prestins/cell, the peak capacitance 

is close to -75 mV (Oliver et al. 2001); in OHCs the voltage at the  peak  progressively increases 

during maturation of the cell to reach a steady state at -40 mV in mouse at P12, where the density is 

estimated to be about 4000 copies/µm2
 (Oliver and Fakler 1999). 

An incomplete transporter. 

How a transport protein can give rise to a motor was solved soon after the discovery of prestin with 

the proposal that prestin/SLC26A5 was an incomplete transporter (Oliver et al. 2001). The idea is 

that the protein acts like mechanoezyme as part of its transport cycle, but that the cycle is 

incomplete. As a result the binding of an intracellular anion (choride) the conformation change of 

the proteins is sufficient to produce a length change in the plane of the membrane and hence of the 

OHC. The maximum electromotile change in and OHC is 4%, so the change in the particle diameter 

would be 0.04x8 nM = 0.3 nM, not impossibly small but close to the limit currently observable by 

structure techniques. 

Antiporter activity 

Even if mammalian prestin/SLC26A5 is an antiporter for chloride and bicarbonate,  it has proved 

more difficult to show that any transport does occur. In the cases of chick and of zebrafish, the 

prestin homolog certain does act like a transporter (Schaechinger and Oliver 2007). In both these 

species, although in different orders,   transport is electrogenic, with two bicarbonates being 

exchanged for one chloride, and currents are readily observable.  

If other anions are used instead of chloride, then transport can be measured either by electrical 

methods or by using more classical radioactively labelled ions.    Thus prestin transfected cells take 

up 14C- formate as an ion, but at a rate which was only weakly inhibited by 10 mM salicylate, the 

inhibitor of NLC (Bai et al. 2009).  

Electrophysiological studies have shown that mammalian prestin/SLC26A5 is electrogenic. In the 

case of the zebrafish prestin homolog, the expressed protein is electrogenic and acts as a SO4
2-: Cl- 

antiporter, the sulfate being transported in place of two bicarbonates.  

With similar methods to those used by  Schaechinger and Oliver, exposure of prestin expressing CHO 

cells  to a low chloride-high bicarbonate gradient produces a change in membrane potentiol 

compatible with a 2:1 HCO3
-: Cl-  stoichiometry (Mistrik et al. 2012).  It can also be show that the 

presence of prestin in the cells allows for a faster recovery from an acid load by allowing an influx of 

bicarbonate; such experiments used prestin,  tagged with the fluorescent pH sensor pHluorin, to 

monitor the influx near the membrane.  



The comparable experiments have not been completed fully to monitor choride movement although 

a chloride movement can be detected using YFP, which is chloride sensitive, when the cells are 

exposed to low (6mM) chloride and high (23 mM) bicarbonate on the outside favoring exchange. An  

anion transport current can be detected however with the much more permeant anion thiocyanate, 

SCN-  (Schanzler and Fahlke 2012) . Both SCN- and Cl- give rise to comparable NLC in transfected 

HEK293 cells, although the reposted extenal thiocynate shifts the curve more negatively from -69 

(typical of a cell  expression system) to -102 mV. The authors conclude however that there is a 

transport pathway for anions, and on the basis of parallel studies with zSLC26A5 (from zebrafish) 

and hSLC26A7 (from human)  a pathway which may be conserved between many members of the 

SLC26 family. 

Although SCN- is used as  permeant anion in many transport studies its transport pathway in prestin 

may differ from that of chloride (Bai et al. 2017).  In a tet-inducible prestin expressing  HEK cell line, 

which shows a large NLC, a current carried by chloride is also present whenever the NLC can be 

measured. Such observations only become apparent with  high expression levels, and so possibly 

missed in early experiments (where the peak NLC was  10-15% of that now found).  Evidence 

presented supports the idea that chloride is able to pass though a separate pathway intimately 

linked to to the NLC, and most probably linked to a stretch-sensitive chloride  channel reported for 

prestin (Rybalchenko and Santos-Sacchi 2003). Other members of the SLC26 family (SLC26A3 and 

SLC26A6), as well as some ion channels (manifesting as a so called omega or gatinig-pore currents 

(Moreau et al. 2015))  also show  evidence for a similar sensitive leakage current.  Whether this 

influences the gain and function of OHCs in cochlea mechanics is undecided, but it does suggest that 

may be several osmoregulating mechanism present in the cell.  

Pharmacology. 

The pharmacological manipulations of prestin have suffered from a shortage of reagents. The best 

known is aspirin (methyl salicylate) which is effective at mM levels from the extracellular surface, 

although the binding site thought to be on the cytoplasmic surface. Ingestion of aspirin is known to 

(reversibly) elevate auditory thresholds (and lead to a tinnitus as a consequence). As a competitive 

antagonist to choride salicylates dissociation constant is estimated from the non-linear capacitance 

to be Ksal =21 µM. (Oliver et al. 2001). Non-steroidal anti-inflammatories have little or no effect. 

Genetics: Mouse hearing 

In mouse there is ample evidence that prestin determines cochlear sensitivity.  The first knockouts of 

prestin clearly showed that in vitro OHCs are non-motile and a 40-60 dB loss of cochlear sensitivity in 

vivo (Liberman et al. 2002). A cochlear microphonic could still be measured so the OHC transduction 

was not affected, although there appeared to be a progressive apoptosis of the cells. A more direct 

measurement of the basilar membrane in the hook region (60-70kHz) of the mouse cochlea also 

showed that the knockout  lost the sharp mechanical tuning characteristic of the wildtypes, but 

curiously did not lose significant thresholds (Mellado Lagarde et al. 2008). The possible explanation 

is that prestin contributes to the stiffness of the OHCs, and that removal of prestin alters the sound 

coupling to the basilar membrane mechanics.  

The issue of OHC mechanical changes can be removed by using a prestin mutant mouse where two 

residues (V499G/Y501H) are replaced near the presumed last transmembrane helix, yielding OHCs 

which are structurally and biophysically near normal but have a NLC shifted  very positively and 

outside the physiological operating range (Dallos et al. 2008). This mutant indeed shows a basilar 



membrane tuning where both frequency selectivity and cochlear sensitivity is the major effect with 

no alterations in cochlear impedance matching (Weddell et al. 2011). 

Genetics: Human hearing 

There has been some dispute about the prevalence of prestin/SLC26A5 mutations in humans. An 

early report suggested that a recessive locus, termed DFNB61, was associated with single nucleotide 

change in the second intron of SLAC26A5. This splice acceptor site for exon 3 of the 21 exons of the 

gene, generated a hearing deficit (Liu et al. 2003). However it  was subsequently argued that this 

variation occurs no more frequently in hearing impaired than in controls and therefore precludes a 

causative role (Tang et al. 2005).   

To date, therefore, human prestin mutations appear quite rare. A single case report identifies two 

profoundly deaf sisters with compound heterozygote mutations, one at p.W70X  in the N-terminal 

region which is expected to inactivate the protein and the other at p.R130S which is within the 

sulfate transport motif of the SLC26 genes (Matsunaga and Morimoto 2016). In all other respects the 

subjects were normal.  When the latter mutation is made in mouse prestin the resultant has 

impaired membrane targeting, slowed kinetics (producing a reduced NLC at the measurement 

frequencies) and enhanced transport for thiocyanate, SCN- (Takahashi et al. 2016).   Apart from one 

other candidate  mutation reported at p.R150Q   (Toth et al. 2007) these are the only cases reported 

so far. 

Evolutionary aspects of prestin 

Is mammalian prestin really a modifed transporter? Its ubiquitous presence in sensory hair cells for 

vertebrates and invertebrates suggest that it has a particular role that has been conserved through 

evolutionary changes. The obvious suggestion is that it plays a role in cellular pH or perhaps osmotic 

regulation.   

Thus SLC26A5 homologs have been found in an remarkably wide range of animals both in chordates 

(He et al. 2014) as well as in invertebrates such as in drosophila hearing organs (Kavlie et al. 2015).  

There have been relatively few reports that it gives rise to any form of hair cell motility except in the 

mammalian cases.  Where it has been studied biophysically, these prestin homologs either seem  

exhibit significantly reduced NLC at acoustic frequencies, as for zebrafish prestin,  (Schaechinger and 

Oliver 2007) and/or are inserted into the membrane at much lower levels than could give rise to a 

motility,  as found only weakly in chick hair cells (Beurg et al. 2013). What many of these homologs 

do exhibit however is ion transport.   

As sequence data for the SLC26 super-family became more common, and for SLC26A5 in particular,  

a bioinformatics study showed that there are some significant evolutionary differences for 

mammalian versions of the gene. The main differences between mammalian and non-mammalian 

prestin is found in the cytoplasmic portion of the resulting protein rather than in those regions 

implicated in the transmembrane loops  (Franchini and Elgoyhen 2006).  Predictions of adaptive 

changes in such genes are based on whether there is a sufficiently large synonymous versus non-

synonymous ratio; by the same measure, it also appears that the acetylcholine alpha9 receptor, 

found in OHCs, has also undergone adaptive evolution in mammals whereas pendrin (SLC26A4), also 

implicated in cochlear function has not. It is not immediately clear functionally what such changes 

indicate, although it is tempting to speculate that it is the modification to the C-terminal STAS 

domain which confers the special role to mammalian prestin. 



Within mammals there are examples of adaptive convergence in auditory system.  Some species of 
bat and all the toothed whales use echolocation to find prey.  All of these species use ultrasonic 
sounds with matched requirement to be able to detect such frequencies. Remarkably both dolphin 
and  Doppler-sensitive  CF bats exhibit what appears to be an example of convergent molecular 
evolution of their prestin even though animals have been separated phylogenetically for many tens 
of millions of years (Liu et al. 2010). Four of these specific convergent amino acid sites (G167S, I384T, 

A565S and E700D) have particular interest as the latter two are in the STAS domain, which may 

suggest a special role in prestin function for this domain 

 

Structure 

The structure of prestin remains unresolved.  The original sequence data suggested that the 

molecule had 12 transmembrane regions (Zheng et al. 2000; Oliver et al. 2001).  Other proposals 

including a 10 transmembrane structure have been made (Bai et al. 2009).  The current best 

predictions for the structure, based on homology modelling on the uracil transport family,   suggest 

that instead there are 14 transmembrane domains with a duplication of a 7 transmembrane motif 

(Gorbunov et al. 2014).   

Since the size of the particle in the OHC lateral membrane is 8 nm in diameter, is thus highly unlikely 

that prestin functions as a monomer, but is oligomeric, most probably a tetramer. Some compelling 

evidence for this conclusion comes from single molecule photo-bleaching experiments. Successive 

bleaching  of GFP tagged prestin expressed in HEK reveals a series of equal amplitude steps which is 

most consistent with a tetrameric structure (Hallworth and Nichols 2012).     

These results are compatible earlier results which suggest that prestin, at least when expressed in 

mammalian cell lines,  acts as a high order oligomer based on a stable dimer where formed by cross 

linking disulphide bonds between single molecules (Zheng et al. 2006).  

The amino acid  sequence of prestin also showed that here was likely to be a C terminal region, in 

the cytoplasm, accounting for nearly 30% of the peptide, which contained a distinguishing ‘sulphate 

transporter and antisigma factor antagonist’ (STAS) domain shared with other members of the SLC26 

anion transporters. The role of this domain is unclear. The crystal structure of the cytoplasmic 

domain is known both in mammals and in chick and it is found that there are subtle differences. The 

mammalian domain contains an unanticipated anion binding site which it is proposed may act a 

reservoir for anions involved in the rapid prestin conformational change. In distinction the chick 

homolog contains no such site. 

There is no full structure, membrane and cytoplasmic units, for prestin. However, there is a 

complete structure, with transmembrane and STAS units together,  for a bacterial member of the 

SLC26 family.  The structure at 3.2Å resolution of SLC26Dg, the facilitator (via bicarbonate) of the 

proton coupled fumarate symporter,  from the bacterium Deinococcus gethermalis, reveals that this 

molecule forms an obligate dimer (Geertsma et al. 2015).  The dimeric feature is shared by all 

members of the SLC26 family and the NLC evidence based on independent manipulation of the two 

components suggest that the two units do not function independently (Detro-Dassen et al. 2008). 

Thus structural studies need to identify the nature of interface between the component proteins.   

In support of this proposal the most complete image of the mammalian prestin is obtained by 

negative staining of prestin particles and reconstructed with a fourfold symmetry at a resolution of 2 

nm (Mio et al. 2008). The size of the resulting particle is compatible with the e.m. pictures of the 

OHC lateral membrane, but surprisingly about 60% of the particle mass appears to be outside the 



membrane on the cytoplasmic surface.  This therefore is where the STAS domains are assembled. It 

is therefore tempting to suggest that prestin is a dimer of dimers, with the cytoplasmic STAS domain 

region perhaps forming a plate against which the membrane bound units distort. 

Organisation of prestin in the lateral membrane. 

The high density of prestin in the OHC lateral membrane is quite surprising. The packing is tight so 

that the lateral membrane particulate density covers about 60% of the surface. This high packing 

ensures that such molecular crowding amplifies up any small changes in surface area of the protein. 

Even so, to act as force generating element it is necessary to ensure that the membrane does not 

buckle allowing all force generation to be in plane only.  OHCs have evolved a submembranous 

cortical network to ensure that the membrane retains a degree of rigidity (Kalinec et al. 1992).  

The question of how membrane associated prestin links to the underlying cytoskeleton remains 

unresolved.  The spacing between the plasma-membrane and the cytoskeleton is about 50 nm, and 

although structures linking the two, termed ‘pillars’ and apparent in electron micrographs, the 

nature of the linkage is unknown. The puzzle is that the prestin related particles outnumber the 

pillers by an order of magnitude.  A particular form of spectrin,  βV, forms cytoskeletal meshwork 

with actin, and further builds up at the same time as prestin insertion. during OHC development 

(Legendre et al. 2008). Although this spectrin interacts directly with F-Actin and band 4.1, it does not 

interact with prestin. Tantalisingly, an unidentified component in lysates for mature auditory organs 

does promotes a prestin-spectrin interaction, wherea other lysates from other tissues do not. It has 

been suggested that this spectrin isoform, like that of prestin itself, has undergone adaptive 

evolution from a molecular trafficking network to allow it to provide the molecular support for the 

OHC mechanisms (Cortese et al. 2017).  

Concluding remarks 

There is sometimes a perception that now we have a molecule that can be assigned the role of the 

molecular motor that drives electromotility in OHCs that all is solved. Although it is true many of the 

low hanging fruits have been picked, there remain a number of nagging questions.    

The first is the so called ‘RC time constant’ problem which arises because membrane of an OHC has 

an electrical filtering effect on any changes of membrane potential driving the prestin. Although 

many ingenious solutions have been proposed (see (Corey et al. 2017)), it has proved remarkably 

difficult technically to study OHCs from the basal high frequency end of the cochlea.  Not only are 

electrical recording bandwidths limited (for patch clamp systems to below 10 kHz) but basal hair 

cells have proved difficult to handle. A partial answer however may be that basal hair cells have a 

high ionic channel density and therefore a small electrical time constant (Johnson et al. 2011). It also 

seems likely that OHCs are not driven exclusively by intracellular potentials, but by transmembrane 

potential (Mistrik et al. 2009) and so the space around the OHCs in the organ of Corti becomes an 

essential aspect of the function    

 

The molecular basis for the actuator behaviour of prestin/SLC26A5 remains unclear, although 

inasmuch as all transporters can be considered as mechano-enzymes,  a conformational changeof 

the molecule with a component  in the plane of the membrane seems to be the correct starting 

point.  The reason for the uncertainly is that molecular structure of prestin remains unresolved.  It 

clearly seems to form a tetrameric molecule in the membrane, but how it is trafficked and how the 

interfaces between the monomers are formed has not so far been addressed.  A number of studies 

have endeavoured to identify the ‘motor’motif by swapping motifs in prestin. A span of 11 amino 



acids (158-168), near the sulfate transport motif.  is sufficient for  non-linear capacitance and 

motility in transfected cells compared with prestins where the region has been swapped out  (Tan et 

al. 2012), whereas chimeric  prestins can be constructed which show both non-linear  capacitance 

and transport properties (Schaechinger et al. 2011).  

A number of fundamental biophysical challenges in cochlear neurobiology arise from hearing 

performance at the upper end of the auditory range.  What sets the upper limit to mammalian 

hearing?  Is it the maximum operating frequency of the hair cell transduction channels?  Or is it a 

structural problem of how to evolve an sufficiently high frequency cochlea? Or is it that the feedback 

loop we have discussed above has an inherent bandwidth, traceable in part to the properties of 

prestin/SLC26A5? Some of the answers depend on developing tools to explore ultrafast structural 

processes. For that, the prestin/SLC26A5 system provides a useful laboratory.  
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Figures 

 

Figure 1: The elements of the mammalian outer hair cell. A) An isolated OHC from turn 2 (approx. 5-

10kHz region) of the guinea pig cochlea. The apical stereocilia are apparent at the apical surface. B) 

Schematic OHC, showing location of prestin/SLC26A5 down basolateral surface, generating 

longitudinal forces. Transport to regulate pHi is presumed to be collocated as a parallel property of 

prestin.  K+ ions from scala media enter through the mechanoelectric transducer channels at the 

apex and exit through the basally located K+  channels.  Both afferent (red) and efferent (blue) 

terminals are located at the base of the cell. 

 



 

Figure 2 : Models for prestin. A) Organisation of prestin/SLC26A5 in the membrane as a monomer. 

Two mobile components of the protein are placed in the membrane (Gorbunov et al. 2014; 

Geertsma et al. 2015) whereas the C-terminal region, containing the STAS domain is cytoplasmic 

(Mio et al. 2008). B) Hypothetical model for co-assembly into a tetramer. The C-terminal region (red) 

forms a base against which the oligomer can deform, rapidly shifting between a compact (cell 

depolarised) and an extended configuration (cell hyperpolarised). 
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