
1 INTRODUCTION 

Buildings are important contributors to the total en-
ergy consumption, thus Building Energy Manage-
ment Systems (BEMS) are key ingredients towards 
enabling parsimonious use of energy resources. Ex-
isting BEMS, although facilitating near-complete 
mechanisms for data collection, aggregation and 
management, lack the analytical components allow-
ing diagnosing a behavior leading to excessive energy 
consumption and/or compromised occupants’ comfort. 
BaaS project calls such tools Assess, Predict and Op-
timize (APO) services. 

Even though research effort has been focused on 
developing algorithms for such tools showing signif-
icant results (e.g. see PEBBLE Project, OptiControl 
Project), proper design of the hosting platform and 
its viability are essential. Such platform should sup-
port access to Building Information Models (BIM), 
thus providing a common interface between the var-
ious analytics and enable collaboration and inter-
communication between them in a transparent way. 

Several research projects aiming to provide such 
a holistic approach are on the way: the Monitoring 
System Toolkit (MOST Project) is a set of tools en-
abling effortless measurement, processing and visu-
alization of in-building data streams; Control and 
Automation Management of Buildings and Public 
Spaces (CAMPUS21 Project) develops a Hardware-
Software-Platform for the integration of existing 
ICT-subsystems supporting energy, building, and 
security systems management for energy-efficient 
operation of public buildings and spaces; and ICT 
Platform for Holistic Energy Efficiency Simulation 
and Lifecycle Management of Public Use Facilities 

(HESMOS Project) provides advanced simulation 
capabilities to decision makers and attempts to close 
the gap between BEMS and BIM in an effort to out-
come energy- and cost-minimizing decisions 
throughout the whole building life-cycle.  

Within BaaS Project, a smart platform supporting 
the whole ensemble of APO services (i.e. Control 
Design Optimization, Fault Identification and Ener-
gy Benchmarking) is developed, where each new 
service can be plugged into the platform and benefit 
from already existing components, thus leading to a 
concept of the building as a service ecosystem (BaaS). 
This also implies “Software as a Service” (SaaS) mar-
keting model.  

Such solution not only improves system perfor-
mance by detecting and correcting inefficiencies, but 
it also increases user awareness: having all relevant 
Key Performance Indicators (KPIs) in one place it is 
easier to monitor discrepancies from their expected 
values or any other KPI deterioration. KPIs usually 
cover energy consumption, occupants’ comfort and 
ecological friendliness of the system. Even if KPIs 
evaluation cannot be done automatically, or if the 
system control cannot be altered manually (e.g. for 
safety reasons) the man in the loop has all necessary 
information at his hands, so it is easier to make qual-
ified decisions. 

In the present work, the high level architecture of 
the BaaS kernel hosting the APO services is present-
ed and the ability of BaaS system to act as a plat-
form enabling the building contextual data as well as 
dynamic data (sensor readings) to software modules 
is demonstrated through an illustrative example on a 
simple one zone office building. 
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2 STATE OF THE ART OF APO SERVICES 

APO services address three main areas: Fault Detec-
tion and Diagnostics (FDD); Energy Management 
(EM) and Control Design and Optimization (CDO). 
Though they are treated separately, one can clearly 
see that they can be closely related. 

Recent commercially available FDD services are 
typically provided in form of SaaS. The algorithms 
running on the cloud are typically designed based on 
accumulated expert knowledge and are searching for 
unusual patterns in the data collected from building 
sensors. As the contextual information for the target 
commercial buildings is available usually only in 
very limited form and with quality varying from site 
to site, the FDD solution, aspiring to wide applica-
bility without complex settings required, needs to be 
sufficiently robust. This implies that the algorithms 
should be capable of producing accurate results even 
with hardly any contextual information available. 
The lack of context can, in some cases, limit the 
fault detection and mainly diagnostics capabilities of 
the service. Basically, there are two main approaches 
in the FDD research field: rule-based (Kukal et al. 
2009, Schein et al. 2006) and model-based (e.g. Du 
and Liang 2007) (and combinations). Typically rule-
based methods are continuously evaluating simple 
rules, or sets of rules, using sensor data collected 
from the building, while a fault reasoning process 
subsequently decides on particular fault’s presence. 
Model-based methods typically compare the meas-
ured value of proper KPI against the modelled one. 
These referential values are constructed exploiting 
various approaches ranging from black-box, when 
hardly any context information is available, to 
white-box, when the monitored equipment is known 
in detail. Often only one piece of equipment is fo-
cused separately neglecting the fact, that it is com-
monly a part of a complex building system, where 
faults diagnostics is a difficult task (fault masking & 
propagation)  hardly solvable without having a con-
textual information at disposal (e.g. building equip-
ment connectivity model). The availability of build-
ing context (BIM) can thus significantly improve the 
performance of fault detection and mainly fault di-
agnostics algorithms. 

Moving forward, energy management services 
are often a part of BEMS. Typically the energy con-
sumption on the whole building level and several 
major energy consumers are monitored. More ad-
vanced systems provide baselining or benchmarking 
functionality, usually on the building envelope level. 
In the former case, the referential energy consump-
tion is constructed from past data (e.g. searching for 
similar driving conditions in the history) and in the 
latter case the reference is taken from a similar 
building (typical for the retail stores chains). 

Finally, towards designing intelligent BEMS, a 
variety of control design optimization approaches 

exist, facilitating a vast diversity in the shape of the 
controller, the necessity of a model of the building, 
the required inputs and so on. Despite the differ-
ences between these approaches, the general control 
problem can be described by defining some basic 
components (for a detailed description see Kontes et 
al. 2012b). To start, let’s consider that the physical 
system (building) can be described by a thermal 
simulation model, which is able to predict the ther-
mal state of the actual building, taking into account 
the current building states (like wall and air tempera-
tures, humidity, etc.), the predicted weather conditions 
and the control actions (like heating and cooling loads, 
shading angle, etc.) applied to the building. 

Having such a model at hand, allows designing se-
ries of control inputs that lead the physical building to 
a set of states that are (near-) optimal with respect to a 
performance measure, using the model for the design 
process. In buildings domain, the performance meas-
ure is modelled as a constraint optimization problem, 
facilitating the following components: 
� A performance-indicating KPI, usually correlated 

with operational cost or energy consumption (e.g. 
minimization of the total energy consumption, 
minimization of the grid-supplied energy, maxi-
mization of the net energy produced, etc.). 

� A set of KPIs acting as constraints, ensuring com-
fortable in-building conditions for the occupants 
(e.g. visual, acoustic, thermal comfort constraints, 
etc.). 
The availability of the building model, along with 

the stochastic nature of the occupancy patterns and 
weather conditions consist the use of model-assisted 
control (or model-predictive control, (MPC)) design 
optimization techniques (Goodwin et al. 2005, 
Bertsekas 1995)  suitable for solving the above con-
straint optimization problem – see (Ma et l. 2010, Ol-
dewurtel et al. 2010, 2012, Giannakis et al. 2011, 
Pichler et al. 2011, Kontes et al. 2012a, Cigler et al. 
2012) for successful application in buildings. Here, 
based on the available building model and weather 
predictions, the optimization problem is solved for the 
period of time accurate weather predictions are avail-
able (prediction horizon), while the resulting control-
ler is applied for a shorter period of time, called the 
control horizon. Besides the predictions, this approach 
necessitates the availability of sensor data from the re-
al building for the previous days, since they will be 
used for the warming-up process, i.e. the model will 
be simulated using the actual building conditions for 
the previous days, in order to assimilate the actual 
thermal state of the real building at the beginning of 
the optimization process. 
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3 BAAS SYSTEM 

3.1 Motivation 
The major obstacle for the deployment of new smart 
building control and monitoring technologies is the 
deployment cost. Typically, more advanced the 
technology is, more contextual information is re-
quired for the proper setup. In addition, since expert 
engineers are required for the task, the overall cost 
further increases. The reason is that due to lack of 
standardization (too many proprietary standards) in 
the building automation area, a lot of work has to be 
done manually requiring deep knowledge about the 
particular system. This problem is most evident in the 
commercial buildings domain where the need for ad-
vanced technologies grows quickly. Typically an engi-
neer responsible for designing control algorithms de-
cides rather to deploy safe but robust solutions – 
usually a simple rule based controller; and such solu-
tions can hardly attain the performance of advanced 
control algorithms like MPC. 

In ideal case, the customer should be able to se-
lect a software package capable of providing desired 
functionality (building energy management, fault de-
tection and diagnostics, control optimization, etc.), 
and the local installation or remote connection (in 
case of SaaS business model) is done automatically, 
so the tool is enabled to be used in a short time – and 
this is exactly the way the BaaS is aiming at. The 
target is to reduce required human interaction during 
deployment to some necessary minimum, ideally 
handled by a friendly GUI which would cut the de-
ployment costs down. BaaS is thus pioneering the 
major enabler of advanced building technologies, 
like MPC that were mainly used only in the industri-
al domain and unlike commercial solutions uses 
open standards to achieve it. 

3.2 Building Information Models 
Within BaaS project, the path selected for treating 
the aforementioned limitations is the use of properly 
populated Building Information Model (BIM) with 
all the contextual information about the building in a 
standard way, along with the development of tools 
enabling utilization of such information. Under this 
perspective, the use of Industry Foundation Classes 
(IFC) data model is used as a standard way of de-
scribing building contextual information. 

The use of BIM and IFC tools allows for semi-
automatic deployment and operation of APO services 
in all buildings at hand, regardless of variations on the 
building types, construction, location and available 
systems. On the other hand, the use of BIM and IFC 
alone inserts more complexity to the problem, rather 
than simplifying the task, since requiring by all soft-
ware components to provide support for the entire IFC 
schema is not a viable solution (Bazjanac 2007). Due 
to this fact, the concept of Model View Definition 

(MVD) has been adopted within BaaS. An MVD de-
fines the smallest possible subset of the full IFC 
schema required to satisfy one or many exchange re-
quirements, thus, the exchange requirements for each 
APO service are defined and made publicly available. 

Within this context, if two software components 
are to interact they need to exchange sufficient infor-
mation – all the exchange requirements so that this 
communication is complete are defined in the MVD. 
So the “sending” component (let's call it the writer), 
should create all the information to be sent (in con-
formance to the MVD), and the “receiving” compo-
nent (let's call it the reader), should know how to use 
the information (which comes in conformance to the 
MVD), to perform some useful task. So both the 
“reader” and the “writer” should be designed to satisfy 
the requirements posed by the MVD (i.e. understand 
the MVD).  

Now, it is conceivable that there are many “writer” 
components, like CAD tools or GUI interfaces that 
populate aspects of the data model. BIM acts as the 
aggregator of such information, and the provider to 
clients (via available interfaces) of the requested in-
formation. Moreover, the availability of the BIM and 
the MVD description allows the generation of queries 
to the BIM based on the MVD, since the MVD actual-
ly determines which queries are supported, i.e. we can 
expect some meaningful data in the response. This 
way a “library” of queries for each exchange require-
ment (FDD, CDO, etc.) can be generated, that will be 
automatically supported by all ifc files compliant to 
the MVD. Finally, following this approach, the APO 
service modules are equipped with auto-configuration 
capabilities, while new modules can be imported to 
the system through a trivial process, as long as they 
ensure compatibility with the exchange requirements 
of the respective service, i.e. they are MVD-
compliant. 

There are a number of software tools allowing que-
rying and other manipulation of BIM data – the BaaS 
project focuses mainly the part of obtaining relevant 
data from BIM and using them efficiently in the build-
ing services aiming for control optimization, fault de-
tection and diagnostics, etc. All such functionality 
should be enabled automatically, without any human 
interaction. BaaS can be seen as a platform enabling 
the building contextual data as well as dynamic data 
(sensor readings) to software modules providing the 
actual service or functionality needed. Such platform 
is supposed to enable required inputs to many other 
features and software modules and impact significant-
ly the market, especially if it is open to public. 

3.3 Simulation models 
In addition to simulation as a design and decision-
support tool, we take the stance within BaaS, that 
simulation is an essential ingredient to providing 
APO services. In this operational-phase utilization of 
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simulation models, the usage scenarios are different: 
simulation models are consumed by APO services 
that provide useful functionalities with respect to the 
building operation. The availability of factual 
(sensed) data, along with forecasts for pertinent pa-
rameters (e.g. weather, occupancy) can be exploited 
and actively used to bridge the “simulated” and “re-
al” worlds, reducing or even mitigating design-phase 
uncertainties. 

With respect to the existing calculation method-
ologies for simulation models, quasi-static and CFD 
calculation methodologies are primarily useful in the 
design phases, either due to the resolution of their 
predictions (annual basis for quasi-static) or due to 
the inherent assumptions and modelling detail re-
quired – as such, they are of lesser importance with-
in BaaS. The use of time-steps in the range of a mi-
nute to one hour allows to account for the dynamics 
of active climate control systems, but also to incor-
porate control strategies that use state measurements 
as inputs to compute actuation commands. The de-
sire to use simulation as a forecasting tool, also sug-
gests that a “small” time step might be warranted. In 
view of the comments above, in Figure 1, the type of 
calculation methodologies of interest to BaaS can be 
identified.  

Simulations and their respective calculation 
methodologies will be used with BaaS to accomplish 
a variety of different tasks: 
� Energy performance estimation: In this task the 

energy performance of the whole building is es-
timated. Energy performance includes total ener-
gy needs, including energy used for conditioning 
the spaces. In the transient calculation methodol-
ogies above thermal comfort parameters can also 
be computed. 

� Energy performance forecasting: The goal of 
energy performance forecasting is to estimate 
building energy needs in order to preserve com-
fort conditions in building spaces, during a finite 
future time horizon. The use of forecast data ob-
tained from various sources is necessary in this 
case. As it can be expected the validity of the 
forecasting process depends strongly on the quali-
ty of the forecasts. Integration of past data and 
forecast data (obtained from different sources) is 
essential here and the abstractions of the middle-
ware will facilitate access to these data, so that 
the problem can be correctly set up. 

� Model calibration: Although models are de-
signed to predict the real behaviour of buildings 
and their systems as accurately as possible, their 
predictions may differ from real sensor measure-

ments, due to a variety of reasons including: sen-
sor measurement errors, modelling insufficien-
cies, or incorrect model parameter value’s estima-
tions. Model calibration tasks rely on past sensor 
measurements in order to change the model pa-
rameter values and bridge the above gap. 

� Components validation: System performance 
can degrade over time, leading to out-of-
specification operation. This can have adverse ef-
fects with respect to energy performance and 
thermal comfort. Anomaly detection and identifi-
cation using simulation-based methodologies can 
be one of the ways, to identify such events 

� Control design: The general purpose of (supervi-
sory) control design is to design a controller that 
given state parameter values will return operation 
schedules and commands of controllable building 
elements. In model-based control design, the cal-
culation methodology (here synonymous to 
“model”) is used in combination with model-
predictive control algorithms to generate such 
strategies. 

� Control design optimization: The generated 
control actions, using simplified state-space mod-
els, can have poor performance when applied to 
the real system. For this reason, the resulting con-
trollers can be improved using more “accurate” 
building models, by performing a second optimi-
zation step. Uses of calculation methodologies 
can be an invaluable asset in fine-
tuning/optimizing controller parameters. 

3.4 System architecture 
Within the BaaS architectural design, a three layer 
architecture is envisaged: the data layer serving stat-
ic and dynamic data needs through the implementa-
tion of an extended Building Information Model 
(eBIM) comprising a data warehouse and a BIM 
server; the communication layer acting as an ab-
straction layer to facilitate communication between 
the physical and ICT layers; and the APO Service 
Layer to provide the reasoning and analytics ser-
vices. These functionally disjoint layers operate in-
dependently, communicating through the use of 
properly-defined (software) interfaces. The term 
APO collectively refers to continuously recurring 
tasks during building operation: assessment of the 
current building state; prediction of the effects that 
various decisions will have to KPIs; and, optimiza-
tion of performance as measured through relevant 
KPIs. 
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Figure 2. APO Services Layer – Core Components. 

 
Functionally the APO services layer is intended 

to host the necessary algorithms to analyze the col-
lected in-building data, interactions of processes, 
and generate control strategies for effective energy 
management. Specifically, the services will provide 
core intelligence, building/facility assessment and 
monitoring, prediction and optimization services, 
utilizing information made available by the data lay-
er services. The aforementioned activities can be 
grouped together in three functionally-disjoint 
groups of services: 
� Fault Detection & Diagnostics, containing ser-

vices which provide analytics to detect and possi-
bly find a root cause (diagnosis) of various 
equipment malfunctions and faults 

� Energy Management, containing services which 
provide analytics to monitor equipment perfor-
mance at various building hierarchy levels (from 

the building envelope to the individual building 
equipment) and to identify critical levels for ef-
fective operation in order to take measures for re-
spective maintenance 

� Control Design and Optimization, containing 
services which provide control-related analytics 
to design monitor and optimize applied control 
strategies by identifying control faults and ineffi-
ciencies. 
At the APO Layer, what is collectively denoted as 

services should be understood as functional compo-
nents implemented as a collection of software mod-
ules. These modules are either developed during 
BaaS project or can be provided by interested stake-
holders to implement analytics (fault detection and 
diagnostics, control design, etc.). From a business 
perspective these modules can be part of the busi-
ness intelligence and solutions portfolio provided as 
a service to building owners and occupants. 

A schematic representation of the APO kernel, 
containing all the necessary functional components, 
is shown in Figure 2. The main modules of the APO 
kernel are: 
� The module registry, where various modules are 

available for use by any APO service, since all 
APO services that will be deployed later on to the 
system will have to select and use control design, 
control design optimization, energy monitoring, 
fault detection and simulation modules that are 
available through the module registry library. 

� The simulation manager is responsible for 
providing a fully functional simulation model of 
the building to any APO service that requests it. 

� The service handler, which is responsible for 
coordinating all APO services, by invoking the 
control design, control design optimization and 
fault detection modules, through the control and 
fault detection managers. 

Figure 1. Calculation methodologies of simulation models. 
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� The control manager, which is responsible for 
any control-related action within BaaS. 

� The fault detection manger, which is responsi-
ble for detecting and identifying as many prob-
lems as possible of the building actuating compo-
nents. Based on the user inputs, or predefined 
default set of faults to be monitored, the fault 
manager instantiates and manages a variety of 
fault detection and identification (FDI) abstract 
components. 

� The signal handler, which handles all data (past, 
present, future) coming through the middleware 
layer to the given APO services. A signal is a ge-
neric software abstraction used throughout the 
APO kernel able to accommodate any type of da-
ta. 

� The event handler, which is responsible for the 
event management: distribution to selected 
blocks, priority handling, repeating mechanism 
for unacknowledged events, logging, event time-
of-life, etc. 

� The BaaS connector, which secures the data 
connection (data access layer) between the APO 
services kernel and modules. 

� The configuration manager, which collects the 
user requirements (cost function formulation – 
KPIs, constraints) entered through simple GUI 
and forms the setup for each task solved by the 
APO services. 

� The permissions and user manager, which takes 
care of the security aspects related to the APO 
services. Number of user profiles can be generat-
ed with different privilege levels. New users add-
ed to the system are then assigned by the selected 
user profile. 

� The time control, which is responsible for the 
proper timing of all APO services kernel actions. 

4 EXAMPLE 

Consider the simple one-zone office building shown 
in Figure 3, located in Germany. The building, as 
shown in Figure 4, is equipped with a temperature, 
occupancy and a window contact sensor, while a 
sensor on the roof is used to measure the outside dry 
bulb temperature. Moreover, the building is served 
by a dedicated HVAC system. Finally, a BIM server 
containing the building description in IFC format is 
available, along with a Data Warehouse scheme that 
contains historical sensor measurements for the 
building.  

During the summer period, a static rule-based 
controller is applied, facilitating the following rule: 
when there is a demand for cooling (room tempera-
ture above setpoint) during working hours of the 
building, the window should open if the outside 
temperature is at least 3°C lower than the room tem-

perature, thus saving energy by shutting-down the 
HVAC system. 

In an effort to capture behaviours that lead to en-
ergy leakage, the fault detection manager instantiates 
a fault detection/identification object pertinent to a 
fault description specified by user or experts during 
the BaaS configuration phase. In this setting, a fault 
is indicated if the related zone HVAC system is op-
erating and the window is open at the same time, 
since this is an energy inefficiency that needs to be 
reported and treated. The fault detection object in-
stantiates initially a relevant symptom object that 
will evaluate a specified set of rules to detect incor-
rect behaviour. If the symptoms supporting the fault 
hypothesis are observed, i.e. the HVAC is operating 
while the window is open, the fault likelihood is in-
creasing and after a period of time (fault reasoning) 
it exceeds a predefined threshold and a fault event is 
generated by the fault detection object. 

In order to automatically adapt the specific fault 
detection logic to any building type at hand, a set of 
queries to the available BIM server are required, 
with the following order: 
1. Get all window contact sensors of the building. 
2. For each contact sensor, identify the specific 

window it is mounted to. 
3. For each window, get the room it belongs to. 
4. Get the air terminal and air terminal box serving 

each room. 
5. Get the upstream HVAC structure (AHU, 

chiller) for each terminal. 
 

 
Figure 3. Architectural view of the building. 

 
Once the querying process has been completed, a 

collection of fault detection objects as the one de-
scribed earlier is created and associated with each 
contact sensor – HVAC pair, while, at the same 
time, is able to request historical operational data for 
the sensor measurements and HVAC operation from 
the DW. Note here that this fault detection process 
assumes that all involved entities work properly 
(window opening sensor, zone temperature sensor, 
cooling valves, etc.).  
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Figure 4. Available building sensors. 

 
Since the entities dependencies are known through 
the querying process; the fault dependence object 
checks all relevant fault identification and detection 
objects outputs for possible faults. Should any in-
volved entity be faulty, the FDI process must not be 
applied or its results must be discarded. An example 
of relevant objects tree is described in Figure 5, 
where the analyzed one zone example is put into 
wider context of the HVAC distribution system of a 
commercial building. The chiller (or chiller plant) is 
producing a cooling for the whole building, i.e. the 
chilled water is distributed to cooling coils in Air 
Handling Units (AHU) and optionally also in air 
terminal boxes serving the individual zones or 
rooms. 

 

 
Figure 5. The HVAC system. 

 
Assuming the fault detection object identifies a 

malfunctioning contact sensor; an event containing 
the information on the discovered fault is created 
and announced on the event handler and to the build-
ing manager. Subsequently, using pre-defined fault 
recovery logic (like a decision tree), the control 
manager postpones the use of the static rule-based 
controller and forces application of a model-assisted 
control design optimization module for the control 
of the zone. The new control approach assumes that 
the window is uncontrollable and attempts to regu-
late the HVAC operation in order to save energy and 
maintain comfort in the room. 

For the new control design optimization problem, 
the warming-up period is set to two days, while the 
prediction horizon to three days. The new control 
function for the HVAC is a linear controller, trans-
forming a set of building states (outside temperature, 

room temperature and occupancy) into setpoints, 
while the KPIs of the optimization problem are de-
fined as the total energy consumption and the zone 
temperature. 

In Figure 6, a draft sketch of the whole process is 
presented. First of all, the control manager requests 
historical data for the warming-up phase and refer-
ence occupancy data from the DW, as well as 
weather predictions from external services, through 
the middleware. The response signals are pre-
processed and forwarded to the simulation manager. 
The simulation manager, using the simulation setup 
guidelines provided by the control manager, requests 
the available simulation model and creates the simu-
lation and co-simulation objects, through which the 
historical, predicted and reference data are injected 
to the simulation, Finally, the control design optimi-
zation object created by the control manager is used 
to design the control strategy to be applied to the re-
al building. 

 
Figure 6. Functional flow chart for the one-zone simple exam-
ple. 

5 CONCLUSIONS 

In the present work, the high-level architecture of 
the kernel hosting the BaaS APO services has been 
presented. BaaS system manages to consist a plat-
form enabling the building contextual data as well as 
dynamic data (sensor readings) to software modules, 
allowing for semi-automatic deployment and opera-
tion of Asses, Predict and Optimize services in all 
buildings at hand, regardless of variations on the 
building types, construction, location and available 
systems, through the use of BIM and IFC tools and in-
corporation of MVDs. 
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