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ABSTRACT 

In the present paper, the control design of Heating, Ventilation and Air Conditioning (HVAC) systems is investigated. In 

large-scale buildings – e.g. hotels or hospitals – the high dimension of the control design problem precludes a solution 

with reasonable computational effort. In this paper, a distributed control strategy is proposed, where interacting agents are 

operating sub-systems; interaction between these agents can ensure that an optimum solution can be obtained. A novel 

method to distributed control tis introduced based on data-driven modeling where the strategy is not based on explicit 

optimization, but on weighted learning of the control rules; two examples of the addressed system are formulated. A 

significant advantage of the proposed approach consists in minimal assumptions on the addressed system and the most 

significant disadvantage is the need of sufficiently rich data-sets. 
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1. INTRODUCTION 

The present paper focuses on the control of HVAC (heating, cooling, and air conditioning) systems. Recent 

research addresses the segment extensively, with motivation largely stemming from the fact that 54% of the 

overall consumption of energy in buildings is used for the operation of HVAC systems (Mathews et al. 

2001). While the benefits of effective energy utilization can be sizable, the application of advanced control in 

this industry remains limited. We can observe several direction of the interest related to the energy savings in 

buildings: (i) good energy-management concepts and material selection, where the savings are achieved by 

the installation of latest devices and use of high-tech insulation materials (Fokaides and Papadopoulos 2014); 

(ii) the determination of critical faults and inefficiencies that lead to corrective actions in terms of hardware 

replacement and maintenance (Kukal et al. 2009; Berka and Macek 2011); (iii) the efficient control of 

particular subsystems, e.g. in the heating season, the indoor zone temperature is kept at the lower level of 

comfort (Zhou et al. 2014), and – finally - (vi) holistic optimization of the whole building where individual 

subsystems cooperate in order to minimize the overall costs for a given prediction horizon. 

A very natural way to the holistic optimization is to formulate a Model Predictive Control (MPC) 

problem using the system of the whole building and to solve it consequently using either means of 

mathematical programming (Prívara et al. 2011) or using soft-computing methods (Kontes et al. 2012; Macek 

et al. 2013). The large-scale MPC problems can be formulated easily using the machine readable description 

of the building such as IFC BIM (Cerovsek 2011)  which makes the solutions flexible and modular. 

The drawback of the standard MPC approach lies in the high-dimensionality of the considered models 

and the difficulty in constructing these models. So while a large number of studies have been performed on 

the potential of MPC, little has been done in the real-world . The situation is more egregious for larger-scale 

buildings such as hospitals or hotels having sometimes hundreds of zones and tens of generation units, being 
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equipped by complex distribution system and influenced by various, possibly random factors; the MPC 

control design problem becomes impossible to solve with existing computational resources. 

The practical implementation of the holistic building control can be achieved either by (i) distinguishing 

the low-level from the supervisory-level control or by (ii) breaking down the overall task of holistic control 

into smaller (sub-)control tasks and solving these in an orchestrated way.  

 In case (i), the supervisory-level relies on the low-level that is responsible typically for achieving 

of given set-points using PID controllers and the supervisory control optimizes these set-points 

only (Kontes et al. 2012; Macek et al. 2013).  

 Approach (ii) tackles the holistic optimization in a distributed way where individual subsystems 

are controlled by agents, each optimizing their operation independently and communicate 

intermediate results with their neighbor agents for an orchestrated decision finding. 

The HVAC control uses both models based on the established laws of physics as well as the black-box 

and data-driven models. The first approach is typically much more accurate in terms of description of the 

hardware of the HVAC system and requires significant configuration labor. The second approach is capable 

to deal with random factors and is easier to be installed. There are two basic approaches to the data-driven 

control: the first one consists in identification of the model of the system and consequent optimization of the 

control inputs; the second one transforms existing data to control rules using weighted learning. 

In this paper a novel algorithm is presented to address the problem of distributed data-driven control 

using weighted learning. Section 2 provides the algorithm itself, starting from the centralized version for 

single-step control, discussing the multi-step control, and – finally – describing a multi-agent multi-step 

version. Section 3 formulates some illustrative examples and in Section 4 some concluding remarks are 

provided. 

2. DISTRIBUTED DATA-DRIVEN CONTROL 

2.1 Basic Notation 

Throughout the paper, we will use     as a number of elements;         will denote a conditioned probability 

density function;                   stands for the expected value;         stands for (multivariate) 

normal distribution; R is the set of real numbers. 

We are addressing the dynamic control with discretized time         where the observable
[1] 

states    

and inputs    are real valued vectors and the single-step loss    is a real scalar. We assume that we have data 

             
    and are about to decide about       so      satisfies the constraints   with some 

probability threshold P and the expected value    is possibly minimal. The system is assumed to behave in 

the probabilistic way: 

                , 

and 

              . 

Graphically, the model is described in Figure 1. 

 

Figure 1. Single-step single-agent system. 

 

                                                           
[1] It is well known that the addressed HVAC systems contain important unobserved variables such as wall temperatures. Moreover, 
some states are observed with low precision, typically the outdoor air temperature. The assumption of fully observable state is adopted 

because of high novelty of the proposed solution.  
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Thus, the formulation of the control problem is 

  
        

    
              

        subject to 

                   
 

. 

2.2 Basic Algorithm 

A data-driven approach to control was first presented by Atkeson et al. 1997 with the focus on reaching a 

given state   
   

 rather than minimization of losses   . Two basic approaches are distinguished:  

 the first consists in the creation of a data-driven model            of the system and consequent 

explicit solution, e.g. based on gradient search so      
   

. In the optimal control, this corresponds 

to the explicit minimization of the data-driven model of loss function           .  

 the second approach is based on direct calculation of the inversion model            based on a 

generalization of observed data where    applied to      led to   
   

. In the optimal control, we have 

to determine the data where the control inputs applied to given state led to the minimal value of the 

loss function. In this case, the solution is more challenging since the selection of the relevant data 

has to reflect the fact that the minimal value of the loss function differ for different states        Note 

that in the static optimization where no states are considered, the inversion is approximated by 

algorithms such as Covariance Matrix Adaptation (Hansen and Ostermeier 1996). 

The idea of the algorithm is to generalize the past data using a – possibly simple – parameterized model 

for a decision rule             . If we would assume that the data contain only records based on the explicit 

optimization, we can use usual Bayesian update, namely 

                                        

   

   

                  

   

   

  

where      is a prior distribution of the parameters  . However, in practice, we have data that are not 

necessarily optimal: the actions were determined based on some suboptimal approaches or heuristics. The 

algorithm attempts to use the information in the data and to generalize it. Let us consider      as a 

measure of the optimality of record  . Then we can use 

                               

   

   

 

 

This can be calculated either online and in a batch and give us a decision rule that converges to the best 

approximation of the optimal decision rule with the given model structure. The only thing needed is to 

determine the weights    as a function of     ,   ,   , and   . First, let us introduce the extended loss 

function that involves also penalization of constraint violation, e.g. 

                                 
where     is a large number and        when the proposition   is true and        otherwise. The 

weights can be interpreted as the level of optimality with the system evolution in the given state     . Let us 

assume that we know the minimal and maximal value of the loss function that can be achieved for given 

    . Let us denote them             and             they can be obtained e.g. using Gaussian processes 

(Rasmussen and Williams 2005).  

              
 

  
           

              
           

           

   

Note that this is the normalized softmax (Sutton and Barto 1998). This formula shows the relatively lower 

loss function, the higher the corresponding weight. The normalization is motivated by the fact some records 

are very relevant for the learning of the control rule, but they started from very bad state     . One can use 

also some other efficiency measures, based e.g. on the DEA analysis (Banker et al. 1984). Also, more 

advanced approaches can be based on the transformation of the loss function to the ideal probability 

distribution (Kárný and Kroupa 2012). 
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Unfortunately, the Bayesian learning of probability densities of the parameters might seem relatively far 

away from the practical implementation. Let us therefore mention a well-established frequentist  counterpart 

to the weighted Bayesian learning, namely the weighted least squares (Cleveland 1977) where the loss 

function  

                        
 

   

   

 

is minimized in   where         is a regression fit, e.g. the linear regression of      with coefficients  . 

To summarize the algorithm, let us mention the following steps: 

Offline/recursive 

1. Calculate the weights   . 

2. Calculate the the control rule           using the available data and the calculated weights   . 

Online 

3. Apply the control rule           . 

2.3 Extension to Multi-Step Control  

The previous paragraphs have described a way how the data can be used for the calculation of the single-step 

control rule. Now, we extend the approach to the multi-step case. The basic idea is to start with the control 

rule                    for the final control rule of the decision horizon  , i.e. for time      .Then calculate 

                    , then                      and so on until           . The first rule                    

is calculated as the single-step control rule as described in Section 2.2. The other rules are calculated using 

the loss-to-go information   
    

 from the previous rule. This is the value of being in    when the  th
 control 

input has to be determined. 

1. Set   
    

   for all            and set      .  

2. Set   
   

        
    

 and calculate the weights using   . 

3. Using the weights  , calculate the decision rule                

4. Set      . If    , go to 6., otherwise go to 5. 

5. Calculate   
    

     
   

       , given the control rule               , using a regression model 

for     
   

         . Continue to 2. 

6. Return the control strategy                                . 

2.4 Distributed Data-Driven Control 

For distributing the data-driven control strategy we described in previous sections to sub-problems, we 

assume that the control actions can be decomposed into several groups; each shall be associated to an 

agent                       . The decomposition with respect to the agents is described as follows: 

 Loss function         
   
    can be decomposed as sum of particular subsystems. 

 The components of the states are classified into 3 groups for each agent (Šmídl and Přikryl 2006): 

o States modeled by the agent          , 

o states consumed by the agent          , 

o and states neglected by the agent         . 

Whenever an agent has an input state, another agent has to have the same output state. The latter is 

denoted as influencer of the former agent. Each agent is assumed to have local history containing 

records                                   

   
. 

We assume the following dynamics: 

                                                    

The cost loss function is as 

                            

Local decision rules in form                                   with the learning scheme 
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The algorithm for the multi-agent settings can be summarized in the following steps:  

1. Set     
    

   for all            and for all             and set      .  

2. Set     
   

            
    

 and calculate the weights      using     
   

 and   

3. Using the weights  , calculate the decision rule                                      

4. If    , go to 8., otherwise set       and go to 5. 

5. Provide feedback to all influencers                    where j is influencer of i.  

6. Provide feedback to itself                   . 

7. Aggregate the feedback provided                                                       where 

j are agents influenced by i. 

8.  and apply it to all records      
    

                   

7. Calculate   
    

     
   

       , given the control rule               , using a regression model 

for     
   

         . Continue to 2. 

8. Return the control strategies                                      for all            . 
The algorithm is illustrated in Figure 2, including the feedback being provided to agent 2 at the time 

instant        , i.e.                        and                       . 

 
Figure 2. Example of multi-step control of two agents. 
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2.5 Holistic Optimization of Complex HVAC Systems 

The distributed data-driven control proposed in the previous sections is a general framework that is 

applicable to wide class of building systems. Due to its flexible formulation in terms of cost functions, 

parameter spaces and the explicit interaction between agents, it is able to control heterogeneous subsystems 

reflecting their interaction while avoiding the need of formulating and solving a complex centralized 

optimization problem.  

We can consider the following types of agents in the HVAC Systems are natural to express in our proposed 

approach: 

 Generation/production – agents representing devices such as boilers, chillers, solar panels, co-

generation units.  

 Distribution – fans, dampers, pumps, valves, ducts. 

 Demand – individual zones, including the individual preference for the comfort of the occupants. 

 Others – weather forecasting agents. 

The proposed algorithm is that the generation will be triggered by high penalty for comfort violation in 

the zones.  

3. TOWARDS THE HOLISTIC HVAC OPTIMIZATION 

In order to justify the applicability of the approach at least qualitatively, we formulate a simple HVAC 

related toy example in detail: the Optimal Heating in Two Zones. This example addresses the balancing of 

heating in two zones.  

The states      of the system involve two air temperatures in the zones and the outdoor air 

temperature. The control inputs       are the intensities of heating or cooling in each zone. We assume the 

dynamics of the system are 

                   

With 

    
         
         
   

   

and 

    
  
  
  

   

Let us consider the heating in two zones where each zone is represented by one agent. We assume the 

extended loss function is for the first agent: 

                                   

while for the second agent  

                                      

where           calculates the distance between vector   and set   and the comfort  is given by intervals, i.e. 

               Thus, the heating in zone 2 is twice expensive than in the zone 1. We will consider the 

prediction horizon        . The initial state will be               .  
While yhis problem can be solved easily using centralized MPC based on linear programming (Garcia 

1989), eventually by adopting the distributed MPC (Moroşan et al. 2011), it is possible to solve this toy 

example problem as well using the data-driven approaches based on inversion learning in both centralized 

and distributed settings as described in the present paper. 

4. CONCLUSION AND FUTURE WORK 

The proposed distributed data-driven control is a general and flexible framework that is applicable to wide 

class of systems and is able to approximate the optimal control of individual subsystems including their 
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interaction without the need of centralized problem formulation and solution. The learned control strategy 

approaches the optimal strategy and does not require – in contrast to usual application of the MPC – iterative 

re-calculations. The agents are assumed to provide some loss-to-go feedback to their influencers for each 

time step of the prediction horizon.  

The data-driven control based on weighted learning of control rules does not require description of the 

system in terms of first principles. The only information needed is the structure of influence among the 

agents. On the other hand, available first principle knowledge can be entered into the proposed framework as 

a part of the prior distributions of the sub-system parameters.   

The basic principle is that the agents communicate the loss-to-go feedback to their influencers. This 

general principle can be approached either via the data-driven control based on weighted learning of control 

rules as described above or using any other approach. This makes it possible to integrate heterogeneous 

agents, including some special agents representing the forecasters of random effects. 

The practical implementation of the algorithm for the HVAC control can be considered in various 

alternatives. First, very natural implementation would be when each agent
[2]

 owns a dedicated processor and 

communicates e.g. via wireless network. However, since the calculation of the universal control strategy 

might be computationally intensive, it is also possible to carry out the calculations in the cloud or in a big-

data infrastructure that is connected to the basic control infrastructure.  

The proposed algorithm is not applicable only to HVAC system. The multi-agent settings motivates the 

integration also with related systems such a load dispatch, optimal maintenance, or water management. A 

further field of applicability of our proposed approach is to formulate the scheduling of the optimal 

maintenance actions for devices in time (Berka and Macek 2011). It has been shown that the problem can be 

formulated and solved in terms of dynamic programming. To illustrate the suitability of the distributed 

approach presented in this paper, let us consider two devices. The states are whether the devices are healthy 

or faulty          . The control inputs are the maintenance actions          . The dynamics can be 

described as a Markov chain where: 

                    i.e. after maintenance, the system becomes healthy. 

                            , i.e. without maintenance, the system will not become healthy if 

it was faulty. 

 We assume for this the risk of fault occurrence  

o                                          

o                                         

o                                         

o                                         

We also assume the loss function is                               . The values can be interpreted 

in the following way: the agent for device 1 neglects the faulty state or the maintenance. However, if 

considering the second device, it shall be rather healthy because it significantly reduces the risk of occurrence 

of very expensive fault at the second device. Note that the problem of the optimal maintenance can be 

combined with the optimal control. 

Concerning challenges, the most serious open question from a research perspective is the practical testing 

of the proposed algorithm and its further theoretical justification. This task is connected to setting of the 

algorithm’s parameters: including the selection of the              structure, to ensure the weights    

express sufficiently a level of optimality and whether the data-set is rich enough. Another task is a natural 

decomposition of the system, selection of the sampling period and definition of local loss functions. 

A very interesting research challenge consists also in the determination to which extent and in which 

settings a centralized approach to optimization outperforms the proposed distributed approach and vice versa: 

The distributed approach is able to decompose very complex systems to computationally feasible problems. 

On the other hand, its intensive communication makes the approach inappropriate for simple systems. This is 

related also to the problem of granularity of the decomposition – i.e. whether it is better to use decomposition 

into many small subsystems with simple local optimization or whether to use the decomposition into several 

larger subsystems with more complex local optimization. 

                                                           
[2] Each agent can be represented by an APO (Assessment, Prediction, Optimization) unit (Valmaseda 2013). 
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It remains for future work to verify and assess the proposed approach both experimentally and in 

simulations in a variety of real-world settings. 
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