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Abstract. We present in this article two components: these components can in fact serve various
goals independently, though we consider them here as an ensemble. The first component is a technique
for the rapid and reliable evaluation prediction of linear functional outputs of elliptic (and parabolic)
partial differential equations with affine parameter dependence. The essential features are (i) (prov-
ably) rapidly convergent global reduced–basis approximations — Galerkin projection onto a space WN

spanned by solutions of the governing partial differential equation at N selected points in parameter
space; (ii) a posteriori error estimation — relaxations of the error–residual equation that provide inex-
pensive yet sharp and rigorous bounds for the error in the outputs of interest; and (iii) off–line/on–line
computational procedures — methods which decouple the generation and projection stages of the ap-
proximation process. This component is ideally suited — considering the operation count of the online
stage — for the repeated and rapid evaluation required in the context of parameter estimation, design,
optimization, and real–time control. The second component is a framework for distributed simulations.
This framework comprises a library providing the necessary abstractions/concepts for distributed sim-
ulations and a small set of tools — namely SimTEX and SimLaB— allowing an easy manipulation of
those simulations. While the library is the backbone of the framework and is therefore general, the
various interfaces answer specific needs. We shall describe both components and present how they
interact.
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1. Introduction to reduced basis output bound methods

The optimization, control, and characterization of an engineering component or system requires the predic-
tion of certain “quantities of interest”, or performance metrics, which we shall denote outputs — for example
deflections, maximum stresses, maximum temperatures, heat transfer rates, flowrates, or lift and drags. These
outputs are typically expressed as functionals of field variables associated with a parametrized partial differ-
ential equation which describes the physical behavior of the component or system. The parameters, which we
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shall denote inputs, serve to identify a particular “configuration” of the component: these inputs may represent
design or decision variables, such as geometry — for example, in optimization studies; control variables, such as
actuator power — for example in real–time applications; or characterization variables, such as physical proper-
ties — for example in inverse problems. We thus arrive at an implicit input–output relationship, evaluation of
which demands solution of the underlying partial differential equation.

Our goal is the development of computational methods that permit rapid and reliable evaluation of this
partial-differential-equation-induced input-output relationship in the limit of many queries — that is, in the
design, optimization, control, and characterization contexts. The “many query” limit has certainly received
considerable attention: from “fast loads” or multiple right-hand side notions (e.g. [5,7]) to matrix perturbation
theories (e.g. [1,25]) to continuation methods (e.g. [2,20]). Our particular approach is based upon the reduced–
basis method, first introduced in the late 1970s for nonlinear structural analysis [3, 13], and subsequently
developed more broadly in the 1980s and 1990s [4, 8, 16, 17, 21]. The reduced–basis method recognizes that the
field variable is not, in fact, some arbitrary member of the infinite-dimensional space associated with the partial
differential equation; rather, it resides, or “evolves”, on a much lower–dimensional manifold induced by the
parametric dependence.

The reduced–basis approach as earlier articulated is local in parameter space in both practice and theory. To
wit, Lagrangian or Taylor approximation spaces for the low–dimensional manifold are typically defined relative
to a particular parameter point; and the associated a priori convergence theory relies on asymptotic arguments
in sufficiently small neighborhoods [8]. As a result, the computational improvements — relative to conventional
(say) finite element approximation — are quite modest [17]. Our work differs from these earlier efforts in several
important ways: first, we develop (in some cases, probably) global approximation spaces; second, we introduce
rigorous a posteriori error estimators; and third, we exploit off–line/on–line computational decompositions.
These three ingredients allow us — for a restricted but important class of problems — to reliably decouple the
generation and projection stages of reduced–basis approximation, thereby effecting computational economies of
several orders of magnitude.

In this expository review paper we focus on these new ingredients. We begin in Section 2 by introducing an
abstract problem formulation and several illustrative instantiations. In Section 3 we describe the reduced–basis
approximation for coercive symmetric problems and “compliant” outputs; associated a posteriori estimators
are then developed in Section 4.

2. Problem statement

2.1. Abstract formulation

We consider a suitably regular domain Ω ⊂ R
d, d = 1, 2, or 3, and associated function space X ⊂ H1(Ω),

where H1(Ω) = {v ∈ L2(Ω), ∇v ∈ (L2(Ω))d}, and L2(Ω) is the space of square integrable functions over Ω.
The inner product and norm associated with X are given by ( · , · )X and ‖ ·‖X = ( · , · )1/2, respectively. We also
define a parameter set D ∈ R

P , a particular point in which will be denoted µ. Note that Ω does not depend on
the parameter.

We then introduce a bilinear form a : X × X × D → R, and linear forms f : X → R, � : X → R. We
shall assume that a is continuous, a(w, v; µ) ≤ γ(µ) ‖w‖X ‖v‖X ≤ γ0 ‖w‖X ‖v‖X , ∀µ ∈ D; furthermore, in
Sections 3 and 4, we assume that a is coercive,

0 < α0 ≤ α(µ) = inf
w∈X

a(w, w; µ)
‖w‖2

X

, ∀ µ ∈ D, (1)

and symmetric, a(w, v; µ) = a(v, w; µ), ∀ w, v ∈ X , ∀ µ ∈ D. We also require that our linear forms f and � be
bounded; in Sections 3 and 4 we additionally assume a “compliant” output, f(v) = �(v), ∀ v ∈ X .
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We shall also make certain assumptions on the parametric dependence of a, f , and �. In particular, we shall
suppose that, for some finite (preferably small) integer Q, a may be expressed as

a(w, v; µ) =
Q∑

q=1

σq(µ) aq(w, v), ∀ w, v ∈ X, ∀ µ ∈ D, (2)

for some σq : D → R and aq : X × X → R, q = 1, . . . , Q. This “separability”, or “affine”, assumption on
the parameter dependence is crucial to computational efficiency; however, certain relaxations are possible —
see [19]. For simplicity of exposition, we assume that f and � do not depend on µ; in actual practice, affine
dependence is readily admitted.

Our abstract problem statement is then: for any µ ∈ D, find u(µ) ∈ X such that

a(u(µ), v; µ) = f(v), ∀ v ∈ X ; (3)

and s(µ) ∈ R given by

s(µ) = �(u(µ)). (4)

In the language of the introduction, a is our partial differential equation (in weak form), µ is our parameter,
u(µ) is our field variable, and s(µ) is our output.

For simplicity, we may suppress the µ-dependence along the article when there is no possible confusion.

2.2. Particular instantiations

We indicate here a few instantiations of the abstract formulation; these will serve to illustrate the methods
(for coercive, symmetric problems) of Sections 3 and 4.

2.2.1. A thermal fin

In this example we consider the two- and three-dimensional thermal fins shown in Figure 1; these examples
may be (interactively) accessed on our web site1. The fins consist of a vertical central “post” of conductivity k̃0

and four horizontal “subfins” of conductivity k̃i, i = 1, . . . , 4; the fins conduct heat from a prescribed uniform
flux source, q̃′′, at the root, Γ̃root, through the post and large-surface-area subfins to the surrounding flowing
air; the latter is characterized by a sink temperature ũ0, and prescribed heat transfer coefficient h̃. The physical
model is simple conduction: the temperature field in the fin, ũ, satisfies

4∑
i=0

∫
Ω̃i

k̃i ∇̃ũ · ∇̃ṽ +
∫

∂Ω̃\Γ̃root

h̃ (ũ − ũ0) ṽ =
∫

Γ̃root

q̃′′ ṽ, ∀ ṽ ∈ X̃ ≡ H1(Ω̃), (5)

where Ω̃i is that part of the domain with conductivity k̃i, and ∂Ω̃ denotes the boundary of Ω̃.
We now (i) nondimensionalize the weak equations (5), and (ii) apply a continuous piecewise-affine transfor-

mation to map Ω̃ to a fixed reference domain Ω [10]. The abstract problem statement (3) is then recovered [22]
for µ = {k1, k2, k3, k4, Bi, L, t}, D = [0.1, 10.0]4×[0.01, 1.0]×[2.0, 3.0]×[0.1×0.5], and P = 7; here k1, . . . , k4

are the thermal conductivities of the “subfins” (see Fig. 1) relative to the thermal conductivity of the fin base;
Bi is a nondimensional form of the heat transfer coefficient; and, L, t are the length and thickness of each of
the “subfins” relative to the length of the fin root Γ̃root. It is readily verified that a is continuous, coercive,
and symmetric; and that the “affine” assumption (2) obtains for Q = 16 (two-dimensional case) and Q = 25
(three-dimensional case). Note that the geometric variations are reflected, via the mapping, in the σq(µ).

1
Fin3D: http://augustine.mit.edu/fin3d 1/fin3d 1.pdf and Fin2D: http://augustine.mit.edu/fin2d/fin2d.pdf
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Figure 1. Two- and three-dimensional thermal fins.

Figure 2. A truss structure.

For our output of interest, s(µ), we consider the average temperature of the root of the fin nondimensionalized
relative to q̃′′, k̃0, and the length of the fin root. This output is calculated as s(µ) = �(u(µ)), where �(v) =∫
Γroot

v. It is readily shown that this output functional is bounded and also “compliant”: �(v) = f(v), ∀v ∈ X .

2.2.2. A truss structure

We consider a prismatic microtruss structure [6, 24] shown in Figure 2; this example may be (interactively)
accessed on our web site2. The truss consists of a frame (upper and lower faces, in dark gray) and a core (trusses
and middle sheet, in light gray); the structure transmits a force per unit depth F̃ uniformly distributed over
the tip of the middle sheet, Γ̃3, through the truss system to the fixed left wall, Γ̃0. The physical model is simple
plane–strain (two-dimensional) linear elasticity: the displacement field ui, i = 1, 2, satisfies

∫
Ω̃

∂ṽi

∂x̃j
Ẽijkl

∂ũk

∂x̃l
= −

(
F̃

t̃c

)∫
Γ̃3

ṽ2, ∀ v ∈ X̃, (6)

where Ω̃ is the truss domain, and X̃ refers to the set of functions in H1(Ω̃) which vanish on Γ̃0. We assume
summation over repeated indices.

We now (i) nondimensionalize the weak equations (6), and (ii) apply a continuous piecewise-affine transfor-
mation to map Ω̃ to a fixed reference domain Ω. The abstract problem statement (3) is then recovered [23]
for µ = {tf , tt, H, θ},D = [0.08, 1.0] × [0.2, 2.0] × [4.0, 10.0] × [30.0◦, 60.0◦], and P = 4; here tf and tt are

2
Truss: http://augustine.mit.edu/virg 1/virg 1.pdf
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the thicknesses of the frame and trusses, respectively; H is the total height of the microtruss; and θ is the
angle between the trusses and the faces. The Poisson’s ratio, ν = 0.3, and the frame and core Young’s moduli,
Ef = 75 GPa and Ec = 200 GPa, respectively, are held fixed. It is readily verified that a is continuous, coercive,
and symmetric; and that the “affine” assumption (2) obtains for Q = 44; Q is larger than for the fin examples
due to the more complex (sheared) affine geometry mappings.

Our outputs of interest are (i) the average downward deflection (compliance) at the core tip, Γ3, nondi-
mensionalized by F̃ /Ẽf ; and (ii) the average normal stress across the critical (yield) section denoted Γs

1 in
Figure 2. These compliance and noncompliance outputs are written as s1(µ) = �1(u(µ)) and s2(µ) = �2(u(µ)),
respectively, where �1(v) = − ∫Γ3

v2, and

�2(v) =
1
tf

∫
Ωs

∂χi

∂xj
Eijkl

∂uk

∂xl

are bounded linear functionals; here χi is any suitably smooth function in H1(Ωs) such that χin̂i = 1 on Γs
1

and χin̂i = 0 on Γs
2, where n̂ is the unit normal.

3. Reduced-basis approach

We recall that in this section, as well as in Section 4, we assume that a is continuous, coercive, symmetric,
and affine in µ — see (2); and that �(v) = f(v), which we denote “compliance”.

3.1. Reduced-basis approximation

We first introduce a sample in parameter space, SN = {µ1, . . . , µN}, where µi ∈ D, i = 1, . . . , N ; see
Section 3.2 for a brief discussion of point distribution. We then define our Lagrangian [17] reduced–basis
approximation space as WN = span {ζn ≡ u(µn), n = 1, . . . , N}, where u(µn) ∈ X is the solution to (3) for
µ = µn. In actual practice, u(µn) is replaced by a finite element approximation on a suitably fine truth mesh;
we shall discuss the associated computational implications in Section 3.3. Our reduced–basis approximation is
then: for any µ ∈ D, find uN(µ) ∈ WN such that

a(uN (µ), v; µ) = �(v), ∀ v ∈ WN ; (7)

we then evaluate sN (µ) = �(uN(µ)). (Non-Galerkin projections are briefly described in [19].)

3.2. A priori convergence theory

3.2.1. Optimality

We consider here the convergence rate of uN (µ) → u(µ) and sN (µ) → s(µ) as N → ∞. To begin, it is
standard to demonstrate optimality of uN(µ) in the sense that

‖u(µ) − uN(µ)‖X ≤
√

γ(µ)
α(µ)

inf
wN∈WN

‖u(µ) − wN‖X . (8)

We note that, in the coercive case, stability of our “conforming” discrete approximation is not an issue; the
noncoercive case is decidedly more delicate (see [19]). Furthermore, for our compliance output,

s(µ) = sN (µ) + �(u − uN) = sN (µ) + a(u, u − uN ; µ) = sN (µ) + a(u − uN , u − uN ; µ) (9)

from symmetry and Galerkin orthogonality. It follows that s(µ)− sN(µ) converges as the square of the error in
the best approximation and, from coercivity, that sN (µ) is a lower bound for s(µ).
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3.2.2. Best approximation

It now remains to bound the dependence of the error in the best approximation as a function of N . At
present, the theory is restricted to the case in which P = 1, D = [0, µmax], and

a(w, v; µ) = a0(w, v) + µa1(w, v), (10)

where a0 is continuous, coercive, and symmetric, and a1 is continuous, positive semi-definite (a1(w, w) ≥ 0,
∀w ∈ X), and symmetric. This model problem (10) is rather broadly relevant, for example to variable orthotropic
conductivity, rectilinear geometry variations, piecewise-constant conductivity variations, and variable Robin
boundary conditions.

We now suppose that the µn, n = 1, . . . , N , are logarithmically distributed in the sense that

ln
(
µn + λ

−1
)

= ln λ
−1

+
n − 1
N − 1

ln

(
µmax + λ

−1

λ
−1

)
, n = 1, . . . , N, (11)

where λ is the maximum eigenvalue of a0 relative to a1. (Note λ is perforce bounded thanks to our assumption
of continuity and coercivity; the possibility of a continuous spectrum does not, in practice, pose any problems.)
We can then prove [12] that, for N > Ncrit ≡ 2e ln(λ µmax + 1),

inf
wN∈WN

‖u(µ) − wN (µ)‖X ≤
√

γ

α
‖u(0)‖X exp

{ −N

2e ln(λ µmax + 1)

}
, ∀ µ ∈ D. (12)

We observe exponential convergence, uniformly (globally) for all µ in D, with only very weak (logarithmic)
dependence on the range of the parameter (µmax).

The proof exploits the (parameter–space) interpolant as a surrogate for the Galerkin approximation. As a
result, the bound is not “sharp”: we observe many cases in which the Galerkin projection is considerably better
than the associated interpolant; optimality (8) chooses to “illuminate” only certain points µn, automatically
selecting a best “sub–approximation” amongst all possibilities — we thus see why reduced–basis state-space
approximation of s(µ) via u(µ) is preferred to simple parameter-space interpolation of s(µ) (“connecting the
dots”) via (µn, s(µn)) pairs. Nevertheless, the logarithmic point distribution (11) implicated by our interpolant–
based arguments is not simply an artifact of the proof: in numerous numerical tests, the logarithmic distribution
performs considerably better than other obvious candidates, in particular for large ranges of the parameter.
Fortunately, the convergence rate is not too sensitive to point selection: the theory only requires a log “on the
average” distribution [12]; and, in practice, λ in (12) may be replaced with any “reasonable” value.

The result (12) is certainly tied to the particular form (10) and associated regularity of u(µ). However,
we do observe similar exponental behavior for more general operators; and, most importantly, the exponential
convergence rate degrades only very slowly with increasing parameter dimension, P . We present in Table 1 the
error |s(µ)−sN (µ)|/s(µ) as a function of N , at a particular representative point µ in D, for the two-dimensional
thermal fin problem of Section 2.2.1; we present similar data in Table 2 for the truss problem of Section 2.2.2.
In both cases, since tensor-product grids are prohibitively profligate as P increases, the µn are chosen “log-
randomly” over D: we sample from a multivariate uniform probability density on log(µ). We observe that for
both the thermal fin (P = 7) and truss (P = 4), the error is remarkably small even for very small N ; and, in
both cases, very rapid convergence obtains as N → ∞. We do not yet have any theory for P > 1. But certainly
the Galerkin optimality plays a central role, automatically selecting “appropriate” scattered-data subsets of SN

and associated “good” weights so as to mitigate the curse of dimensionality as P increases; and the log–random
point distribution is also important — for example, for the truss problem of Table 2, a (non–log) uniform
random point distribution yields errors which are larger by factors of 20 and 10 for N = 30 and 80, respectively.
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Table 1. Error, error bound, and effectivity as a function of N , at a particular representative
point µ ∈ D, for the two-dimensional thermal fin problem (compliant output).

N |s(µ) − sN(µ)|/s(µ) ∆N (µ)/s(µ) ηN (µ)
10 1.29 × 10−2 8.60 × 10−2 2.85
20 1.29 × 10−3 9.36 × 10−3 2.76
30 5.37 × 10−4 4.25 × 10−3 2.68
40 8.00 × 10−5 5.30 × 10−4 2.86
50 3.97 × 10−5 2.97 × 10−4 2.72
60 1.34 × 10−5 1.27 × 10−4 2.54
70 8.10 × 10−6 7.72 × 10−5 2.53
80 2.56 × 10−6 2.24 × 10−5 2.59

Table 2. Error, error bound, and effectivity as a function of N , at a particular representative
point µ ∈ D, for the truss problem (compliant output).

N |s(µ) − sN(µ)|/s(µ) ∆N (µ)/s(µ) ηN (µ)
10 3.26 × 10−2 6.47 × 10−2 1.98
20 2.56 × 10−4 4.74 × 10−4 1.85
30 7.31 × 10−5 1.38 × 10−4 1.89
40 1.91 × 10−5 3.59 × 10−5 1.88
50 1.09 × 10−5 2.08 × 10−5 1.90
60 4.10 × 10−6 8.19 × 10−6 2.00
70 2.61 × 10−6 5.22 × 10−6 2.00
80 1.19 × 10−6 2.39 × 10−6 2.00

3.3. Computational procedure

The theoretical and empirical results of Sections 3.1 and 3.2 suggest that N may, indeed, be chosen very
small. We now develop off–line/on–line computational procedures that exploit this dimension reduction.

We first express uN (µ) as

uN (µ) =
N∑

j=1

uN j(µ) ζj = (uN (µ))T ζ, (13)

where uN (µ) ∈ R
N ; we then choose for test functions v = ζi, i = 1, . . . , N . Inserting these representations

into (7) yields the desired algebraic equations for uN (µ) ∈ R
N ,

AN (µ) uN (µ) = FN (14)

in terms of which the output can then be evaluated as sN (µ) = FT
N uN (µ). Here AN (µ) ∈ R

N×N is the SPD
matrix with entries AN i,j(µ) ≡ a(ζj , ζi; µ), 1 ≤ i, j ≤ N , and FN ∈ R

N is the “load” (and “output”) vector
with entries FN i ≡ f(ζi), i = 1, . . . , N .
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We now invoke (2) to write

AN i,j(µ) = a(ζj , ζi; µ) =
Q∑

q=1

σq(µ) aq(ζj , ζi), (15)

or

AN (µ) =
Q∑

q=1

σq(µ) Aq
N ,

where Aq
N i,j = aq(ζj , ζi), i ≤ i, j ≤ N , 1 ≤ q ≤ Q. The off–line/on–line decomposition is now clear:

In the off–line stage, we compute the u(µn) and form the Aq
N and FN : this requires N (expensive) “a”

finite element solutions and O(QN2) finite-element-vector inner products.
In the on–line stage, for any given new µ, we first form AN from (15), then solve (14) for uN (µ), and
finally evaluate sN (µ) = FT

N uN (µ): this requires O(QN2) + O(2
3N3) operations and O(QN2) storage.

Thus, as required, the incremental, or marginal, cost to evaluate sN (µ) for any given new µ — as proposed in a
design, optimization, or inverse-problem context — is very small: first, because N is very small, typically O(10)
— thanks to the good convergence properties of WN ; and second, because (14) can be very rapidly assembled
and inverted — thanks to the off–line/on–line decomposition. For the problems discussed in this paper, the
resulting computational savings relative to standard (well-designed) finite-element approaches are significant —
at least O(10), typically O(100), and often O(1000) or more.

4. A POSTERIORI error estimation: Output bounds

From Section 3 we know that, in theory, we can obtain sN (µ) very inexpensively: the on–line stage scales
as O(N3) + O(QN2); and N can, in theory, be chosen quite small. However, in practice, we do not know how
small N can be chosen: this will depend on the desired accuracy, the selected output(s) of interest, and the
particular problem in question; in some cases N = 5 may suffice, while in other cases, N = 100 may still be
insufficient. In the face of this uncertainty, either too many or too few basis functions will be retained: the
former results in computational inefficiency; the latter in unacceptable uncertainty — particularly egregious in
the decision contexts in which reduced–basis methods typically serve. We thus need a posteriori error estimators
for sN . Surprisingly, a posteriori error estimation has received relatively little attention within the reduced–basis
framework [13], even though reduced–basis methods are particularly in need of accuracy assessment: the spaces
are ad hoc and pre-asymptotic, admitting relatively little intuition, “rules of thumb,” or standard approximation
notions.

Recall that, in the section, we continue to assume that a is coercive and symmetric, and � is “compliant”.

4.1. Method I

The approach described in this section is a particular instance of a general “variational” framework for
a posteriori error estimation of outputs of interest. However, the reduced-basis instantiation described here
differs significantly from earlier applications to finite element discretization error [9, 11] and iterative solution
error [14, 15] both in the choice of (energy) relaxation and in the associated computational artifice.

4.1.1. Formulation

We assume that we are given a function g(µ) : D → R+, and a continuous, coercive, symmetric (µ-
independent) bilinear form â : X × X → R, such that

α0‖v‖2
X ≤ g(µ) â(v, v) ≤ a(v, v; µ), ∀ v ∈ X, ∀ µ ∈ D. (16)
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We then find ê(µ) ∈ X such that

g(µ) â(ê(µ), v) = R(v; uN (µ); µ), ∀v ∈ X (17)

where for a given w ∈ X , R(v; w; µ) = �(v) − a(w, v; µ) is the weak form of the residual. Our lower and upper
output estimators are then evaluated as

s−N (µ) ≡ sN (µ), and s+
N (µ) ≡ sN (µ) + ∆N (µ), (18)

respectively, where

∆N (µ) ≡ g(µ) â(ê(µ), ê(µ)) (19)

is the estimator gap.

4.1.2. Computational procedure

Finally, we turn to the computational artifice by which we can efficiently compute ∆N (µ) in the on–line stage
of our procedure. To begin, we rewrite the “modified” error equation, (17), as

â(ê(µ), v) =
1

g(µ)

(
�(v) −

Q∑
q=1

N∑
j=1

σq(µ)uN j(µ)aq(ζj , v)

)
, ∀ v ∈ X

where we have appealed to our reduced–basis approximation (13) and the affine decomposition (2). It is
immediately clear from linear superposition that we can express ê(µ) as

ê(µ) =
1

g(µ)


ẑ0 +

Q∑
q=1

N∑
j=1

σq(µ)uN j(µ)ẑq
j


 ; (20)

where ẑ0 ∈ X satisfies â(ẑ0, v) = �(v), ∀ v ∈ X, and ẑq
j ∈ X, j = 1, . . . , N , q = 1, . . . , Q, satisfies â(ẑq

j , v) =
−aq(ζj , v), ∀ v ∈ X. Inserting (20) into our expression for the upper bound, s+

N(µ) = sN (µ)+g(µ)â(ê(µ), ê(µ)),
we obtain

s+
N (µ) = sN (µ) +

1
g(µ)

(
c0 + 2

Q∑
q=1

N∑
j=1

σq(µ)uN j(µ)Λq
j +

Q∑
q=1

Q∑
q′=1

N∑
j=1

N∑
j′=1

σq(µ)σq′
(µ)uN j(µ)uN j′ (µ)Γqq′

jj′

)

(21)

where c0 = â(ẑ0, ẑ0), Λq
j = â(ẑ0, ẑ

q
j ), and Γqq′

jj′ = â(ẑq
j , ẑq′

j′ ). The off–line/on–line decomposition should now be
clear.

In the off–line stage we compute ẑ0 and ẑq
j , j = 1, . . . , N , q = 1, . . . , Q, and then form c0, Λ

q
j , and Γqq′

jj′ :
this requires QN + 1 (expensive) “â” finite element solutions, and O(Q2N2) finite-element-vector inner
products.
In the on–line stage, for any given new µ, we evaluate s+

N as expressed in (21): this requires O(Q2N2)
operations; and O(Q2N2) storage (for c0, Λq

j , and Γqq′
jj′ ).

As for the computation of sN (µ), the marginal cost for the computation of s±N (µ) for any given new µ is quite
small — in particular, independent of the dimension of the truth finite element approximation space X .

There are a variety of ways in which the off–line/on–line decomposition and output error bounds can be
exploited. A particularly attractive mode incorporates the error bounds into an on–line adaptive process, in
which we successively approximate sN (µ) on a sequence of approximation spaces WN ′

j
⊂ WN , N ′

j = N02j —
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for example, WN ′
j

may contain the N ′
j sample points of SN closest to the new µ of interest — until ∆N ′

j
is less

than a specified error tolerance. This procedure both minimizes the on–line computational effort and reduces
conditioning problems — while simultaneously ensuring accuracy and certainty.

4.2. Method II

As already indicated, Method I has certain limitations; we discuss here a Method II which addresses these
limitations — albeit at the loss of complete certainty.

4.2.1. Formulation

To begin, we set M > N , and introduce a parameter sample SM = {µ1, . . . , µM} and associated reduced–
basis approximation space WM = span{ζm ≡ u(µm), m = 1, . . . , M} ; both for theoretical and practical reasons
we require SN ⊂ SM and therefore WN ⊂ WM . The procedure is very simple: we first find uM (µ) ∈ WM such
that a(uM (µ), v; µ) = f(v), ∀ v ∈ WM ; we then evaluate sM (µ) = �(uM (µ)); and, finally, we compute our upper
and lower output estimators as

s−N,M(µ) = sN (µ), s+
N,M(µ) = sN (µ) + ∆N,M (µ), (22)

where ∆N,M (µ), the estimator bound gap, is given by

∆N,M (µ) =
1
τ

(sM (µ) − sN (µ)) (23)

for some τ ∈ (0, 1). The effectivity of the approximation is defined as

ηN,M(µ) =
∆N,M (µ)

s(µ) − sN (µ)
· (24)

For our purposes here, we shall consider M = 2N .

4.2.2. Computational procedure

Since the error bounds are based entirely on evaluation of the output, we can directly adapt the off–line/on–
line procedure of Section 3.3. Note that the calculation of the output approximation sN (µ) and the output
bounds are now integrated: AN (µ) and FN (µ) (yielding sN (µ)) are a sub-matrix and sub-vector of A2N (µ) and
F 2N (µ) (yielding s2N (µ), ∆N,2N(µ) and s±N,2N(µ)) respectively.

In the off–line stage, we compute the u(µn) and form the Aq
2N and F 2N : this requires 2N (expensive) “a”

finite element solutions, and O(4QN2) finite-element-vector inner products.
In the on–line stage, for any given new µ, we first form AN (µ) and A2N (µ) then solve for uN (µ) and u2N (µ),
and finally evaluate s±N,2N(µ): this requires O(4QN2) + O(16

3 N3) operations and O(4QN2) storage.

The on–line effort for this Method II predictor/error estimator procedure (based on sN (µ) and s2N (µ)) will
require eightfold more operations than the predictor procedure of Section 4.1.

Method II is in some sense very naive: we simply replace the true output s(µ) with a finer–approximation
surrogate s2N (µ). (There are more obscure ways to describe the method — in terms of a reduced–basis ap-
proximation for the error — however there is little to be gained from these alternative interpretations.) The
essential computation enabler is again exponential convergence, which permits us to choose M = 2N — hence
controlling the additional computational effort attributable to error estimation — while simultaneously ensuring
that εN,2N(µ) tends rapidly to zero. Exponential convergence also ensures that the cost to compute both sN (µ)
and s2N (µ) is “negligible”. In actual practice, since s2N (µ) is available, we can of course take s2N (µ), rather
than sN (µ), as our output prediction; this greatly improves not only accuracy, but also certainty — ∆N,2N(µ)
is almost surely a bound for s(µ) − s2N (µ), albeit an exponentially conservative bound as N tends to infinity.
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Figure 3. A sample use case of the framework.

5. System architecture

5.1. Introduction

The numerical methods proposed are rather unique relative to more standard approaches to partial dif-
ferential equations. Reduced–basis output bound methods — in particular the global approximation spaces, a
posteriori error estimators, and off–line/on–line computational decomposition — are intended to render partial–
differential-equation solutions truly “useful”: essentially real–time as regards operation count; “blackbox” as
regards reliability; and directly relevant as regards the (limited) input–output data required. But to be truly
useful, the methodology — in particular the inventory of on–line codes — must reside within a special frame-
work. This framework must permit a User to specify — within a native applications context — the problem,
output, and input value of interest; and to receive — quasi–instantaneously — the desired prediction and cer-
tificate of fidelity (error bound). We describe such a (fully implemented, fully functional) framework here: we
focus primarily on the User point of view; see [18] for a more detailed description of the technical foundations
and ingredients.

5.2. Overview of framework

We show in Figure 3 a virtual schematic of the framework. The key components are the User, Computers,
Network, Client software, Server software, and Directory Service. Each User interacts with the system through
a selected Client (interface) which resides, say, on the User’s Computer; we shall describe briefly below two
Clients. Based on directives from the User, the Client broadcasts over the Network a Problem Label (e.g.
Fin3D), Output Label (e.g. Troot) Pair. This Pair is received by the Directory Service — a White Pages
— which informs the Client of the Simulation Resource Locator “SRL” — physical location on a particular
Computer — of a Server which can respond to the request. The Client then sends the Input (µ P–tuple Value)
to the designated SRL. The Server — essentially a suite of on–line codes and associated input–output utilities
— is awaiting queries at all times; upon receipt of the Input it executes the on–line code for the designated
Output Label and Input Value, and responds to the Client with the Output Value (sN ) and Error Bound Gap
(∆N ). The Client then displays or acts upon this information, and the cycle is complete.

Typically many identical (as well as different) Servers will be available, typically on many different Computers:
there are multiple instances of the on–line codes. The Directory Service indicates to the Client the least busy
Server so as to provide the fastest response possible. In some cases Clients may issue Input Value which
are in fact a vector of input values — that is, L P–tuples. In this case the Directory Service will distribute
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the calculations over multiple (e.g. as many as L) Servers — in particular Servers on multiple Computers
— so as respond more quickly to this multiple–input query. Our framework is clearly an example of “grid”
computing, similar to GLOBUS, NetSolve, and Seti@HOME, to name but a few. Indeed, we exploit several
generic tools upon which grid and network computing applications may be built; for example, we appeal to
CORBA3 (standardized by OMG4) to seamlessly manipulate the Server software as if it resided on the Client
Computer. We remark that our reduced–basis output bound application is particularly well–suited to grid
computing: the computational load on participating Computers (on which the Servers reside) is very light; and
the Client–Server input/output load on the Network is very light. The network computing paradigm also serves
very well the archival, collaboration, and integration aspects of standardized input–output objects.

5.3. Clients

We describe here two Clients: SimTEX, which is a PDF–based “dynamic text” interface for interrogation,
exploration, and display; and SimLaB, which is a MATLAB–based “mathematical” interface for manipulation
and integration. A third client has been developed: WebLaB; however it is a direct application of the MatLaB

client using the MatLaB Web Server Toolbox.

5.3.1. SimTEX

SimTEX combines several standardized tools so as to provide a very simple interface by which to access the
Servers. A particularly nice feature of SimTEX is the natural context which it provides — in essence, defining
the input–output relationship and problem definition in the language of the application. The SimTEX Client
should prove useful in a number of different contexts: textbooks and technical manuscripts; handbooks; and
product specification and design sheets.

The SimTEX Client consists of an authoring component, a display and interface component, and an “in-
termediary” component. The authoring component is — a standard in scientific typesetting — enhanced (via
hyperref) with a new acteq environment which permits the inclusion of actionable equations. The acteq
environment links an equation to a Problem Label, Output Label(s) and Input Value template. The output is
a PDF document: the PDF document serves as the display, graphics, and (rudimentary) interface component
of SimTEX. The PDF document contains a form which accepts the Input Values, and an “equal sign” button
which initiates the Client–Directory Services Client–Server dialogue described in the previous document. Upon
completion of the cycle, the PDF document is updated to display the values of the output and error bound for
the Input Values submitted; in cases in which multiple input values or outputs are selected, appropriate graphics
are presented using the Figure button. Finally, since PDF is not a programming language, and Client–Server
intermediary is required: a CGI script serves to parse the PDF form, communicate with the Server, and finally
update the Client.

As an example, we include here an actionable equation — the actual SimTEX user interface — for the
several outputs (the root temperature, tip temperature, volume) associated with the three–dimensional thermal
fin example:

3Common Object Request Broker Architecture — http://www.corba.org
4Object Management Group — http://www.omg.org
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The input list corresponds to the µ vector described in Section 2.2.1; the input values must lie in the parameter
domain D described in Section 2.2.1. The notation Output = F(Input) is a description of the input–output
relationship s(µ) implied by s = �(u(µ)). The actionable PDF version of this entire paper (in which is embedded
the actionable equation) may be found on our web site5; readers are encouraged to access this electronic version
of the paper and exercise the SimTEX interface, a brief users manual for which may be found again on our web
site6.

5.3.2. SimLaB

The main drawback of SimTEX is the inability to manipulate the on–line codes. SimLaB is a suite of tools
that permit Users to incorporate Server on–line codes as MATLAB functions within the standard MATLAB
interface; and to generate new Servers and on–line codes from standard MATLAB functions (which themselves
may be built upon other on–line codes). In short, SimLaB permits the User to treat the inputs and outputs of
our on–line codes as mathematical objects that are the result of, or an argument to, other functions — graphics,
system design, or optimization — and to archive these higher level operations in new Server objects available
to all Clients once registered in the Directory Service.

For example, to incorporate the Fin3D input–output relationship into MATLAB, we first generate the needed
MATLAB functions using a MATLAB script called st2m. This script, by default, generates automatically a
MATLAB function for each Output registered in the Directory Service. It is also possible to ask for a specific
Problem and Output using the following command in MATLAB: st2m --model fin3d --output Troot —
however it implies that one knows the name of the Problem and Output. Then, to set the values for the seven
components of the parameter vector, we enter
p.values(1).value=0.8;
p.values(1).name=’k1’;
p.values(2).value=2;
p.values(2).name=’k2’;
p.values(3).value=14;
p.values(3).name=’k3’;
p.values(4).value=3;
p.values(4).name=’k4’;
p.values(5).value=0.2;
p.values(5).name=’Bi’;
p.values(6).value=0.1;
p.values(6).name=’t’;
p.values(7).value=2.5;
p.values(7).name=’L’;

within the MATLAB command window. To determine the output value and bound gap for this value of the
7–tuple parameter, we then enter
[Troot, Bound_Troot] = fin3d_Troot( p )

which returns
Troot = 1.06869419906058
Bound_Troot = 1.06869419906058

It is also now possible of course to find all values of Troot greater than 1.05 for t in the range [0.1, 0.5] and all
other parameters fixed as in the list above. To wit, we enter
i=1;
while( i < 1000 )
p.values(6).value=0.1+i*(0.4)/1000;

5http://augustine.mit.edu/jfe/jfe.pdf
6http://augustine.mit.edu/guided tour.pdf
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Figure 4. Plot.

t(i)=p.values(6).value;
[o(i),e(i)] = fin3d_Troot( p );
i=i+1;

end
plot(x(o<1.05),o(o<1.05),’b’); hold on; grid on;
plot(t(o>=1.05),o(o>=1.05),’r’);
line([max(t(o>1.05)) max(t(o>1.05))], [1 1.1]); %% L1

which generates Figure 4. Where the line L1 splits the domain [0.1; 0.5] at tmax = max(t(o > 1.05)) = 0.1380
between the values of Troot greater than 1.05 (t < tmax) and the values of Troot less then 1.05 (t ≥ tmax).
To be more certain that Troot was truly greater than 1.05, we could easily ask for those values of t for which
sN − ∆N ≥ 1.05; again readily effected by a simple function call. Obviously, once the on-line code is within
the MATLAB environment, we have the full functionality of MATLAB at our disposal; and the rapid response
of the reduced–basis output bounds maintains the immediate response expected of an interactive environment,
even though we are in fact solving — and solving reliably — three-dimensional partial differential equations.

5.4. Overview of the framework

5.4.1. Introduction

The main current trend in computing and scientific computing is Distributed Objects — see for example
the .NET, Mono, Globus, Netsolve, Seti@Home technologies and as mentioned earlier, we use Corba as the
underlying technology for our Framework.

Corba is the Distributed Objects technology developed and standardized by the OMG. As envisioned by
Corba, Distributed Objects are the melding of concepts from two paradigms, Client-Server (or more precisely
Distributed Computing) and Object Orientation (OO) with some slight differences: (i) a Client knows an object
by its interface; (ii) objects are not always local with respect to their Clients; (iii) dynamic composition may
compose objects into new application; (iv) objects hide many of the underlying differences (between Client and
Server) in architecture through encapsulation.

The combination of the Client-Server and OO models gives us the best features: ability to distribute risk
(fault tolerance), rightsizing system development with small composable subtasks and having looser coupling
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thanks to well-defined integration and interfaces. Another advantage is also that we can have much more
complicated topologies — see, for example, Figure 3 — than typically found in the Client-Server paradigm: a
Client request computation from a Server which is itself a composition of several other Servers; in this context,
our requested object is a Client-Server — a Server for the Client and a Client for the Servers composing it.

It is interesting to note that although there is generally a many-to-one relation for Client to Server, Clients
may want to have access to more than one Server for a given purpose. In the overview of our Framework
we have seen that it was effectively the case (see Fig. 3). Indeed, if a single source can be beneficial, it can
also be expensive: risk of central outage (single point failure), too little specialization (resource utilization is
suboptimal) long queues for services and large distances over which products chip and so on.

Development costs may rise also: distribution introduces more difficult problems such as, for example, the
logistics of coordinating multiple sites. Two other particularly serious issues are the network latency and the
scalability. They are difficult to determine beforehand and they can undermine gravely the deployment of the
Framework.

Those issues are partly addressed by the numerical methods proposed (see Sect. 5.1). Only partly because
the network latency is a difficult issue and reducing it is by no means easy — see the Akamai technology7.
And regarding the scalability, the numerical methods proposed are not sufficient — although lots of problems
(scheduling, monitoring, ...) arising when using more conventional methods are of no concern in the Reduced-
Basis Output Bound methods context — therefore an adequate design for our Framework is also a requirement
to ensure scalability.

The Framework relies on a library, St
8, which sits on top of CORBA (see Fig. 5) and its associated services.

Three Clients — SimTEX, SimLaB, WebLaB— have been developed with St.

5.4.2. The main actors of St

The design of St shares similar concepts to the one that can be found in modern Graphical User Interface
(GUI) libraries: the SApplication class and the SSimget class and their respective subclasses. Corba is
a complex middle-ware specification and through simple coarse grain interfaces and high level concepts St

encapsulates all Corba aspects — standard Corba calls or Corba Services — inside its classes. In the
following section, we shall describe briefly some aspects of the Framework.

SApplication. As shown in Figure 5, St sits on top of Corba and the Corba Services: it encapsulates all
Corba and associated components into a small set of classes with well defined behavior. Central to this design
is the St::SApplication which encapsulates initialization of Corba, determines the available services and,
in Server mode using St::SApplicationServer subclass, drives the execution flow of the application through
its St::SApplicationServer::run() method which is basically an infinite loop waiting for new requests from
Clients, see Section 5.5.1. A SApplication, and subclasses, follows the Singleton pattern to ensure that there ex-
ists only one instance of this class per process. It is possible to check for the availability on the Directory Service
Server (see Fig. 3) of three standard Corba Services through the member functions bool hasNamingService(),
bool hasTradingService() and bool hasImplementationRepository() and have access to each to these Ser-
vices through there associated class, SNamingService, STradingService and SImplementationRepository.

In practice, accessing the Corba Services directly from a Client or a Server is neither needed nor recom-
mended, it is usually taken care of by the objects that represent the Simulation objects, the Simgets.

An issue arising inevitably in Distributed Computing is Security. The most basic Security action that can be
taken is related to the protection of the computers running the Servers: the processes associated to the Servers
must have the lowest permissions on the system. On a Unix system for example, such a process would belong
to the nobody user and group. By doing so, if someone with ill-intent manages to enter the operating system
using those processes, he cannot do any harm. That is the least that has to be done. Unfortunately, ill-intended
people can still do harm to the Framework. In order to avoid this, we use an authentication layer on top of
the Framework using the Secure Sockets Layer (SSL). It has also the advantage to have some statistics on the

7http://www.akamai.com
8Simulation Toolkit.
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Figure 5. St and Corba.

Figure 6. The Simget collaboration diagram.

Framework usage. The inclusion of the MicoSec which is an implementation of the Corba Security Services
(CORBASec) Level 2 version 1.79 is underway. The current and future security features are/will be built-in
SApplication.

SSimget. As described in the collaboration diagram (Fig. 6), a Simget is a SObject, base class for all St

objects, and also a Corba object through the interface POA St::coSimget. It contains a reference to the
reference of the SApplication running in order to have access to the Corba Services to be able to register
itself automatically in each of them, provided that some of the Services are available. A Simget is a rather

9http://www.micosec.org/
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complex object which is following the Composite pattern: it can be either a standalone computational object
or a composite object of Simgets.

The constructor of the SSimget class and subclasses follows the prototype:

#include <SSimget.hpp>
SSimget( SSimget* parent, const char* name );

class A: public St::SSimget
{
public:
A( St::SSimget* parent, const char* name )
: St::SSimget( parent, name )

{}
};

where parent is the parent Simget and name is the name of the object passed to SObject — every SObject has
a name. Then, using this composite or tree, it is possible to define a directory of Simgets in the various Corba

Services. The name of the Simget and its relationship with the other ones will be used to define its location in
the Services. For example, if the following code is executed:

St::SApplicationServer *app = new St::SApplicationServer;
A * a = new A( 0, "a");
A * b = new A( a, "b");
A * c = new A( b, "c");
A * d = new A( a, "d");
app->setMainSimget( a );

then the Naming Service will contain the following references

console > nsadmin -ORBNamingAddr inet:<directory service computer>:<port of the service>
> ls
a.a/
> ls a.a
b.b/
d.d/
> ls a.a/b.b
c.c/

nsadmin is a tool provided by Mico that allows to browse the Naming Service using the UNIX-like tools like
ls or rm.

The SSimget is very general and is the base class for all Simgets. In the context of the Reduced-Basis
methods and the Framework we built for them, we added other concepts which could be used to other kind of
problems. First, we defined a model which is an object describing the model or problem being considered, for
example Fin3D. The associated class is St::SModel. Then, we defined a model component which represents
a general concept of model part. The associated class is SModelComponent. Finally, various subclasses of
SModelComponent arise like SModelOutput, SModelOutputSet, and SModelField which are associated with the
computation respectively of one output and associated error estimation if available, of a set of different outputs
and associated error estimations, or a field — say a Finite Element field associated with a Finite Element
simulation. Each of these objects are CORBA objects and follow a relatively simple IDL10 interface that allows
their remote manipulation from a Client program. Here is the IDL interface for a SModelComponent

10Interface Definition Language.
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interface coModelComponent: coSimget
{
//! get the name of the Model
string getModelName();

//! set the new parameter set
void setParameterSet( in coParameterSeq pset );

//! set a new Range
void setRange( in coRangeSeq range );

};

and SModelComponent is defined as a subclass of SSimget which implements the interface coModelComponent.
The other classes, SModelOutput, SModelOutput and SModelField, have similar simple CORBA interfaces with
further specification. For example a SModelComponent and subclasses have the following constructor

SModelComponent( SModel* parent, const char* name );

which means that a model component has to have a model as a parent Simget. The relationship model/component
is enforced through this explicit constructor. For an implementation example see Section 5.5.1.

SMonitor. While monitoring is not an important issue for our Framework since we deal with black-box real-
time response simulations, it is interesting however to collect statistics or to provide such a tool for future
Simgets that will need monitoring. Monitors are Clients and Servers for the Framework, they are implemented
using the Observer and Memento design pattern. The base class for monitors is SMonitor which encapsulates
the commonalities for all monitors which are here the interfaces following the above-mentioned design patterns.

The abstraction is that a Simget sends messages stored in a Memento upon special Events to the current
Observers/monitors of the Simget. Monitors are Simgets which are Clients to the Simulation Simgets. Here is
a short code snippet to describe how it works

St::SApplicationServer* app = new St::SApplicationServer;
St::SMonitorOutput* mon = new St::SMonitorOutput( 0, "monitor", SYSLOG );
mon->setMonitor( St::MONITOR_TIME | St::MONITOR_RESULT | St::MONITOR_PARAMETERS );
app->setMainSimget( mon );
app->run();

the second line creates a monitor for all Simgets in the Directory Services which will use syslog to log events
like computation time, results from the Simgets and parameters passed to the Simgets. In order to create a
model specific monitor for the Fin3D model and its outputs, we use the following code for example:

St::SApplicationServer* app = new St::SApplicationServer;
St::SModel* model = new SModel( 0, "fin3d" );
St::SMonitorOutput* mon = new St::SMonitorOutput( fin3d, "monitor", SYSLOG );
mon->setMonitor( St::MONITOR_TIME | St::MONITOR_RESULT | St::MONITOR_PARAMETERS );
app->setMainSimget( model );
app->run();

A monitor can just log events but it provides also a CORBA interface that allows Clients like SimTEX for
example to access statistics of the Simget being called. Note that this Monitor design pattern is not only used
by St to provide monitoring of the Simget but it is also used for all kind of objects that requires monitoring like
solvers, preconditioners, iterative processes in general. The monitor design pattern is a non trivial application of
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several design patterns and is a reusable component/strategy in scientific computing libraries. We just provided
an application in the context of the Framework and Distributed Computing.

XML. XML11 is another trendy technology and it is often associated with Distributed Computing — see
SOAP12 or XML-RPC13. The eXtended Markup Language is used in the Framework as a meta-data language
to describe the Simgets. If it exists at the creation of a Simget, an associated XML file is loaded and is available
through the CORBA interface of the Simget. In the current implementation, the XML data contain only static
information like the name of the Simget, the model name, some parameter set data — like the name of the
parameters, their minimum and maximum values, and a description — and a description of the Simget. Here
is a simple XML example:

<!DOCTYPE St>
<St>
<SModelOutput name="Troot" parent="fin3d" model="fin3d">
<Author firstname="Christophe" lastname="Prud’homme"></Author>
<Basis db="fin3d_Troot.bb" N="20" Nused="20"></Basis>
<ParameterSet name="D" dimension="7">
<Parameter ub="10" lb=".1" name="k1">k1</Parameter>
<Parameter ub="10" lb=".1" name="k2">k2</Parameter>
<Parameter ub="10" lb=".1" name="k3">k3</Parameter>
<Parameter ub="10" lb=".1" name="k4">k4</Parameter>
<Parameter ub="1" lb=".01" name="Bi">Bi</Parameter>
<Parameter ub="3" lb="2" name="L">L</Parameter>
<Parameter ub=".5" lb=".1" name="t">t</Parameter>

</ParameterSet>
<Description>
Troot computes the temperature at the root of the 3D Thermal Fin.

BlackBox: O(Q^2) in compliant case.

See http://augustine.mit.edu/fin3d_1/fin3d_1.pdf for more details.
</Description>

</SModelOutput>
</St>

This is particularly helpful for automatic generation of Clients for the Framework. For example SimLaB uses
this feature to automatically generate .m files for the Simgets registered in the Directory Service (see Sect. 5.3.2).
Without having to communicate with the Server, the Client can for instance provide documentation about the
Simget, and checks that the parameter set which will be sent to the Server is contained in D (see Sect. 3.1).

In the future an automatic C++ code generator for the Clients will be implemented using the XML meta-
data provided by the Simgets registered in the Directory Service. At present only SimLaB does automatic code
generation using the XML meta-data.

5.5. A simple Client/Server implementation in C++

In a Client-Server paradigm, we have a Server side and a Client Side. In the next sections, we are going
to present a sample code of a Server running the Simget computing the temperature at the root of the 3D
thermal fin and one possible — while very simple — Client code in C++ accessing the code and the equivalent

11http://www.w3.org/XML/
12http://www.w3.org/TR/SOAP/
13http://www.xmlrpc.com/spec
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in MatLaB using SimLaB in order to compare the amount of work needed. Some knowledge of C++ is
required, however some of the general ideas and concepts appear in the code.

5.5.1. Server side

First look at what the main program looks like from the server point of view:

#include <SApplicationServer.hpp>
using namespace St;

int main(int argc, char** argv)
{
SCommandLineArguments::init( argc, argv );
SApplicationServer* server = new SApplicationServer();

server->run();
}

The line 6 initializes the command line parsing system. Then, we define the St Server application using
the SApplicationServer class. Unfortunately this example does nothing but running forever. Indeed the
server->run() is an infinite loop, where the server is waiting for new requests.

Now we need to feed the server with Simgets.

SApplicationServer* server = new SApplicationServer();
SModel* fin3d = new SModel( 0, "fin3d");
server->setMainSimget( fin3d );
server->run();

With the two new lines 2 and 3, we have created a possibly new Model in the St Services (Naming and
Trading). First we define the "fin3d" model — second argument — which has no parent in the current
SApplicationServer — first argument. Again this server is not very helpful, since it does not do any real
computation.

We can add for example a Simget which compute the temperature at the root of the three-dimensional
thermal fin — see line 2 in the next listing.

SModel* fin3d = new SModel( 0, "fin3d");
SModelOutput* troot = new Troot( fin3d, "Troot");
server->setMainSimget( fin3d );

The work in the main program is finished and doesn’t need further work. when server->run() is executed the
server will provide the Troot Simget associated with the model fin3d.

Now let us see what the Troot looks like:

#include <SModelOutput.hpp>
using namespace St;
class Troot: public SModelOutput
{
public:
Troot( SModel* parent, const char* name ): SModelOutput( parent, name ) {<snip> }
virtual SOutput* run( SParameterSet const& pset )
{
SOutput* output = new SOutput;
// do the computation here for the parameter set pset
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. . .
output->output = <prediction value>;
output->error = <associated error estimator value>;
return output;

}
};

The last step is the execution of the Server:

fin3d_Troot --server augustine.mit.edu --daemon

The --server option tells the SApplicationServer to register the Simgets in augustine.mit.edu. Whereas
the --daemon tells SApplicationServer to detach from its parent process and run forever in the background.

Under Unix/Linux, a database and the init.d system are used to start and stop automatically the Servers
used and registered on one computer. The advantage is that if a computer containing Simgets is rebooted or
shutdown for some reason then the Simgets will be cleanly shutdown. Indeed, one of the major difficulty with
Distributed Computing is the fact that the Object have external references and they need to be deleted properly
if the corresponding is being shutdown.

Looking back at the example presented above, it would seem that it is possible to have only one Simget per
process. Recall the tree structure of the SObject/Simget classes plugged into SApplicationServer using its
setMainSimget()member function, then enabling new Simgets in the same process as the one presented earlier
is a one-liner per Simget provided that each Simget has been implemented like Troot for example.

SModel* fin3d = new SModel( 0, "fin3d");
SModelOutput* troot = new Troot( fin3d, "Troot");
SModelOutput* ttip = new Troot( fin3d, "Ttip");
SModelOutput* volume = new Troot( fin3d, "Volume");
server->setMainSimget( fin3d );

The code shown above adds two Simgets to the Framework — in this case the temperature at the tip of the 3D
fin and the volume of the 3D fin. As one can see, in one process we can register one or more components for a
given Model in the various services available and the associated code and programming time are reduced.

A note on parallelism. Finally let us present a possible extension for the Server part: the various registered
Simgets in one process are often independent from each other — eventually a Simget could depend on the
computation done by another one. For example a Simget providing a dimensional Troot would depend on the
non-dimensional Troot counterpart: this kind of dependency requires generally simple algebra while the non-
dimensional Troot would require an Online Code as described in Sections 3 and 4. The Simget could be accessed
by several users at the same time, and it appears that exploiting parallelism is important in this case to make
sure that the Framework is responsive enough with respect to multiple Clients and provide Real-Time response
for each Client. We implement parallelism at two levels on the Server side. Firstly, we use a multi-threaded
CORBA implementation — MICO/MT14 which is about to be or already merged with MICO15 — that enables
us to answer “simultaneously” to concurrent requests. Secondly, we implement thread-safe Simgets so that when
the Client asks for multiple evaluations — say a thousand randomly chosen parameters — we use the interface
of SModelOutput which provides multiple parallel evaluations — see SModelOutput::run(MultiParameter) in
the next section. In order to control the level of parallelism for many outputs, the SApplication base class
provides a way of defining the number of possible multiple threads.

SApplicationServer* __app = new SApplicationServer;

14http://micomt.sf.net
15http://www.mico.org
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// tell thread-aware classes (SModelOutput for example)
// and their subclasses to use up to 3 threads for
// many outputs evaluations
__app->setNumberOfProcessors( 3 );

The Framework provides a simple way to allow multi-threaded classes. The developer has to use the class
SThread as the base class for a multi-thread enabled class. Here is an example:

#include <iostream>
#include <SThread.hpp>

class A: public St::SThread
{
public:
// a possible default constructor
A( int __no = 1 ): St::SThread(), _M_no( __no ) {}

protected:
// run() method has to be re-implemented
void run()
{
St::SMutex __mutex;
if ( __mutex.tryLock() )
{
std::cerr << "run thread number " << _M_no << std::endl;

}
else
{
;//locking did not work

}
// __mutex.unlock() is called by destructor automatically
// so no need to call it here
}

private:
int _M_no;

};

Note the utilization of the mutex class SMutex — which is provided by SThread.hpp — to ensure that the
output will be written sequentially in the console instead of having both threads outputs being mixed up. Then
the controller program can do the following:

int main( int argc, char** argv )
{
St::SCommandLineArguments::init( argc, argv );
St::SApplication* __app = new St::SApplication;
// can either use NPROCS environment variable or
// SApplication::setNumberOfProcessors( n ) to set the number of threads
int __nprocs = __app->getNumberOfProcessors();
A** __threads = new A*[ __nprocs ];
for( int __i = 0; __i < __nprocs; ++__i )
{



A MATHEMATICAL AND COMPUTATIONAL FRAMEWORK 769

// start a new thread and call thread1.run()
__threads[ __i ] = new A( __i );
__threads[ __i ]->start();

}
// wait for all threads to finish
for( int __i = 0; __i < __nprocs; ++__i )
{
__threads[ __i ]->wait();

}
}

The environment variable NPROCS controls the number of threads than can be used, it is overridden by the
SApplication::setNumberOfProcessors( int ) member function. When running the above code, we get the
following expected console output:

console > export NPROCS=4
console > test_thread
run thread number 0
run thread number 1
run thread number 2
run thread number 3

The various classes handling the Online Codes computation uses SThread which eases the use of multi-thread
programming by encapsulating all the pthread library.

To summarize, parallelism is achieved at two levels on the Server side: at the ORB level using a multi-
threaded ORB and at the Simget level. Note that it is transparent to the Framework user except for the part
he has to provide the number of threads and that his code has to be thread-safe in order to be used in this
multiple threads (> 1) environment. If it is not thread-safe then the Framework user can still fall back to a
single thread environment which is the default and conservative behavior. There is a Client parallel counterpart
which is discussed in the next section which uses yet another feature of the Framework.

5.5.2. Client side

On the client side, the Client developer has access to the Naming and Trading services in order to find the
object he is looking for. In the next listing, we present a client using the Naming service. The way the Simget
in general are stored in the Naming service resembles a directory tree where / is the root of the tree. Under the
fin3d model appears the Troot, Ttip and Volume Simgets. In the following example, we retrieve a reference
to the Troot Simget and use its interface to do some computations:

#include <SApplication.hpp>
#include <SModelOutput.hpp>
using namespace St;

int main(int argc, char** argv)
{
SCommandLineArguments::init( argc, argv );
SApplication* client = new SApplication();

SModelOutput_var fin3d_troot = client->resolve( "fin3d/Troot" );
fin3d_Troot->setNewParameterSet( pset );
fin3d_Troot->setRange( range );
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fin3d_troot->run( MultiParameter );

coOutputArray_var results = fin3d_Troot->getOutputs();
for( ULong __i = 0;__i < __output_pl->length();++__i)
{
std::cerr << "output( " << __i << ")=" << result( __i ).output << std::endl;
std::cerr << "error( " << __i << ")=" << result( __i ).error << std::endl;

}
}

The only non standard C++ statement is the call to client->resolve()which will lookup in the naming service
in order to get an handle on the corresponding simulation which was defined earlier. The other statements are
classical object manipulation, setting the parameter set, set the range if needed, run the simulation and then
retrieve the results.

Writing a client for the framework is relatively easy task, however providing a graphical user interface to
the client code certainly comes with some efforts, that one of the reason why we based SimTEX and SimLaB

Clients upon existing standards(MatLaB and PDF) — to alleviate the work in programming user interfaces.
Now it remains to execute the Client program:

fin3d_Troot_client --server augustine.mit.edu

This command line tells the Client to contact augustine.mit.edu for Simget lookups.

A note on parallelism. Parallelism is/can be also implemented on the Client side. However it is not an
automatic builtin feature of the Client. The Framework allows to implement a Client which takes advantage
of certain of its properties. The starting point is that, as mentioned in the previous section, the ORB is
multi-threaded and recall that several instances of the same Model/Simget can exist in the CORBA Services
— namely the Naming or the Trading Services — so with those two features one can build a Client which
access several instances of the same Simget or several different Simgets at the same time in different threads.
The SThread class presented in Section 5.5.1 can be used to implement such a multi-threaded Client. Another
important part here is the load balancing system of the Services which ensures that the least used instance will
be selected by the Service to answer each new request.

To summarize the parallelism aspects of the Framework, both Server and Client sides, we achieved a three
levels parallelism which ensures real-time response — with the certificates of fidelity developed in the first
sections of the paper — in the context of many evaluations and many users.

6. Conclusion

This framework is likely to be extended in the next few months, and will certainly enjoy some improvements.
It has already been tested on many problems already available online on our web site
http://augustine.mit.edu. The component-wise design of the overall system is very flexible, scales well as
the number of Online Codes increases and is an elegant solution as a platform for engineering design, research
and education. Regarding the mathematical framework, it has been extended to several problem categories:
non-coercive partial differential equations, parabolic equations, generalized eigenvalue problems, non-symmetric
and non-compliant cases, see [19].
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