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ABSTRACT

Understanding the generalization properties of deep learning models is critical for
successful applications, especially in the regimes where the number of training
samples is limited. We study the generalization properties of deep neural networks
via the empirical Rademacher complexity and show that it is easier to control the
complexity of convolutional networks compared to general fully connected net-
works. In particular, we justify the usage of small convolutional kernels in deep
networks as they lead to a better generalization error. Moreover, we propose a
representation based regularization method that allows to decrease the generaliza-
tion error by controlling the coherence of the representation. Experiments on the
MNIST dataset support these foundations.

1 INTRODUCTION

In the recent years deep neural networks have been used to achieve state-of-the-art results in image
recognition, speech recognition and many other fields (LeCun et al., 2015). An important property
of any learning method is its generalization error that informs us how well the performance on
the training set is aligned with the performance on the testing set. An important measure of the
generalization error is the empirical Rademacher complexity (ERC) (Bartlett & Mendelson, 2002),
which we consider in this work. The smaller the ERC, the better is the generalization error.

Previous works have bounded the ERC in terms of the network’s width and depth (Bartlett &
Mendelson, 2002), in terms of the norm of the weight matrices (Neyshabur et al., 2015) or in terms
of margin bounds (Sun et al., 2015). Another line of works showed how extensions of the dropout
can reduce the ERC in the network (Wan et al., 2013; Huang et al., 2015a). Note that the ERC is not
the only measure for generalization error. See Shalev-Shwartz & Ben-David (2014); Xu & Mannor
(2012); Giryes et al. (2015); Huang et al. (2015b).

The main contributions of this work are the following:

• First, we compare the ERCs of a fully connected deep network and a convolutional neural
network (CNN) with weight norm regularizations. We show that a smaller size of convolu-
tional filters reduces the (upper bound of the) ERC.

• Second, we propose an alternative approach for bounding the ERC of deep networks by
controlling the geometry of the representation in the last layer. In particular, we show that
we can control the ERC of a deep network by enforcing the representation of the data at
the last layer to have a small coherence.

1.1 BACKGROUND

We consider deep neural network for binary classification. The binary classifier is given as g(x) =
vT f(x) ≶ 0, where v ∈ RML represents the normalized linear classifier operating on the output of
the deep network with input vector x ∈ RN . The function f : RN → RML represents a deep neural
network with L layers. It is computed as

f(x) = fL(x) =
[
WT

Lf
L−1(x)

]
+
, f i(x) = [WT

i f
i−1(x)]+ , i = 1, . . . , L , (1)
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where f0(x) = x, [·]+ = max(·, 0) represents the element-wise ReLU non-linearity, and Wi ∈
RMi×Mi−1 , i = 1, . . . , L, are the weight matrices. Note that M0 = N .

In CNN the weight matrices are structured. In particular, assuming that signals have only one
“spatial” dimension, the weight matrix Wi ∈ RMi×Mi−1 is implicitly defined by the tuple
(Ki, ai, si), where Ki ∈ Rai·ki−1×ki is a kernel matrix and typically ki � Mi. ki represents
the number of filters of the kernel Ki (note that k0 = 1), ai ∈ N+ represents the filter size or
the “receptive field” of the filter and si ∈ N+ represents the “stride” or sub-sampling factor of the
convolutional layer.

We will denote the weight matrix associated with the convolutional layer as WC
i = {Ki}kl, (k, l) =

(1 + j · si, 1 + j, 1 + j · ki), where j = 0, . . . , (Mi−1/ki−1 − ai)/si and {·}kl denotes the matrix
block at row index k and column index l. The output of the i-th layer is then [(WC

i )
T f i−1(x)]+.

We will consider the ERC as a proxy to the generalization error of deep networks. Assume that
x1, . . . ,xm are independent samples drawn from a distribution P defined on RN , and let G be a
class of functions that map RN to R. The ERC of G is

R̂m(G) = Eξi∈{±1}

[
1

m
sup
g∈G

∣∣∣∣∣
m∑
i=1

ξig(xi)

∣∣∣∣∣
]
, (2)

where ξi ∈ {±1}, i = 1, . . . ,m are independent Rademacher distributed random variables. See
Bartlett & Mendelson (2002) for a detailed description of the relation between the ERC and the
generalization error.

2 WEIGHT NORM BASED REGULARIZATION

In this section we first review the recent result by Neyshabur et al. (2015) that bounds the ERC for
deep networks with the norm of the weight matrices. We only report the most relevant result for our
discussion. The class of binary classification networks with L layers is given by

GL,WL
=

{
g : ‖v‖2 = 1,

L∏
i=1

‖Wi‖F ≤WL

}
. (3)

Theorem 1 (Theorem 1 in (Neyshabur et al., 2015)). The ERC of a function class GL,WL
as defined

in (3) can be upper bounded by

R̂m(GL,WL
) ≤ 1√

m
2L+

1
2WLmax

i
‖xi‖2 . (4)

We provide a tighter version of this result for CNNs, where WC
i is defined via (Ki, ai, si):

GCL,KL
=

{
g : ‖v‖2 = 1,

L∏
i=1

‖Ki‖F ≤ KL

}
. (5)

Theorem 2. The ERC of a function class GCL,KL
as defined in (5) can be upper bounded by

R̂m(GCL,KL
) ≤ 1√

m
2L+

1
2KL

L∏
i=1

√
ai

√
ML

kL
max
i
‖xi‖2 . (6)

The proof will be presented in an extended version of this paper. Next, we provide a few remarks
and comparisons between the ERCs of fully connected and convolutional networks:

• We first compare the factors
∏L
i=1 ‖Wi‖F ≤ WL in (4) and

∏L
i=1

√
ai‖Ki‖F ≤

KL

∏L
i=1

√
ai in (6). The direct application of Theorem 1 to a CNN problem provides

a looser bound compared to our proposed Theorem 2 because in a CNN, ‖Wi‖F =√
Mi−1/ki−1−ai

si
‖Ki‖2,2. For example, if we consider a typical setup with ai = 3 and

si = 1, then ‖Wi‖F =
√
Mi−1/ki−1 − 3‖Ki‖F �

√
3‖Ki‖F as Mi−1/ki−1 − 3� 3.
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• Assuming that KL is fixed, the factors
√
ai in equation (6) imply that smaller filter sizes

reduce the ERC and lead to better generalization. This theoretical result is aligned with the
designs used in the recent state-of-the-art CNNs, where filters of size 3 × 3 are used. See
Simonyan & Zisserman (2014) or He et al. (2015).
• The bounds in Theorems 1 and 2 exhibit the same convergence rateO(1/

√
m) and depend

in the same way on the training set. The bound in Theorem 2 contains an additional term√
ML/kL, where ML is the dimension of the representation in the last layer and kL is the

number of filters in the last layer. Note that KL

∏L
i=1

√
ai
√
ML/kL � WL for a typical

CNN. Note also that ML can be decreased by using larger sub-sampling factors si in the
convolutional layers.

• Finally, we note that both bounds include the factor 2L+
1
2 , which implies that ERC of a

deep network grows exponentially with the depth even whenWL andKL are bounded. For
small values of L this is not a concern, however, recent practical results imply that networks
with L > 100 can be trained successfully (He et al. (2015)). Therefore, there seems to be
a gap between theory and practice, at least for very deep networks.

3 REPRESENTATION BASED REGULARIZATION

In this section we propose an alternative approach for bounding the ERC that focuses on the co-
herence of the representation at the output of the last layer and is independent of the number of
layers:
Theorem 3. Assume that the last layer of the network obeys: dmin|xTi xj | ≤ f(xi)

T f(xj) ≤
dmax|xTi xj | for any xi,xj , where dmax, dmin > 0 are constant. Then

R̂m =
1

m
Eξi∈{±1}

∑
i

dmax‖xi‖22 +
∑
i 6=j

1ξi=ξjdmax|xTi xj | −
∑
i 6=j

1ξi 6=ξjdmin|xTi xj |

 . (7)

Therefore, we can conclude that keeping dmax small can reduce the ERC and lead to better general-
ization. We have tested this idea empirically by adding a regularization term λ ·

∑
i 6=j f(xi)

T f(xj),
where λ > 0 is a parameter, to the standard cross-entropy loss when training a CNN on the MNIST
dataset. Figure 1 shows that this term improves the generalization error.

Figure 1: We compare training and testing accuracy of CNNs trained without (red) and with (blue)
the proposed regularization term. The network architecture: Conv(32 × 5 × 5), Pool(2 × 2),
Conv(32 × 5 × 5) , Pool(2 × 2), Full(256), Softmax(10). Left plot shows the behaviour of train-
ing and testing accuracies when training with 5000 samples as a function of the number of training
epochs. Right plot show the testing accuracies as a function of the number of training samples. We
see that the proposed regularization term significantly reduces the generalization error, especially
when the number of samples is small.
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