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Structure of DNA-CMG-Pol epsilon elucidates the
roles of the non-catalytic polymerase modules in
the eukaryotic replisome
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Patrik Eickhoff1, Anne Early2, Andrea Nans3, Alan M. C. Cheung 4,5, John F.X. Diffley2 & Alessandro Costa1

Eukaryotic origin firing depends on assembly of the Cdc45-MCM-GINS (CMG) helicase. A

key step is the recruitment of GINS that requires the leading-strand polymerase Pol epsilon,

composed of Pol2, Dpb2, Dpb3, Dpb4. While a truncation of the catalytic N-terminal

Pol2 supports cell division, Dpb2 and C-terminal Pol2 (C-Pol2) are essential for viability.

Dpb2 and C-Pol2 are non-catalytic modules, shown or predicted to be related to an exo-

nuclease and DNA polymerase, respectively. Here, we present the cryo-EM structure of the

isolated C-Pol2/Dpb2 heterodimer, revealing that C-Pol2 contains a DNA polymerase fold.

We also present the structure of CMG/C-Pol2/Dpb2 on a DNA fork, and find that poly-

merase binding changes both the helicase structure and fork-junction engagement. Inter-

subunit contacts that keep the helicase-polymerase complex together explain several cellular

phenotypes. At least some of these contacts are preserved during Pol epsilon-dependent

CMG assembly on path to origin firing, as observed with DNA replication reconstituted

in vitro.
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DNA replication requires tight coordination between DNA
unwinding and synthesis within the replisome1. In
eukaryotic cells, the replisome is assembled in three dis-

tinct steps leading to origin licensing, DNA untwisting, and
replication fork establishment2–5. First, the minichromo-
some maintenance protein complex (MCM) helicase, a ring-
shaped ATPase, is loaded onto origins of replication as an inac-
tive double hexamer that encircles duplex DNA6–9, in a process
that involves ATP hydrolysis by MCM10,11 and requires loading
factors ORC, Cdc6, and Cdt112. Second, helicase activators Cdc45
and GINS are recruited in a regulated manner, mediated by
targets of cyclin-dependent kinase (CDK) phosphorylation, Sld2
and Sld3, and by the replisome-maturation scaffolds, Dpb11 and
Sld7. MCM phosphorylation by DDK allows Cdc45-Sld3-Sld7
binding to the double hexamer, dependent on phospho-MCM
recognition by Sld313–18. GINS is recruited onto the MCM
together with the leading-strand polymerase Pol epsilon,
phospho-Sld2 and Dpb11, together forming the pre-loading
complex19. Assembly of a stable Cdc45-MCM-GINS (CMG)
holo-helicase requires a change in the MCM ATPase state, with
release of ADP and binding of ATP, concomitantly promoting
separation of the double hexamer into single hexamers and
untwisting of duplex DNA2. The third step in origin activation is
replication fork establishment, which depends on the recruitment
of additional firing factors Mcm10, RPA, and Pol alpha13,20.

The organizing center of the replisome is the MCM21, made of
six homologous polypeptides that all share the same domain
organization. MCM proteins form an N-terminal duplex DNA-
interacting collar and a AAA+ (ATPase associated with various
cellular activities) tier, featuring bipartite active sites with catalytic
residues contributed by neighboring subunits22. Work on Dro-
sophila CMG revealed that the helicase motor is functionally
asymmetric, as certain ATPase centers (Mcm2-5 and Mcm5-3)
are strictly required for DNA unwinding, while other sites
(Mcm6-4 and Mcm4-7) can be inactivated with minimal effect on
helicase activity23. Electron microscopy (EM) studies of both
Drosophila and yeast CMG have revealed that Cdc45 and GINS
(Sld5, Psf1, Psf2, Psf3) bind to the side of the MCM ring by
engaging the N-terminal tier of MCM and stabilizing the Mcm2-5
and Mcm5-3 interfaces, respectively24–26.

Reconstitution studies showed that the leading-strand poly-
merase Pol epsilon forms a stable complex with the CMG21,27, by
binding to the ATPase tier of MCM via a non-catalytic domain28.
Hetero-tetrameric Pol epsilon plays a key role in replisome
maturation and origin activation19,29,30. In this protein assembly,
Dpb3 and Dpb4 are ancillary, DNA-binding subunits containing
a histone fold31. Pol2 is the catalytic subunit, with the N-terminal
half containing DNA synthesis/exonuclease functions32. The C-
terminal half of Pol2 (C-Pol2) has been predicted to contain a
second polymerase fold, which has become inactivated during
evolution33, and is followed by a zinc-finger appendix34. Notably,
the catalytic domain of Pol epsilon is dispensable for viability
(though cells are sick), while the non-catalytic C-Pol2 is essen-
tial35,36. Dpb2, the second largest subunit of Pol epsilon, is also
essential for viability and contains an inactivated calcineurin-like
exonuclease fold34 decorated by an N-terminal appendix struc-
turally related to the AAA+ ATPase lid domain37. It is clear that
non-catalytic modules in Pol epsilon are required for helicase
activation and origin firing13,35,38, although the molecular basis is
poorly understood. Furthermore, what role these inactivated
domains play during fork progression is unclear1. To explain the
functions of the leading-strand polymerase during DNA repli-
cation, we determined the structure of the non-catalytic modules
of Pol epsilon by cryo-EM and biochemically assayed their DNA-
binding properties. We have also determined the structure of Pol
epsilon bound to a DNA-fork-engaged CMG complex to gain

insights into the architecture of the replisome during fork pro-
gression. We found that non-catalytic Pol epsilon causes a con-
formational change within the MCM ATPase, affecting the CMG
interaction with the replication fork nexus. Based on predictions
from the DNA-CMG-Pol epsilon structure, we identified the
minimal complement of Pol epsilon modules required for
assembling the CMG, by using the in vitro reconstituted DNA
replication system. Therefore, certain protein–protein interac-
tions important for CMG assembly during origin activation
appear to be preserved in the CMG-Pol epsilon complex recon-
stituted on the replication fork. Together, our data provide
important insights into the distinct roles of Pol epsilon during
DNA replication.

Results
Structure of the Pol epsilon modules essential for viability. To
understand the role of the essential Pol epsilon modules during
DNA replication, we studied the structure of a truncation mutant
of the yeast tetrameric complex, lacking the dispensable, flexibly
tethered N-terminal catalytic domain of Pol228 (hereafter, delta-
cat, Fig. 1a). Our first attempts to trap particles in vitreous ice
resulted in severe aggregation, probably as a consequence of
particle exposure to the air–water interface. To mitigate this
problem, we incubated our preparation with 0.01% of cross-
linking agent glutaraldehyde for one minute on ice, before cryo-
grid making (Supplementary Fig. 1). The resulting particles
appeared homogeneous and monodisperse. We deemed this
preparation suitable for image acquisition on a Titan Krios EM
equipped with a Falcon III direct electron detector operated in
counting mode. Given the relatively small size of our protein
target and inherent flexibility detected in preliminary cryo-EM
characterization28, we acquired a dataset at low defocus and using
the Volta phase plate (VPP). As image contrast in these condi-
tions is dramatically improved, high-resolution structures can be
obtained using significantly fewer particles compared to defocus-
based phase-shift imposition. This strategy provides an important
advantage when dealing with inherently flexible particles39. Two-
dimensional averages showed high-resolution features for several
particle orientations, with one prominent view revealing an
anchor-shaped structure (Fig. 1b and Supplementary Fig. 1). A
poorly resolved feature could be detected and deeper 2D classi-
fication efforts revealed a structured domain flexibly tethered to
the particle core (Supplementary Movie 1). We determined a 3D
structure of the deltacat core based on 161,372 particles, to an
average resolution of 4.45 Å (4.3 Å in the core and 5 Å in the
periphery), revealing a compact assembly of dimensions 100 ×
90 × 60 Å (Fig. 1c and Supplementary Fig. 1-2). To interpret the
map, we have docked a recently published structure of human C-
terminal Dpb2 bound to the Pol2 C-terminal zinc-finger appen-
dix34, providing an unambiguous fit. A yeast homology model
based on the human structure was subsequently used as a tem-
plate for real-space refinement (Fig. 1d–e). The residual density
displayed an obvious resemblance to a DNA polymerase fold and
homology searches performed with HHpred40 indicated that the
DNA polymerase domain of Pol1, from the tetrameric Pol alpha/
primase complex41, is a suitable model for C-Pol2 (Fig. 2a).
Docking of a Pol1-based homology model of C-Pol2 into the
cryo-EM density required splitting the polymerase into three
domains, which were used in independent rigid-body fitting and
subsequent real-space refinement. The resulting structure shows a
polymerase fold with jaws spread wide open. These data provide
the first structural evidence that C-Pol2 contains a DNA poly-
merase fold33 (Supplementary Movie 2). In agreement with the
notion that certain elements are only flexibly tethered to the
deltacat core, no density was retrieved for the N-terminal domain
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of Dpb2, nor for the histone-like subunits Dpb3-Dpb4. We
speculated at this stage that at least one of these elements might
become structured once Pol epsilon engages other replisome
partner proteins (further discussed below). Our structure of the
Dpb2/C-Pol2 interaction core explains key Pol epsilon pheno-
types. For example, the C-terminus of Dpb2 intimately contacts
C-Pol2, explaining why a truncation of the last six amino acids in
Dpb2 prevents Dpb2 binding to Pol2-Dpb3-Dpb4 and results in a
lethal phenotype42 (Fig. 2b). Likewise, a so-called ZnF1 element

in the Pol2 zinc-finger appendix emerges as the organizing center
of the deltacat core, explaining why cysteine-to-alanine single
amino acid changes in this region can alter the essential non-
catalytic Pol epsilon core, hence abolishing cellular growth
(Fig. 2c)35.

DNA binding by Pol epsilon. If C-Pol2 and Dpb2 are non-
catalytic modules that evolved from DNA-processing enzymes43,
we reasoned that these domains might have retained their DNA-
binding function. The DNA-binding domain of Pol alpha subunit
Pol1 has been co-crystallized with DNA41. We therefore asked
whether the open polymerase configuration found in C-Pol2
could still retain DNA-binding capabilities. Structure super-
position revealed no obvious steric clashes between the open C-
Pol2 polymerase fold and a primer–template junction. However,
coulombic surface coloring indicates that the C-Pol2 polymerase
domain lacks the positively charged region seen in DNA-binding
grooves of other DNA polymerases. Furthermore, inspecting a
more complete Pol2 structure that extends beyond the conserved
polymerase module revealed that the C-terminal zinc-finger
appendix occludes the DNA-binding groove in the dead poly-
merase fold (Fig. 3a–c). Admittedly, such tight polymerase–zinc-
finger interaction might have been stabilized by the crosslinking
agent used in our preparation. Likewise, this configuration might
change in larger complexes such as full-length Pol epsilon or in a
helicase–polymerase assembly (further addressed below). None-
theless, the observations of an occluded DNA-binding site and
the coulombic colored surface of the catalytically dead poly-
merase invite the prediction that C-Pol2 might have lost the
ability to bind to DNA. To address this, we performed gel-shift
assays to probe the DNA-binding function of various (non-cross-
linked) Pol epsilon variants. As expected, DNA binding was
observed for the wild-type, full-length tetrameric complex, and
for the isolated full-length Pol2 polypeptide, which contains the
DNA synthesis domain32. The deltacat construct, lacking the
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Fig. 2 Interaction between C-Pol2 and Dpb2. a Atomic model of C-Pol2 and
Dpb2 built into the cryo-EM map. b Dpb2 C-terminus is poised towards the
C-Pol2 interface, explaining why a truncation of the Dpb2 C-terminal region
results in a lethal phenotype. c Pol2 zinc-finger appendix resides in the core
of the Pol2 polymerase fold. This explains why a point mutation disrupting
ZF1 is not compatible with viability. A second zinc-finger motif (ZF2)
projects from the core of the complex
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Fig. 1 Cryo-EM structure of the tetrameric Pol epsilon complex, lacking the
catalytic domain (deltacat). a Subunit composition and domain organization
of yeast Pol epsilon. N-Pol2 stands for N-terminal Pol2. C-Pol2 stands for C-
terminal Pol2. ZnF stands for zinc-finger appendix. b 2D class averages of
deltacat. c Surface rendering of the deltacat structure solved to 4.45 Å
resolution. Dpb2 is green, Pol2 catalytically dead polymerase fold is blue,
and Pol2 zinc-finger appendix is orange. d Atomic model for the yeast Dpb2
(green) bound to the Pol2 C-terminal zinc-finger appendix (orange), built
into the cryo-EM map. e Detail of the Pol2 zinc-finger appendix (further
map sharpening with phenix.auto_sharpen)
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catalytic domain but containing ancillary subunits Dpb3-Dpb4,
also resulted in clear gel retardation, in line with the notion that
these histone-like proteins bind to DNA31. Importantly, no DNA
binding was detected for C-Pol2, Dpb2 or a complex of the two
(Fig. 3d and Supplementary Fig. 3). This observation is in line
with the occluded DNA-binding site observed from the structure
and indicates that the essential modules in the eukaryotic leading-
strand polymerase are not DNA-binding factors.

Structure of CMG-Pol epsilon on a pre-formed DNA fork. To
understand the function of the essential C-Pol2 and Dpb2
modules during replisome progression, we determined the
structure of Pol epsilon associated with a fork-engaged CMG
complex. To this end, we produced yeast CMG using a single
yeast overexpression strain28. We added a slowly hydrolysable
nucleotide analog (ATPγS) to stabilize DNA binding by the
MCM motor23. Using these reagents, we immobilized the CMG
on streptavidin-coated magnetic beads, bearing a desthiobiotin-
labeled pre-formed DNA fork as bait. A full-length Pol epsilon
variant containing inactivating mutations in the N-terminal Pol2
exonuclease was used to prevent DNA-fork degradation. Because
desthiobiotin has reduced affinity for streptavidin compared to
biotin, elution with biotin was highly efficient, yielding a
nucleoprotein preparation suitable for single-particle cryo-EM
analysis (Fig. 4a, b and Supplementary Fig. 4). To maximize
particle numbers, we have absorbed our specimen using two
subsequent applications, on lacey grids coated with an additional
layer of ultrathin carbon. Particles were imaged on a Titan Krios
EM with a K2 detector in counting mode. High-resolution 2D
averages showed recognizable CMG assemblies with Pol epsilon
decorating the ATPase tier of MCM, as previously reported in
low-resolution negative-stain studies21,28 (Fig. 4c). Although end-
on views of the MCM ring constituted the majority of particles,

side and tilted views were sufficiently represented to yield an
isotropic structure (Supplementary Fig. 5). Three-dimensional
reconstruction based on 78,556 particles yielded a structure with
an average resolution of 4.9 Å and local resolution estimation
revealed marked variations, ranging from 4.5 Å in the ATPase
core of MCM to 7.5 Å on the Pol2 surface (Fig. 4d and Supple-
mentary Fig. 5-6). This resolution is easily sufficient for a reliable
docking of yeast CMG44 and of the new atomic model of Pol
epsilon deltacat (this study), both of which were built on higher-
resolution cryo-EM maps. Whereas docking of yeast CMG
required fitting of individual subdomains of the N-terminal and
ATPase tiers as independent rigid bodies25,26,44, deltacat could be
docked into unoccupied density as one rigid body, resulting in an
unambiguous fit (Fig. 4d and Supplementary Movie 3). Our
observation indicates that deltacat maintains the same compacted
configuration even when crosslinking agents are omitted from the
preparation, when full-length Pol epsilon is used and when the
polymerase is bound to CMG. Notably, in the cryo-EM map, the
catalytic domain of Pol epsilon is invisible, as previously reported
for non-crosslinked CMG-Pol epsilon preparations21,28. Our
structure shows that the CMG is stably interacting with the
duplex/single-stranded DNA junction of the replication fork.
Here, the double helix enters the MCM pore through the N-
terminal tier, and single-stranded DNA (the leading-strand
template) is captured by a set of ATPase pore loops (Mcm6-2-
5-3, Fig. 5). As preported in previous CMG-DNA-fork structures,
the lagging strand template, excluded from the MCM ring, cannot
be resolved in our structure44. Furthermore, no obvious density
for single-stranded DNA could be recognized bound to Pol2/
Dpb2, confirming the notion that the essential catalytically
inactive modules of Pol epsilon do not bind to DNA.

The observation of MCM interacting with the double helix in
our ATPγS-CMG-Pol epsilon complex is noteworthy, given that
previous studies on the CMG bound to a non-hydrolysable ATP
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analog showed single-stranded DNA inside the ATPase ring but
no visible duplex DNA25,44. Productive engagement of the DNA
duplex was instead previously captured only for a subset of
translocating particles, in an ATP-CMG-fork preparation, halted
by a DNA roadblock placed on duplex DNA44. To explain the
difference in CMG-fork nexus binding in the presence or absence
of the polymerase, we hypothesized that Pol epsilon association
with the ATPase tier of ATPγS-CMG-DNA might cause a
conformational change that promotes interaction with the DNA
junction. Close inspection of the ATPase structure in ATPγS-
CMG-Pol epsilon-DNA indicates that polymerase association
indeed alters the configuration of MCM active sites, causing
compaction of the Mcm3-5-2 subunits (with the highest local
resolution in the cryo-EM map centered around Mcm5, Fig. 5a)
and relaxation of the neighboring ATPase interfaces. Concomi-
tantly, the nucleotide occupancy state in the ATP hydrolysis
centers changes, with density peaks compatible with ATPγS
detected in the Mcm5-3 and Mcm2–5 ATPase sites, while all
other sites appeared nucleotide-free (Fig. 5b). This occupancy

pattern differs from that of ATPγS-CMG-DNA or ATP-CMG-
DNA-roadblock, where the Mcm6-2 interface is nucleotide-
engaged, alongside Mcm5-3 and Mcm2-544. This change in the
ATPase structure likely alters DNA engagement and might be the
reason why fork nexus binding can be observed in our ATPγS-
bound CMG-Pol epsilon structure (Fig. 5c). Morphing between
the ATP-CMG-DNA-roadblock and ATPγS-CMG-DNA-Pol
epsilon structures show structural changes in the two states
appear to promote a slight rotation of the double helix as DNA
advances towards the MCM central channel (Supplementary
Movie 4). This observation starts to provide insights into how
changes in the ATPase state might promote helicase movement
along the DNA23,45–47.

Analysis of CMG-Pol epsilon contacts. Close inspection of the
cryo-EM map after docking of the CMG and deltacat structures
highlighted unoccupied density. One region departs from the N-
terminus of CTD-Dpb2 and projects as an extended arm towards
GINS (Fig. 6a). Although the local resolution in this region of the
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map is relatively low (i.e., 6.5–7.5 Å resolution, as seen in Sup-
plementary Fig. 5), an accurate fit can be obtained from docking
of N-terminal Dpb2, generated by homology modeling based on
the nuclear magnetic resonance structure of the human ortho-
log37. The resolution in this region is not sufficient to see any of
the amino acid side chains involved in the GINS contact; how-
ever, inspection of our docking result provides confidence in the
overall architecture of our model, given that the C-terminus of
NTD-Dpb2 points towards the N-terminus of the CTD-Dpb2
module described above (Fig. 6a). The two domains appear
tethered by a flexible linker, explaining why NTD-Dpb2 becomes
visible only when stabilized by partner–protein interactions. In
fact, inspection of the CMG contacts reveals that N-terminal
Dpb2 engages C-terminal Psf1, in agreement with biochemical
studies on Pol epsilon replisome incorporation by the Labib
group (Fig. 6a)30. A second contact point involves the C-terminal
winged helix (WH) appendix of Mcm5, which is clamped
between the inactive polymerase and zinc-finger modules of Pol2
(Fig. 6c). All docked structures were subjected to real-space
refinement using a combination of Coot48 and Phenix49.

Notably, in previous MCM-containing structures, the Mcm5
WH domain can be found occluding the MCM central channel
when the ATPase motor is not DNA engaged26,50,51. We
speculate that, by pulling the Mcm5 WH domain away from
the central channel, Pol2-Dpb2 might promote productive DNA
engagement inside the MCM pore. This is in agreement with the
observation that ATPγS-CMG-Pol epsilon intimately engages the
double helix at the DNA fork, as described above (Fig. 5c). Other
CMG-Pol epsilon contacts can be visualized between C-Pol2/
Dpb2 and the MCM AAA+ tier. For example, Pol2 keeps the
Mcm2-5 ATPase gate shut, with the dead polymerase module

touching Mcm5 and the zinc-finger appendix touching Mcm2. In
particular, the ZnF2 element mapping in the Pol2 C-terminus
contacts the Mcm2 ATPase, explaining a temperature-sensitive
phenotype for cysteine-to-alanine substitutions in this peripheral
element35. Likewise, the Dpb2 core sits across the Mcm5-3
ATPase interface (Fig. 6c). A structural role of Pol2 and Dpb2,
clamping Mcm2-5-3 ATPase domains close together, agrees with
our observation that the active sites at the Mcm2-5 and Mcm5-3
interfaces are ATPγS occupied, while other ATPase sites in the
MCM ring are empty (Fig. 5a–c).

We note that the role of the C-Pol2/Dpb2 elements contacting
MCM appears to match the function of GINS/Cdc45 in the CMG,
although the two pairs of factors act on opposed tiers of the
helicase ring24–26. In fact, GINS/Cdc45 latch across the Mcm2-5
gate and stabilize the Mcm5-3 interface by engaging the N-
terminal collar24–26, while C-Pol2/Dpb2 are poised to stabilize the
Mcm2-5/5-3 AAA+ interfaces (i.e., the sites essential for DNA
unwinding23). Our new helicase–polymerase structure contains
the pre-formed CMG bound to Pol epsilon on a model fork
substrate and informs us on the architecture of the activated
helicase poised to unwind the replication fork. We postulate that
interactions seen in our structure might be also important for
replication initiation. Two notions are key in this context. First,
GINS and Pol epsilon are known to be recruited onto the MCM
during the same step towards origin activation19. Second, stable
CMG formation requires release of ADP and binding of ATP2.
Our finding that Pol2 and Dpb2 directly contact three key
ATPase domains of MCM suggests a mechanism by which this
nucleotide exchange might be modulated.

The role of C-Pol2 and Dpb2 in CMG formation. Our structure
of deltacat Pol epsilon reveals an extensive interaction interface
between C-Pol2 and Dpb2 (Fig. 2a). Furthermore, our structure
of the CMG-Pol epsilon complex, reconstituted on the fork using
recombinant active helicase and polymerase, establishes that
Dpb2 mainly interacts with GINS (Fig. 6a) and C-Pol2 mainly
contacts the MCMs (Fig. 6b). Given these observations, we asked
whether elements of our CMG-Pol epsilon structure on the DNA
fork would be retained during the process of Pol epsilon-
dependent CMG assembly, on path to origin firing. We postu-
lated that GINS recruitment and CMG formation might only
occur when both Dpb2 and C-Pol2 are present in the same
complex, as the physical link between GINS and MCM would be
preserved. To test this hypothesis, we used a yeast replication
system reconstituted with purified proteins13 to establish the
minimal complement of Pol epsilon domains that are required to
make stable CMG. To this end, we loaded MCM double hexamers
onto an immobilized DNA fragment and added a full comple-
ment of firing factors to promote the assembly of a stable CMG
complex2,13. As shown in Fig. 6d, when wild-type Pol epsilon was
substituted for deltacat, CMG was still assembled, although less
efficiently. A Pol epsilon variant containing both C-Pol2 and
Dpb2 showed the same efficiency of CMG formation as deltacat,
indicating that ancillary subunits Dpb3/Dpb4 are not required for
CMG assembly. As we predicted, the isolated full-length Pol2, C-
Pol2, or Dpb2 subunits were unable to support CMG formation
(Fig. 6d). We then tested whether the CMG assembled by these
Pol epsilon variants could support DNA replication, by addi-
tionally including the proteins required for complete leading and
lagging-strand synthesis52. Only wild-type Pol epsilon, deltacat,
and C-Pol2/Dpb2 supported DNA replication (Fig. 6e). As pre-
viously reported, DNA replication products in the presence of
deltacat were shorter compared to wild-type Pol epsilon,
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consistent with the idea that in the absence of the Pol2 catalytic
domain, leading-strand synthesis by trans-acting Pol delta occurs
at a slower rate52. Importantly, in reactions containing C-Pol2/
Dpb2, we observed the same amount and profile of replication
products as with deltacat. This in agreement with the notion that
the remaining Dpb3 and Dpb4 subunits do not play a direct role
in the DNA replication reaction, but rather modulate histone
redeposition at the replication fork53,54. As expected from their
defect in CMG assembly, the isolated Pol2, C-Pol2, and
Dpb2 subunits failed to support DNA replication in this system
(Fig. 6d–e). Altogether, our results are compatible with the idea
that C-Pol2 and Dpb2 must act as a heterodimeric complex, to
link GINS to the MCM during CMG establishment. Cryo-EM
characterization of the complete CMG assembly reaction
(including CDK, DDK, Sld2, Sld3/7, and Dpb11) will be key to
understanding the essential structural role of C-Pol2/Dpb2 during
replication initiation.

Analysis of CMG productively bound to the replication fork.
During replisome progression, it is unknown whether C-Pol2 and

Dpb2 indeed remain anchored to the ATPase domain of the
advancing CMG. To address this issue, we reconstituted CMG
formation and Mcm10-dependent DNA unwinding using the
in vitro system with purified yeast proteins13. Briefly, origin
activation reactions were assembled on linear, biotinylated DNA
tethered to streptavidin-coated magnetic beads. The linear DNA
fragment was blocked at the two ends with covalent
protein–DNA roadblocks to prevent linear diffusion of MCM off
the DNA. This substrate was used to load multiple MCM double
hexamers and firing factors were added to promote origin acti-
vation. Subsequently, elution from the streptavidin beads was
achieved by DNA digestion at a single site, leaving the doubly
blocked DNA segment intact. Using 2D classification of nega-
tively stained data, we observed that only a subset of these double
hexamers were converted to CMG, causing inactive MCM double
hexamers to be pushed along duplex DNA in front of the helicase
and against the protein–DNA roadblock2 (Fig. 7a). This resulted
in the formation of stacks of MCM particles (trains), which are
capped at one end by a CMG engine (Fig. 7b–d). We can exclude
the possibility that trains are the mere product of protein
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aggregation, because they disappear when covalent protein
roadblocks are omitted, or when the Mcm10 firing factor is
excluded from the origin activation reaction (Supplementary
Fig. 7)2. To define the identity of the helicase productively
engaged to the DNA fork, we first analyzed MCM-containing
particles that were not train incorporated. These particles fell in
two categories: isolated MCM double hexamers and CMGs
(Fig. 7e–g). Remarkably, isolated CMGs were largely polymerase
free, with only a small fraction (2% of recognizable, averaged
particles) of the helicase bound by Pol epsilon (Fig. 7g). To
establish the composition of the active CMG productively bound
to the DNA fork, we then focused our analysis on the tips of the
MCM trains. We confirmed that one end of the train was capped
by the protein roadblock found in direct contact with an MCM
double hexamer (Fig. 7e). At the opposed end of the train, the
vast majority of CMGs (75–100% of recognizable, averaged par-
ticles in different repeats of the same experiment) were bound by
a AAA+ interacting Pol epsilon complex (Fig. 7d). Our obser-
vation was further supported by cryo-electron tomographic
analysis (Fig. 7h). In this experiment, we used a template
matching approach (as implemented in MOLMATCH55) to
recognize MCM double hexamers and CMG particles in the
MCM trains. As predicted from our negative-stain experiment,
we found high correlation peaks for MCM double hexamers
along the length of the train and one CMG particle capping one
end of the train. We also observed that a Pol epsilon-bound form
of CMG best matches the cryo-tomographic density in this region
(Fig. 7i, Supplementary Fig. 7, and Supplementary Movie 5).

In summary, these data indicate that the translocating form of
the CMG is Pol epsilon bound. Combined with our cryo-EM
reconstruction of the fork-bound CMG-Pol epsilon, our results
suggest that tight Pol epsilon binding to the AAA+ tier of the
MCM ring might stabilize productive helicase engagement to the
duplex/single-stranded DNA junction.

Discussion
In this study, we have provided the first structural evidence that
the catalytic subunit Pol2 contains a tandem repeat of polymerase
modules33 (Figs. 1a, 2a–c). In Pol2, the N-terminal repeat con-
tains the DNA synthesis function32, while the C-terminal repeat
is catalytically inactive35. We showed that C-Pol2 shares an
extended interface with the Pol epsilon subunit Dpb2, which in
turn contains a catalytically dead exonuclease34 (Figs. 1d, 2a,b).
Having evolved from two DNA-processing enzymes, not only
have C-Pol2 and Dpb2 lost their catalytic activity43 but also their
DNA-binding functions. In fact, we found that only Pol epsilon
permutations that contain the N-Pol2 catalytic module32 or
histone-like factors Dpb3-Dpb431 can bind to DNA, as observed
in gel-shift assays. Conversely, no DNA association could be
observed for C-Pol2 or Dpb2 (Fig. 3d).

Our cryo-EM structure of an isolated Pol epsilon deltacat
derivative explains why C-Pol2 cannot bind to DNA. In parti-
cular, the inner surface in the polymerase fold is not as positively
charged as the DNA-binding groove of other replicative poly-
merases such as Pol alpha41,43, and it is further occluded by the
C-terminal zinc-finger appendix of Pol2 (Fig. 3a–c). In line with
these observations, our cryo-EM structure of the DNA-engaged
CMG-Pol epsilon showed DNA binding by MCM proteins, but
not by C-Pol2 and Dpb2 (Fig. 5c; while, due to flexibility, N-Pol2
and Dpb3-Dpb4 were not visible). Given that these are not
enzymes nor DNA-binding factors, we reasoned that C-Pol2 and
Dpb2 must play a structural role in the replisome. This scenario is
reminiscent of Cdc45 that has evolved from a RecJ exonuclease56.
Cdc45 has lost its DNA-processing functions, while it has
acquired a key structural role in reconfiguring the MCM motor,

to promote DNA melting and fork unwinding within the
CMG23,24.

In support of a structural role for Dpb2 and C-Pol2, inspection
of the DNA fork-CMG-Pol epsilon structure reveals that these
two modules provide a molecular bridge across CMG compo-
nents, with Dpb2 mainly contacting GINS, and C-Pol2 contacting
MCM (Fig. 6a–b). GINS and Pol epsilon are recruited onto
MCM-Cdc45 as part of the same pre-loading complex19. Previous
work on the CMG structure established that GINS and Cdc45
bind to the N-terminal tier of Mcm2-5-3, stabilizing a planar
configuration of the MCM ring and locking a natural gate,
between MCM subunits 2 and 524–26,57,58. In the CMG-Pol
epsilon structure, we now found that C-Pol2/Dpb2 interact with
the same Mcm2-5-3 protomers, poised to stabilize the C-terminal
AAA+ interfaces. Our observation is noteworthy, given that
Mcm2-5 and Mcm5-3 contain the two ATPase centers that are
essential for CMG function23, and suggests a mechanism for the
simultaneous recruitment of GINS and Pol epsilon (Fig. 8).

A direct contact between GINS/Pol epsilon and MCM might
play a role both during origin activation as well as replication fork
advancement. To test the idea of a role during activation, we have
used in vitro reconstitution of DNA replication2,13, to show that a
combination of C-Pol2 and Dpb2, but neither of the two factors
in isolation, constitute the minimal complement of Pol epsilon
modules required for CMG formation (Fig. 6d–e). Therefore, key
aspects of the CMG-Pol epsilon architecture described in our
cryo-EM map appear to be important for origin activation35,43.

Our structural studies also provide insights into replication
fork progression. In comparing our new DNA-CMG-Pol epsilon
structure to the published DNA-CMG structure (PDB entry
5U8S)44, we found that C-Pol2/Dpb2 association with the C-
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terminal face of MCM alters the ATPase conformation by sta-
bilizing the Mcm5-ATPγS-Mcm3 and Mcm2-ATPγS-Mcm5
interactions, while all other active sites are nucleotide-free
(Fig. 5a–b). In these conditions, and for the first time in an
ATPγS-CMG complex, the duplex/single-stranded DNA junc-
tion, and not just single-stranded DNA, can be seen engaged by
the MCM complex. This feature is shared by all particles that
contribute to high-resolution 3D structures in our dataset
(Fig. 5c). Strikingly, fork nexus engagement was previously only
observed when the helicase was incubated with ATP to promote
DNA translocation and only in a small subset of helicase parti-
cles44. Together with our EM observation that the translocating
form of the CMG is Pol epsilon bound (Fig. 7), our data support
the notion that polymerase binding promotes productive DNA
fork engagement by the CMG.

Furthermore, our structure informs a model for helicase
translocation at the replication fork. Previous structural reports
on the Drosophila and yeast CMG helicase, from us25, the Berger/
Botchan24, and from the O’Donnell/Li26 laboratories, showed that
the Mcm2-5 interface is highly dynamic and that ATP binding
can shift the equilibrium from a relaxed (nucleotide-free) to a
tight (nucleotide-bound) state of the ATPase side of the MCM
ring in the CMG. This observation led to us and others suggest
that DNA translocation could occur with the helicase
“inchworming” along DNA through relaxing and tightening of
the Mcm2-5 AAA+ interface (referred to as “pump-jack model”
in the yeast study)25,26. Alternatively, DNA translocation would
occur via a distinct mechanism that still needs to be determined,
while the relaxed Mcm2-5 AAA+ structure in the CMG could
represent a pausing state of the helicase25. Our new structural
data appear to support the latter model, as Pol epsilon engage-
ment by the CMG seems incompatible with the conformational
rearrangements described in the pump-jack helicase8,26. The
three structural changes described in the pump-jack model
involve opening of a gap between Mcm2 and Mcm5, transition
from a planar to a spiral ATPase tier and movement of the Mcm5
WH domain. These three conformational switches would see-
mingly all contribute to disrupting the multipartite Pol epsilon-
binding site on the CMG (Supplementary Movie 6). In this study,
we also provide evidence for Pol epsilon association occurring
when CMG particles are productively fork engaged. This is why
we now favor a model whereby a wide Mcm2-5 ATPase opening,
which is incompatible with Pol epsilon binding, would cause
helicase stalling (proposed before by Botchan and Berger59), not
DNA translocation. Alternatively, engagement between CMG and
deltacat could be much more dynamic than we would predict by
inspecting our structure. Future studies are needed to understand
the relation between ATP binding/hydrolysis, helicase movement,
and replicative polymerase exchange rates in the advancing
replisome. The key to understanding replisome progression, we
predict, will likely be fork stabilization factors Mrc1/Csm3/Tof1,
which all contribute to achieving cellular rates in DNA replication
reactions reconstituted in vitro52.

Methods
Yeast expression strains. Strains are based on W303. See Supplementary Table 1
for a list of all strains and genotypes used in this study.

Protein expression and purification. For expression of wild-type Pol epsilon and
dropout variants, cells were grown in YEP media supplemented with 2% raffinose.
Cells were arrested in the G1 phase at a density of ~2–3 × 107 cells/ml with 100 ng/
ml alpha factor for 3 h at 30 °C. Protein expression was then induced by adding
galactose to 2% and growth continued for 3 h at 30 °C. Cells were harvested by
centrifugation at 4000 rpm for 30 min in a Beckman Coulter J6-MC Centrifuge
(Beckman JS-4.2 rotor) and washed with Buffer E (25 mM HEPES, pH 7.6, 10%
glycerol, 1 mM dithiothreitol (DTT)) supplemented with 500 mM KOAc (Buffer E-
500). Cells were spun down again in a Beckman Coulter Allegra® X-15R Centrifuge

and resuspended with Buffer E-500 (at half the pellet volume) and frozen dropwise
into liquid nitrogen. Frozen droplets were crushed in a 6875D Freezer/Mill® Dual
Chamber Cryogenic Grinderfreezer mill (SPEX SamplePrep) using six cycles,
intensity 15 (Precool 1 min, run 2 min, break 1 min), operating at −80 °C. Cell
powder was resuspended in Buffer E supplemented with complete protease inhi-
bitor tablets (Roche).

Pol epsilon and dropout variants were prepared as follows: the powder was
resuspended with 250 ml Buffer E supplemented with 400 mM KOAc (Buffer
E-400) and protease inhibitors (Roche). Lysate was cleared by
ultracentrifugation at 45,000 rpm for 1 h at 4 °C (Ti45 rotor, Beckman Coulter
Optima L-100 XP Ultracentrifuge). For all proteins expressing a CBP tag (wild
type, exo−, and deltacat), 3 ml calmodulin beads (GE Healthcare) were pre-
equilibrated in Buffer E-400, added to the cleared lysate, and supplemented
with 2 mM CaCl2. For the remaining proteins (C-Pol2, C-Pol2/Dpb2, Dpb2,
Pol2), 4 ml anti-Flag M2 affinity resin was pre-equilibrated in Buffer E-400 and
added to the cleared lysate. All incubations occurred at 4 °C with end over
rotation for 2 h. Flow-through was collected and beads were washed with 100
column volumes of Buffer E-400 (supplemented with 2 mM CaCl2 for the CBP-
tagged proteins). Proteins were eluted either using elution Buffer E-400
supplemented with 2 mM EGTA and 2 mM EDTA (CBP tagged proteins) or
with Buffer E-400 supplemented with 1 mg/ml FLAG peptide (FLAG-tagged
proteins). The elutions were pooled and injected into SP Sepharose Fast Flow 1
ml column (GE Healthcare) attached to a Mono Q 5/50 GL 1 ml column (GE
Healthcare) in an Äkta purifier (GE Healthcare). Proteins were washed with
either 20 CV Buffer E-300 (for all variants except exo−) or Buffer E-400 (exo
−). Proteins were eluted after removal of SP Sepharose Fast Flow column over a
15 CV gradient (Buffer E 300–1500 mM KOAc for all variants apart from exo−,
where a 400–1000 mM KOAc gradient was used). The purest fractions were
pooled either dialyzed or buffer exchanged to Buffer E-400 via gel filtration
using a Superdex 200 Increase 3.2/300 column for cryo-EM or Superdex 200
10/300 GL for DNA-binding assays.

CMG purification was performed as follows: yJCZ3 was used to express CMG28.
Induction was performed using 2% galactose for 3 h at 30 °C, frozen dropwise in
liquid nitrogen, and ground as decribed above. Cell powder was resuspended in
buffer C (25 mM HEPES, pH 7.6, 0.02% Tween-20, 10% glycerol, 1 mM EDTA, 1
mM EGTA) supplemented with 15 mM KCl, 2 mM MgCl2, 2 mM β-
mercaptoethanol, and complete protease inhibitors mixture. KCl was then added to
100 mM, and the lysate cleared by centrifugation. The clear lysate was incubated
with anti-Flag M2 affinity resin at 4 °C, washed with C-100 buffer (buffer C with
100 mM KCl and 1 mM DTT), and eluted with C-100 buffer supplemented with
0.5 mg/ml FLAG peptide and complete protease inhibitors mixture. Peak fractions
were pooled and loaded onto a HiTrap SP FF (GE Healthcare). The flow-through
was collected and loaded onto a Mono Q 5/50 GL (GE Healthcare), washed with C-
100 buffer, and eluted over 100 mM to 550 mM KCl gradient in C-100 buffer
supplemented with 1 mM DTT. Peak fractions were pooled, diluted to 150 mM
KCl in buffer C, loaded onto Mono Q 1.6/5 PC in buffer D (25 mM HEPES, pH 7.6,
1 mM EDTA, 1 mM EGTA, 1 mM DTT) supplemented with 150 mM KCl, and
eluted over 150 mM to 550 mM KCl gradient in buffer D.

DNA sequences. All oligonucleotides were purchased from integrated DNA
technologies (IDT). Oligonucleotides used for electrophoretic mobility shift assays
were:

160 nt forward,
5′-ACCGATGTGGTAGGAAGTGAGAATTGGAGAGTGTGTTTTTTTTTTT

TTTTTTTTTTTTTTTTTTTTTTTTTTTTTGAGGAAAGAATGTTGGTGAGGG
TTGGGAAGTGGAAGGATGGGCTCGAGAGGTTTTTTTTTTTTTTTTTTTTT
TTTTTTTTTTTTT-3′

37 nt reverse,
5′-CCACTCCCAACCCTTCACCTTCCTACCCGAGCTCTCC-3′.
Oligonucleotides used for fork DNA affinity purification of CMG-Pol epsilon

were:
leading-strand template,
5′/5deSBioTEG/

GCAGCCacgctGGCCGTTTTACAACGTCGTGACTGGGCACTTGATCGGCCA
ACCTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTT-3′

lagging-strand template,
5′-GGCAGGCAGGCAGGCAGGCAGGCCGTGCGCGTGGTCGTGCGGTTG

GCCGATCAAGTGCCCAGTCACGACGTTGTAAAACGGCCAGCGTGGCTG
C-3′

To anneal the DNA, the two oligonucleotides were mixed in an equimolar ratio
and left to incubate at 95 °C for 3 min followed by slow cooling to room
temperature.

Electrophoretic mobility shift assays. Purified wild-type Pol epsilon and
dropout variants were pre-mixed in a dilution series (75, 150, 200, 300, and 450
nM) with DNA at a concentration of 300 nM, in a reaction buffer containing 25
mM HEPES, pH 8.0, 30% glycerol, 2 mM EDTA, 0.2 mg/ml bovine serum
albumin (BSA), and 0.02% Triton-X. Binding was performed for 30 min at 4 °C.
polyacrylamide gel electrophoresis (PAGE) made with 4% polyacrylamide, 3%
glycerol, and 0.5× TAE polymerase was pre-run at 100 V for 1 h (4 °C).
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Protein–DNA complexes were resolved by running the PAGE at 100 V for ∼2 h
(4 °C) in 0.5× TAE. Visualization of the complexes were done my staining the
PAGE with Diamond Nucleic acid dye (Promega) for 15 min. Imaging was done
with 1.5 s manual exposure using Bio-Rad Gel DOC XR+ equipped with the Bio-
Rad image lab software.

Reconstitution of CMG Pol epsilon bound to a pre-formed fork. To reconstitute
CMG-Pol epsilon on DNA, a bead affinity approach was used. Seven microliters of
M-280 Streptavidin Dynabeads™(Thermo Fisher) slurry was added to low-binding
microcentrifuge tubes and all incubations occurred at 30 °C with 1250 rpm shaking
in a thermomixer. Beads were washed twice with 20 µl DNA-binding buffer (25
mM HEPES 7.6, 1 M NaCl, 10% glycerol, 0.01% NP-40, 1 mM EDTA). Twenty
microliters of 250 nM fork DNA was added and then incubated for 30 min. The
supernatant was collected and the beads were washed once with 20 µl DNA-
binding buffer and once with 20 µl protein-binding buffer (25 mM HEPES 7.6, 100
mM KOAc, 10 mM Mg(OAc)2, 10% glycerol, 0.01% NP-40, 1 mM DTT, 2 mM
ATPγS). Twenty microliters of 250 nM CMG was added and the reaction was
incubated for 30 min. The supernatant containing unbound CMG was collected
and beads were washed once with 20 µl protein-binding buffer. Twenty microliters
of 80 nM polymerase epsilon exo− was added to the beads and then incubated for
20 min at 30 °C and 1250 rpm. Beads were washed once with 20 µl protein-binding
buffer and once with 20 µl protein-binding buffer without glycerol. Complexes
were eluted by the addition of 10 µl elution buffer buffer (25 mM HEPES 7.6, 100
mM KOAc, 10 mM Mg(OAc)2, 0.01% NP-40, 1 mM DTT, 2 mM ATPγS, 400 nM
biotin) and then incubated for 30 min. Elutions were pooled and used for cryo-EM
grid preparation.

Cryo-EM grid preparation. Deltacat polymerase epsilon grids were prepared as
follows: purified deltacat polymerase epsilon was first crosslinked with 0.01%
glutaraldehyde and incubated for 5 min on ice prior to plunge freezing. Quantifoil
R2/2 open-hole grids coated with a layer of freshly evaporated carbon (not covering
holes) were glow discharged before applying 4-µl sample onto it. After a 30-s
incubation, the grid was double-side blotted using a Vitrobot Mark IV (FEI
Thermo Fisher), and then operated at 4 °C at 100% humidity, using a blotting time
of 2.5 s.

CMG-polymerase epsilon exo− was prepared as follows: freshly glow-
discharged 400-mesh lacey grids containing an ultrathin layer of carbon (Agar
Scientific) were used for vitrification in a Vitrobot Mark IV (Thermo Fisher)
operating at 21 °C and 100% humidity. Samples were vitrified in a double
application process. Four microliters of the sample was first applied to the carbon
side of the grid and incubated for 120 s. The grid was then double-side blotted for
0.5 s before a further 4 µl sample was applied. After another 120 s incubation, the
grid was blotted for 3 s and plunge frozen into liquid ethane.

Data collection. Cryo-EM data for all samples were collected on a Titan Krios EM
equipped with a Falcon III direct electron detector (FEI Thermo Fisher) or a K2
Summit direct electron detector (Gatan Inc.) at the Francis Crick Institute. See
Supplementary Table 2 for image acquisition details.

Image processing. Pre-processing of deltacat and CMG-polymerase epsilon exo−

were performed as follows: movie stacks were corrected for beam-induced motion
and then integrated using MotionCor260. All frames were retained and a patch
alignment of 5 × 5 was used. Contrast transfer function (CTF) specifications for
each non-dose-weighted micrograph were estimated by CTFFIND461 and Gctf62.
Good quality-integrated movies examined by Relion-2.163 were selected for further
image processing. Particle picking was performed in a semi-automated mode using
e2boxer from EMAN2 (version 2.07)64. All further image processing was per-
formed in Relion-2.1.

Deltacat particles were further treated as follows: processing of the Falcon III
VPP data were performed as follows. Particle extraction was carried out from dose-
weighted micrographs by setting the box size at 184 pixels (pixel size 1.09 Å/pixel.
An initial model was generated using cryoSPARC65 and was used in processing
with Relion-2.166. An initial 816,814 particle dataset was cleaned by 2D
classification followed by two subsequent rounds of 3D classification (performing
alignment). 3D refinement yielded a 4.45 Å structure, which was filtered to the local
resolution using LocRes in Relion-2.1 (Supplementary Table 2 and Supplementary
Fig. 1 and 2).

CMG-Pol epsilon exo− particles were further processed as follows: a first
dataset with a total of 252,705 binned-by-2 particles were extracted from 8,782
dose-weighted micrographs by setting the box size at 256 pixels (pixel size 1.38 Å/
pixel) and scaling down to 128 pixels (2.76 Å/pixel) from a first dataset. A second
dataset with the same imaging parameters was collected, where a total of 151,971
binned-by-2 particles were extracted from 5,687 dose-weighted micrographs. The
particles from the first dataset were subjected to 3D classification with alignment
using the negative-stain CMG-polymerase epsilon structure (EMD-6465)21 as an
initial model (filtered to 60 Å) for five classes. The “ignore CTFs until the first
peak” option was selected at this stage and the mask size was set at 350 Å. The best
two classes contained a total of 115,068 particles, which were re-extracted back to
the unbinned parameters (256 pixels) and subjected to a cascade of 3D refinement

and 3D classification without alignment (see Supplementary Fig. 6). The second
dataset was subjected to rounds of 2D classification and the best particles (5671)
were re-extracted to unbinned parameters (256 pixel box size) and combined with
the 89,809 particles from the first dataset. The merged 95,480 particles were
subjected to 3D classification with alignment (three classes) and the best two classes
from that step were selected (78,556 particles) and subjected to homogeneous 3D
refinement in cryoSPARC65. For post-processing, the LocRes function in Relion-
2.1 was used by inputting the two unfiltered half maps from the cryoSPARC
reconstruction and setting the B-factor to −300 Å.

Molecular modeling. Homology models for yeast C-Pol2 and Dpb2 were gener-
ated using HHpred40, based on the atomic structure of yeast Pol1 (PDB entry
4FYD)41 and on the co-crystal structure of human Pole2/ZnF Pole1 (PDB entry
5VBN)34. Rigid-body docking was performed in UCSF Chimera67 and manually
adjusted in Coot48 and subjected to real-space refinement in Phenix49. All fiigures
were made using the UCSF chimera67.

DNA replication reconstituted in vitro. CMG assembly assays were performed as
in ref 2. Briefly, MCM was loaded onto 60 ng end-biotinylated DNA fragment
containing ARS1 that was immobilized on M-280 streptavidin resin (Sigma) in a
10 µl reaction containing 37.5 nM ORC, 50 nM Cdc6, and 100 nM Mcm2–7:Cdt1.
After 10 min at 30 °C, DDK was added to a final concentration 50 nM and the
reaction incubated for a further 5 min. Buffer was added to a final concentration of
250 mM K-glutamate, 25 mM HEPES, 10 mM Mg-acetate, 0.02% NP-40-S, 8%
glycerol, 400 μg/ml BSA, 5 mM ATP, and 1 mM DTT. A mix of firing factors was
assembled immediately before use and added at time 0, to a final concentration of
50 nM Dpb11, 50 nM GINS complex, 50 nM Cdc45, 30 nM Pol epsilon, 20 nM
Clb5–Cdc28 (CDK), 2.5 nM Mcm10, 30 nM Sld3–Sld7, and 55 nM Sld2 (firing
factor mix). After 10 min at 30 °C, beads were washed twice with a buffer con-
taining 25 mM HEPES 7.6, 5 mM Mg-acetate, 0.02% NP-40-S, 10% glycerol, and
250 mM K-glutamate, resuspended in sodium dodecyl sulfate (SDS)-loading buffer,
separated by SDS-PAGE and analyzed by Western blotting with the antibodies
indicated.

Replication assays were performed as in ref. 52, using an 8.2 kb origin-
containing DNA template. After 40 min at 30 °C, replication reactions were
quenched with EDTA and products separated on a 0.6% denaturing alkaline
agarose gel.

Negative-stain EM of the translocating replicative helicase. MCM trains were
assembled by activating loaded MCMs on a capped linear DNA segment2.
Negative-stain sample preparation was performed using carbon coated-300-mesh
copper grids (EM resolutions). Grids were glow discharged for 30 s at 45 mA
(Electron Microscopy Sciences). Three-microliter drops of nucleoprotein assem-
blies were applied to the grids and incubated for 1 min. Excess sample solution was
blotted away and staining was performed on four separate 70-μl 2% uranyl acetate
drops by stirring for 5, 10, 15, or 20 s. Excess stain was blotted away and grids were
stored before imaging. Negative-stain micrographs were acquired on a Tecnai LaB6
G2 Spirit transmission electron microscope (FEI) operating at 120 keV. Micro-
graphs were collected using a GATAN Ultrascan 100 camera at a nominal mag-
nification of 21,000 (resulting in a pixel size of 4.92 Å), using a defocus range of
−0.5 to 2.5 μm. Negative-stain particles were picked using EMAN264, version 2.07,
and further image processing was performed in Relion-2.166. Particles were
extracted with a box size of 128 × 128 pixels and subjected to reference-free 2D
classification with the –only_flip_phases additional argument. Size of datasets was
as follows: 405 micrographs (75,527 particles) were collected for the MCM train
experiment; 228 micrographs (9302 particles) for the multi-site cut/minus
methyltransferase control; 112 micrographs (7977 particles) for the single-site cut/
minus methyltransferase control; 92 micrographs (4614 particles) for the single-site
cut/minus methyltransferase/minus Mcm10 control; 82 micrographs (8013 parti-
cles) for the single-site cut/plus methyltransferase/minus Mcm10 control.

Cryo-electron tomography. Twenty tilt series were collected in Tomography 4.0
on a Titan Krios (Thermo Fisher Scientific, Waltham, MA, USA) equipped with a
GIF quantum energy filter with a slit width of 20 eV and K2 summit detector
(Gatan, Pleasonton, CA, USA). Images were collected from ± 54° with a 3°
increment at a pixel size of 2.71 Å. Each exposure received a dose of 3 e/Å2 that was
fractionated across four movie frames for a total dose of 111 e/Å2. The defocus
ranged from −5 to −7 μm. Movie frames were aligned with the alignframes
function in IMOD and the tilt series was subsequently aligned using fiducial-less
patch tracking option in IMOD. 2D CTF correction was performed with ctfpha-
seflip. Tomograms were reconstructed by weighted back-projection and subjected
to a SIRT-like filter equivalent to 1 iteration.

Template matching of tomograms was performed with the MOLMATCH
software55. Individual MCM and CMG maps filtered to 20 Å resolution were used
as templates that were systematically rotated and translated before cross-
correlation with a region of the tomogram. Euler angle range used for scanning was
0–360 for phi, 0–360 for psi, and 0–180 for theta, with a 10° increment. Missing
wedge compensation was applied to the template, therefore constraining the cross-
correlation to the experimentally sampled fraction of Fourier space. For each
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template, 3D coordinates and orientations that corresponded to the maximum
correlation coefficients were extracted using the AV3 toolbox in Matlab
(av3_createmotl)68. The top MCM and CMG matches were displayed against the
tomogram with the EM Package for Amira 5.369 (Thermo Fisher Scientific,
Waltham, MA, USA), using the positions and orientations determined by
MOLMATCH55.

Data availability
Pol epsilon variant deltacat has been deposited with the EMBD with accession code
EMD-0287 and the atomic model with the Protein Data Bank under accession code
PDB 6HV8. CMG-Pol epsilon is deposited under EMDB entry EMD-0288 and the
corresponding atomic model under accession code PDB 6HV9. A reporting
summary for this Article is available as a Supplementary Information file. All
experimental data are available upon reasonable request.
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