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A B S T R A C T

Recent human functional magnetic resonance imaging (fMRI) and animal electrophysiology studies suggest that
grid cells in entorhinal cortex are an efficient neural mechanism for encoding knowledge about the world, not
only for spatial location but also for more abstract cognitive information. The world, be it physical or abstract, is
often high-dimensional, but grid cells have been mainly studied on a simple two-dimensional (2D) plane. Recent
theoretical studies have proposed how grid cells encode three-dimensional (3D) physical space, but it is unknown
whether grid codes can be examined non-invasively in humans. Here, we investigated whether it was feasible to
test different 3D grid models using fMRI based on the direction-modulated property of grid signals. In doing so,
we developed interactive software to help researchers visualize 3D grid fields and predict grid activity in 3D as a
function of movement directions. We found that a direction-modulated grid analysis was sensitive to one type of
3D grid model – a face-centred cubic (FCC) lattice model. As a proof of concept, we searched for 3D grid-like
signals in human entorhinal cortex using a novel 3D virtual reality paradigm and a new fMRI analysis method.
We found that signals in the left entorhinal cortex were explained by the FCC model. This is preliminary evidence
for 3D grid codes in the human brain, notwithstanding the inherent methodological limitations of fMRI. We
believe that our findings and software serve as a useful initial stepping-stone for studying grid cells in realistic 3D
worlds and also, potentially, for interrogating abstract high-dimensional cognitive processes.
1. Introduction

Grid cells in entorhinal cortex (EC) have received much attention
from researchers in the field of spatial navigation because of their unique
firing pattern. A grid cell, which is typically recorded in rodents when the
animal explores a flat 2D surface in the laboratory, fires at multiple pe-
riodic locations resembling a hexagon (Hafting et al., 2005, Fig. 1A).
Importantly, different grid cells have different spatial scales and phases,
the combination of which enables efficient encoding of an entire space
using relatively few cells, compared to when each individual cell fires at
unique locations, as is the case with hippocampal place cells. Given that
some animals, like bats, naturally explore volumetric space and humans
can also explore 3D environments underwater or in microgravity con-
ditions, the question naturally arises as to how grid cells would behave in
3D.

The need to understand high dimensional grid codes has become
more acute as a result of recent findings of grid cell involvement in non-
spatial tasks. For example, electrophysiology studies have found that grid
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cells do not only encode the physical location of animals but also encode
a continuously changing auditory tone in rats (Aronov et al., 2017) and
visual space in primates (Killian et al., 2012). Human fMRI studies have
also observed grid-like signals that encode locations during mental im-
agery (Bellmund et al., 2016; Horner et al., 2016), features of abstract
visual stimuli (Constantinescu et al., 2016) and eye position during 2D
visual search (Nau et al., 2018; Julian et al., 2018). This suggests that grid
cells may be suitable for more abstract “cognitive mapping” (Tolman,
1948). If grid cells are indeed involved in abstract cognitive mapping, the
‘space’ might not be limited to simple 2D physical space on which most
grid cell research has to date been conducted, because cognitive tasks can
involve more than two features or attributes. Grid cells should also be
able to efficiently encode 3D and higher dimensional space (unless the
high dimensional cognitive problem can be projected into low dimen-
sional space, e.g. context-dependent encoding).

Recent theoretical studies have offered predictions about the forms of
grid codes that optimise encoding efficiency in 3D. These are analogous
to the position of the centre of spheres tightly packed in 3D space, known
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Fig. 1. 2D grid cells. A. A grid cell fires at multiple
locations (called grid fields, red circles) which corre-
spond to the centre of circles closely fitted in a 2D box.
B. A grid cell's activity is modulated by the animal's
movement direction (black arrow) relative to the grid
axis (green lines linking one grid field to its neigh-
bouring six grid fields). ϕ denotes the angle between
the movement direction and the grid axis. The grid
cell fires more when an animal's moving direction is
aligned to one of the grid axes. A grid axis is regularly
displaced with 60� periodicity (right panel), therefore,
a grid cell's activity also shows a periodic response
pattern depending on the animal's movement
direction.
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as a face-centred cubic lattice (FCC), hexagonal close packing (HCP), or
intermediate arrangements that yield the highest packing ratio (Mathis
et al., 2015, Fig. 2). Although at least one research group is currently
testing grid cells in flying bats (Ginosar et al., 2018), there is as yet no
clear empirical evidence of grid cells showing a regular 3D structure.
Technical difficulties associated with recording animals freely moving in
Fig. 2. FCC and HCP models. A grid cell is proposed to fire at multiple 3D locations
closely fitted in a box (A,F). The FCC and HCP arrangements have equally high packi
on top of each other with a translational shift between the layers. FCC is composed of t
repeating layers (blue and red). The top-down views show spheres of reduced radius
grid field to the neighbouring 12 grid fields (C,D,H,I). FCC is a pure lattice in the mat
are symmetric; C), and can be described by three basis vectors. Thus, every sphere is
layer (C) and a sphere on the blue layer (D). HCP lacks such symmetry (e.g. blue spher
3D arrangement of a unit cell is different for different layers, e.g. a sphere on the red la
rotated from each other. Therefore, a grid axis can be defined only locally in HCP. Sim
alignment between an animal's movement direction (black arrow) and the grid a
component of the movement direction relative to the grid axis, a grid cell's activity
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3D space might be one reason for the dearth of empirical findings relating
to 3D grid fields.

In humans, direct recording of grid cells in 3D is even more chal-
lenging. Invasive electrophysiology is only possible in a clinical setting
with numerous limitations in experimental design, location of electrodes
and the health of the participants. It would, therefore, be preferable to
(called grid fields, coloured spheres) which correspond to the centre of spheres
ng density. The 3D arrangements can be viewed as 2D hexagonal lattices stacked
hree repeating layers (blue, yellow and red spheres) and HCP is composed of two
for visualization purposes (B,G). Grid axes are shown as green lines linking one
hematical sense, that is symmetric along the origin (e.g. blue and yellow spheres
surrounded by other spheres in the same arrangement, e.g. a sphere on the red
es on the top layer and bottom layer are not symmetric across the origin; H). The
yer (H) and a sphere on the blue layer (I) are surrounded by spheres that are 60�

ilar to a grid cell in 2D, it is expected that a grid cell's activity is modulated by the
xis (green lines) (C,D,H,I). Depending on the vertical (θ) and horizontal (ϕ)
is expected to show a complex pattern of responses (E,J).
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test for the existence of 3D grid codes non-invasively. Initial investigation
with accessible and non-invasive methods like fMRI might also promote
further research – for instance, the first intracranial recording of 2D grid
cells in the human brain (Jacobs et al., 2013) was preceded by an fMRI
study that found grid-like signals (Doeller et al., 2010). An obvious
limitation of fMRI is that it cannot directly measure potential 3D grid
fields. Yet, none of the previous theoretical studies on 3D grid cells
suggested a method for detecting 3D grid cells using a macroscopic
measurement technique like fMRI (Mathis et al., 2015; Stella and Treves,
2015; Horiuchi and Moss, 2015).

Therefore, the goal of this study was to examine whether it was
feasible to empirically test different 3D grid models (e.g. FCC, HCP, or
others) by extending the fMRI grid analysis that was originally developed
in 2D (Doeller et al., 2010). In the Methods section, we first explain the
principle of detecting 3D grid codes using the graphical user interface
(GUI) software that we developed to visualize 3D grid structure and
direction-modulated signals. A detailed description of the analysis
method and several methodological issues that are either unique to 3D or
relevant to both 2D and 3D then follows. Next we provide a proof of
concept that our 3D grid analysis method can detect an FCC grid-like
signal in the human EC by applying our analysis to empirical fMRI
data. In this experiment, participants weremoved in a virtual zero gravity
environment inside the MRI scanner, with pre-scan training that involved
a virtual reality (VR) head-mounted display. Finally, we discuss the
methodological limitations and future directions for studying 3D grid
signals.

2. Methods

2.1. Grid analysis

2.1.1. A principle for detecting 3D grid codes using fMRI
Before we propose a method for detecting 3D grid codes, we will first

summarise how 2D grid codes have been probed in previous fMRI
studies. fMRI measures the gross activity of thousands of neurons via
complex neural-hemodynamic coupling.When the thousands of grid cells
that fire at different locations are summed up, the gross activity is no
longer expected to respond to fixed periodic locations in the environ-
ment. However, there is another important property of grid cells that
enables their detection at a macroscopic level like fMRI (Doeller et al.,
2010). The activity of ‘conjunctive’ grid cells is modulated by the
alignment between the movement direction of an animal and the grid
axis (Doeller et al., 2010). This means that a grid cell shows greater ac-
tivity when an animal moves in directions parallel to one of the grid axes
compared to other directions (Fig. 1B). As the majority of grid cells share
a common grid axis, the summed response of thousands of grid cells can
be systematically modulated by the movement direction of a participant.
In previous studies that investigated grid cells in 2D, fMRI activity was
modelled as a cosine function of movement direction relative to the grid
axis with a period of 60� to account for hexagonal symmetry (e.g. Doeller
et al., 2010; Constantinescu et al., 2016). Another explanation for the
direction-modulated grid signal measured by fMRI is that when a par-
ticipant's movement direction is aligned with the main grid axis, rela-
tively few grid cells are repeatedly activated, whereas when the
movement is not aligned with the main grid axis, more cells are irregu-
larly activated. The fMRI response can be different in these two cases due
to non-linear neural-hemodynamic coupling (e.g. Doeller et al., 2010).

We assume that the same principle of direction-modulation will hold
in 3D, so that fMRI activity can be modelled as the degree of alignment
between 3D movement direction and the grid axis. The question we face
is how to define and predict the grid axis if grid cells have 3D receptive
fields following either the FCC or HCP arrangements (Mathis et al., 2015;
Stella and Treves, 2015). Both FCC and HCP arrangements are analogous
to the spatial arrangement of tightly stacked spheres inside a box with a
minimum gap (e.g. like oranges in a crate). These 3D arrangements can
be viewed as 2D hexagonal lattices stacked on top of each other with a
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translational shift between the layers. FCC is composed of three repeating
layers (blue, yellow and red spheres, see Fig. 2A and B) and HCP is
composed of two repeating layers (blue and red spheres, see Fig. 2F and
G). In both models, one centre sphere is surrounded by 12 neighbouring
spheres (Fig. 2C,D,H,I). To enable ourselves and other researchers to
visualize the 3D receptive fields of grid cells, we developed interactive
web-based software where users can zoom, pan, rotate, and cross-sect the
3D arrangements (the software, including a manual, can be accessed
here: www.fil.ion.ucl.ac.uk/Maguire/grid3D_gui). Example screenshots
are shown in Fig. 3. The software was implemented using Unity 5.4
(Unity Technologies, CA, United States). Of note, this software was
developed for visualization purposes and does not have an fMRI data
analysis function. fMRI analysis software for 2D grid codes is already
available (Stangl et al., 2017).

FCC is a pure lattice where the location of each node can be described
by a linear combination of three basis vectors. The FCC arrangement is
symmetric across the origin (e.g. the blue and yellow spheres are facing
each other, Fig. 2C) and every grid field is surrounded by 12 grid fields in
the same arrangement. Thus, it is intuitive to define the grid axis as the
direction linking one grid field to its neighbouring grid fields (the green
lines linking a centre black sphere to neighbouring coloured spheres in
Fig. 2C and D). We can thenmodel the fMRI signal as a cosine of the angle
between the 3D movement direction and the nearest grid axis. Thus, a
larger signal is expected when the angle is smaller (i.e. the movement is
aligned to the grid axis). The nearest grid axis forms the minimum angle
with the direction vector. We can predict the grid cell's response when a
participant is moving in a particular 3D direction, defined by azimuth
(horizontal angle) and pitch (vertical angle) using our interactive soft-
ware (example screenshots are shown in Fig. 4A and B). Fig. 2E shows the
predicted grid activity as a function of azimuth and pitch of a movement
direction relative to the grid axis.

Importantly, predicting the direction-modulated grid signal is not
straightforward for the HCP model because HCP is not a pure lattice, as
has been discussed in previous theoretical studies (Mathis et al., 2015;
Stella and Treves, 2015). Unlike the FCC, the HCP arrangement is sym-
metric across the horizontal plane (e.g. the blue spheres on a layer above
the red spheres are located at the identical positions as the blue spheres
on the layer below, Fig. 2H). Therefore, the arrangement of unit grid
fields is dependent upon the layer (Fig. 2H and I are 60� rotated from
each other). This means that the grid axis is defined only locally in HCP
(Supplementary Fig. 1; note that this is more evident when viewing the
3D arrangements using our 3D visualization software). This imposes a
limitation in predicting a direction-modulated fMRI signal which is
dependent upon the global grid axis. There is currently no empirical data
on how the fMRI signal would vary when receptive fields of grid cells
follow a non-lattice structure. One can, nevertheless, attempt to model
the grid voxel's activity for the HCPmodel using one set of locally defined
grid axes (Fig. 2H) with this caveat in mind. This yields largely similar
response patterns to the FCC model except for the difference in vertical
symmetry (Fig. 2E and J). We later show a simulation whereby the FCC
and HCP models can still be distinguished if the HCP model follows the
locally defined grid axis (see the section “Estimating 3D grid orienta-
tion”). Predicting fMRI signals is even more challenging if grid cells have
3D receptive fields that follow neither FCC nor HCP models. 2D hexag-
onal layers that are stacked with any order (e.g. blue – yellow – red –

yellow – red – blue layers in Fig. 2A) also yield the same packing density
and have been proposed as a probable grid code (Mathis et al., 2015). In
this case, there is more variation in the local grid axis.

In summary, we predict that a macroscopic measurement which relies
upon the shared grid axis of neighbouring grid cells would be most
sensitive to detecting a grid response that follows a perfect lattice
structure – FCC. This means that a macroscopic measurement that relies
upon the direction-modulation of a grid signal is unfortunately not suited
to making comparisons between different 3D grid models. Nevertheless,
developing an analysis method that can probe at least one type of 3D grid
model using fMRI is an important starting point for understanding

http://www.fil.ion.ucl.ac.uk/Maguire/grid3D_gui


Fig. 3. Screenshots of our 3D grid fields visualization software. The software, including a manual, can be accessed here: www.fil.ion.ucl.ac.uk/Maguire/grid3D_gui.
Users can change the viewpoint, the size of the spheres, and select cross-sectional views of grid fields. Users can also switch between the FCC and HCP arrangements.
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whether 3D grid codes are even detectable in humans. In the rest of the
Methods section, we detail the analysis method and validation with this
purpose in mind.

2.1.2. The orientation of the grid axis relative to the environment
In the previous section, we explained that grid activity can be

modelled as movement direction relative to the grid axis. Crucially, the
movement direction of a participant is known to experimenters, while the
orientation of the grid axis relative to the 3D environment is unknown.
Fig. 5 describes two hypothetical cases where a participant moves in the
same direction but the grid axis is oriented differently. In Fig. 5A, a
participant's movement direction (black arrow) is relatively closely
aligned to the grid axis with an angular deviation of 14�, resulting in high
activity (the yellow bar graph). In Fig. 5B, due to a different orientation
of the grid axis, the same movement direction is farther away from the
grid axis with an angle of 35�, resulting in low activity. The orientation of
the grid axis can be numerically estimated by iteratively fitting the
experimental data - a process we describe in a later section.

Unlike in 2D where the orientation of the grid axis can be specified by
one polar angle from a reference direction (e.g. 20� from the north-south
axis), the grid axis in 3D can in theory be rotated along any three arbi-
trary axes and the order of applying each rotation also matters (known as
the non-commutative property of 3D rotation). Although users can
explore these 3D rotation options in our software, we restricted the
rotation of the 3D grid axis to only one axis so that six hexagonal grid
fields (the red spheres in Fig. 5) remain parallel to the ground of the
environment when we analyse our fMRI data. This restriction in the
rotation axis can be justified by the fact that grid cells on a 2D horizontal
surface show corresponding grid fields. This restriction is also required
when comparing putative grid orientations across multiple voxels or
multiple participants using a standard circular statistic like a von Mises
distribution. Conducting the modelling process in this way simplifies it
and reduces the computational cost and the risk of overfitting GLMs for
hundreds of possible 3D rotations with a limited fMRI time series.

2.1.3. The relationship between the grid alignment score and fMRI activity
A grid voxel's activity is expected to be modulated by the degree of
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alignment between the movement direction and the grid axis, and we
defined the grid alignment score as the cosine of the angle between the
movement direction and the nearest grid axis. This is equivalent to the
previous grid analysis in 2D which used parametric regressors of cosine
and sine functions (Doeller et al., 2010; Horner et al., 2016), except for a
minor difference in that our method predicts more abrupt changes in grid
alignment scores when the movement direction passes the midpoint of
two neighbouring grid axes (Supplementary Figs. 2B and C). Of note, the
precise form of the direction-modulated firing rate of grid cells is not
known in either 2D or 3D. There is also additional complexity in
measuring a grid cell's signal via neural-hemodynamic coupling. There-
fore, it is also possible to model the grid voxel's activity with a
non-sinusoidal function, like a linear, binary or even more complex
functions (Supplementary Figs. 2D and E). The exact relationship be-
tween direction-modulated grid activity and the fMRI response should be
examined in future studies, but for now we believe that our choice of
modelling the fMRI signal with the cosine of the angle is a reasonable
starting point, as it is in line with previous studies in 2D.

2.1.4. Estimating 3D grid orientation in fMRI data
In this section, we describe how to estimate 3D grid orientation from

an fMRI time series. As explained earlier, the grid alignment score can be
calculated as the cosine of the angle between the participant's movement
direction (known to experimenters) and the nearest grid axis. The nearest
grid axis is determined by the orientation of the grid axis relative to the
environment, which is unknown to the experimenters (Fig. 5). In 2D, the
grid activity can be modelled as a simple cosine function of the horizontal
movement direction (φ) and the orientation of grid axis (ω), and the
orientation (ω) can be estimated analytically by fitting cosine and sine
functions in a GLM (e.g. a quadrature filter, Doeller et al., 2010):

cosð60� �φ� ωÞ ¼ cosð60� �φÞ � cosðωÞ � sinð60� �φÞ � sinðωÞ
However, a simple analytical function of azimuth (φ), pitch (θ) and

the grid axis orientation (ω or more parameters) which can describe the
grid alignment score in 3D is unknown. We, therefore, suggest a simple
numerical method to estimate grid orientation as follows:

http://www.fil.ion.ucl.ac.uk/Maguire/grid3D_gui


Fig. 4. A grid cell's activity is modulated by the movement direction relative to the grid axis. A. A participant's 3D movement direction (black arrow, left panel) is close
to the grid axis (white line, left panel) with 5� deviation. Thus, the activity of grid cells is expected to be high (yellow bar graph, right panel). B. A participant's
movement direction (black arrow, left panel) is far away from the grid axis (white line, left panel) with 30� deviation. Consequently, less activity is expected (yellow
bar graph, right panel). Users can change the movement direction using the sliders on the right panel. Users can also switch between the FCC and HCP models and
change the viewpoint.
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We first assume that the grid orientation is aligned at 0� from a
reference direction (e.g. parallel to the side wall of the environment) and
then calculate the grid alignment score. This grid alignment vector is
then convolved with the hemodynamic response function (SPM canoni-
cal hemodynamic response function). The resulting vector serves as a
hypothetical grid voxel signal. We create a general linear model (GLM)
which contains this predictive 3D grid signal and nuisance regressors that
include six head motion realignment parameters and experiment-specific
conditions like an occasional question and response period. The fMRI
time series (after standard preprocessing) in each voxel and in each
scanning session is then fitted with the GLM, and the outcomes - beta
(regression coefficients) and adjusted R square values (Soch and Allefeld,
2018) - are saved for each voxel.

We then repeat the whole procedure with newly calculated grid
alignment scores with different assumptions, namely that the grid
orientation is aligned at 15, 30, 45, …, 120� relative to the environment
(note that we only need to sample the grid orientation up to 120�, as the
geometry of the 3D lattice structure of both FCC and HCP is symmetric for
the 120� rotations on a plane). For each voxel and each scanning session,
we select the orientation of the grid axis that gives the best fit by
comparing the adjusted R square of these multiple GLMs. A GLMwith the
largest adjusted R square and a positive regression coefficient for the grid
signal regressor is selected. The reason we select the GLM with a positive
regression coefficient is to avoid the inverted relationship between the
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hypothetical grid cell's signal and the fMRI response (e.g. when move-
ment is more aligned to the grid axis, the fMRI signal is lower). In rare
case (<10% of voxels in our empirical data – see later sections) where all
grid orientation models yield a negative regression coefficient, we simply
select the GLM with the largest R square. To summarise, this iterative
fitting process identifies which grid orientation best describes the fMRI
signal in each voxel and in each scanning session.

Of note, we compared our numerical estimation method and the
previous quadrature filter approach using simulated data in 2D (Sup-
plementary Text 1). The simulation showed that both methods could
detect a grid-like signal equally well at reasonable signal-to-noise ratios
and sampling resolutions. We also tested whether the FCC and HCP grid
models can be dissociated using synthetic data (Supplementary Text 2).
This simulation showed that the correct model can be identified if the
signal-to-noise ratio is high.

2.1.5. Testing for a grid signal in the fMRI data
We then test whether each voxel shows a consistent 3D grid signal

across different scanning sessions by quantifying the regression coeffi-
cient of the grid signal model. For instance, if the fMRI data in one
scanning session (e.g. run 1) is best fitted with a grid model that aligns at
15�, we measure the grid score as the beta of the same grid orientation
(15�) model in the another scanning session (e.g. run 3). The beta values
of voxels in the brain region of interest (ROI) are averaged for each



Fig. 5. The orientation of the grid axis relative to the environment. The movement direction (black arrow, left panel) is identical in A and B (azimuth¼ 55�,
pitch¼ 50� in this example). However, grid cells are aligned differently relative to the environment (rectangular frame, left panels in A and B), meaning that the grid
axes are rotated from each other (left panel). Thus, the grid alignment scores measured as the angle between the movement direction and the nearest grid axis differ
(14� versus 35�), resulting in different amounts of grid activity (yellow bars graph, right panels in A and B). Users can change the orientation of the grid axis using the
sliders on the right panel.
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participant, and a t-test is used to test whether the beta is positive at the
group level (excluding outliers, participants with more than a standard
deviation of 3 in our empirical data). This approach is similar to previous
2D grid analyses where the grid orientation is estimated from one half of
the dataset and is tested on the other half of the dataset, and the
regression coefficient is analysed at the group level (e.g. Doeller et al.,
2010; a standard group level inference for fMRI experiments).

However, there is a difference between our study and some of the
previous studies in terms of grid orientation averaging. In Doeller at al.
(2010) and Horner et al. (2016), the estimated grid orientation of each
voxel within the EC ROI was averaged, and this averaged grid orientation
model was tested in the other half of the data. Here, we estimate and test
the grid orientation model within each voxel, then we later summarise
the grid score of voxels within the ROI. Neighbouring grid cells share a
common grid orientation which is the essential property of grid cells that
allows the detection of the direction-modulated signal at the fMRI voxel
level, and earlier fMRI studies assumed one unique grid orientation for
672
the entire EC. However, there is also evidence of multiple grid modules in
the EC that have different grid orientations and scales (Stensola et al.,
2012), and estimating and testing grid orientation at the voxel level,
instead of the whole ROI, might maximise the sensitivity of analyses. This
voxel-by-voxel estimation and test approach was used in a more recent
2D grid cell study (Nau et al., 2018).

2.2. Experimental protocol

In this section we describe an empirical fMRI experiment where data
were acquired while participants were exploring a virtual 3D environ-
ment. The experimental paradigm included a pre-scanning session with a
head-mounted display. We applied our proposed 3D grid analysis to this
dataset. This empirical dataset has been reported in a separate paper
which investigated vertical and horizontal head direction encoding
outside of the EC (Kim and Maguire, in press) , and is summarised here
for the reader's convenience. The 3D grid code analysis reported in the
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current paper is novel and has not been published elsewhere.

2.2.1. Participants
Thirty healthy adults took part in the experiment (16 females; mean

age 25.9� 4.8 years; range 19–36 years; all right-handed). All had
normal or corrected to normal vision and gave informed written consent
to participation in accordance with the local research ethics committee.

2.2.2. The virtual environment
Participants were instructed that they were exploring a virtual zero-

gravity environment, called “spaceship”, where they could move freely
up, down, forwards and backwards. This spaceship had two rectangular
compartments linked by a corridor (Fig. 6A, the environment can also be
viewed in our online software). Participants could orient themselves in
each compartment because the visual appearance of the walls differed
(e.g. a window on the west side and a grey wall on the east side; the
ceilings and floors also had different textures or hues). A snapshot of this
virtual spaceship as seen from a participant's perspective is shown in
Fig. 6B and C. The virtual environment was implemented using Unity 5.4
(Unity Technologies, CA, United States).

The virtual spaceship was rendered on two different mediums for pre-
scanning tasks and scanning tasks respectively: a head-mounted VR
display (Samsung Gear VR, model: SM-R322 with Samsung Galaxy S6
phone) and a standard computer screen (Dell Optiplex 980 with an in-
tegrated graphic chipset). The VR display was used because it has been
suggested that prior vestibular experience with a VR environment can
later reinstate the relevant body-based cues during fMRI scanning, when
only visual input is available due to head immobilisation (Shine et al.,
2016). The VR head-mounted display provided participants with a fully
immersive sensation of 3D space via its head motion tracking system,
stereoscopic vision and a wide field-of-view (96�). A rotation movement
in the VR display was made by a participant's physical head rotation and
a translational movement was made by a button press on the Bluetooth
controller (SteelSeries Stratus XL, Denmark). For example, a participant
could move up to the ceiling in the virtual spaceship by physically
looking above and pressing the forward button. To rotate to the right,
they physically rotated their head to the right or rotated their whole body
Fig. 6. The empirical experiment. A. A side view showing the layout of the virtual 3D
wearing a virtual reality head mounted display. C. During scanning, participants view
participants were flying in a 3D trajectory within the spaceship. Participants occasio
direction when questioned.
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when the required rotation was beyond the range of motion for neck
rotation. For ease of rotation, participants were seated on a swivel chair.

During fMRI scanning, participants watched a video rendered on a
standard computer screen (aspect ratio¼ 4:3, Fig. 6C). The video was a
first-person perspective that gave the participants the feeling of moving
in a virtual spaceship. The stimuli were projected on the screen using a
projector at the back of the MRI scanner bore (Epson EH-TW5900 pro-
jector), and participants saw the screen through a mirror attached to the
head coil. The screen covered a field of view of ~19� horizontally and
~14� vertically.

2.2.3. Pre-scan: VR memory task
Wearing the VR display, participants freely explored the environment

(5min) and then performed a spatial memory test (15min) where they
had to recall the location of balls by physically directing their head to the
remembered locations (Fig. 6B). During the memory task, on each trial
participants encoded the location of a floating ball by looking at it from
different directions and distances for 18 s. Immediately after the encod-
ing phase, participants were transported to a random fixed location and
then had to look at the remembered location of the ball. They received
feedback (angular error in degrees) after they made their decision. There
were 16 main trials where participants had to locate the ball within the
same compartment. We also added extra 6 trials where participants were
asked to point a ball's location across the wall from a different room.
These trials were included to encourage participants to encode a global
map of the environment.

2.2.4. fMRI scan: direction judgment task during passive viewing
During scanning, participants watched a video rendered on a stan-

dard display and performed a direction judgment task. The video pro-
vided participants with the feeling that they were flying in a controlled
3D trajectory within the spaceship (Fig. 6C). The pre-programmed video
allowed tight control of location, direction and timing for all participants.
The trajectory consisted of multiple short linear movements (each of 3 s)
followed by rotation (2/2.6 s). We restricted the range of movement di-
rections (�60 to 60� with 30� steps, both vertically and horizontally,
indicated by arrows in Fig. 6C) to increase the frequency of each
spaceship. B. Prior to scanning, participants explored the 3D environment while
ed a video rendered on a standard display. The video provided the feeling that
nally indicated, via a keypad response, their vertical and horizontal movement
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movement direction visited within the limited scanning duration. All
participants followed the same trajectory without abrupt rotations where
each of 25 directions (5 levels of pitch x 5 levels of azimuth) was evenly
sampled (min¼ 18, max¼ 20 trials). A constant linear and angular ve-
locity was applied in order to control velocity, which can also influence
grid cells’ activity (Sargolini et al., 2006). If a participant reached the
boundary of the spaceship, a blank screen appeared for 2 s and then a
trajectory started again from the other end of the spaceship. For 25% of
the time, a question screen appeared immediately after a linear move-
ment and participants indicated the direction of their last movement by
pressing an MR-compatible button pad (a 5-alternative forced choice
question with a time limit of 5 s; Fig. 6C). Vertical or horizontal questions
were randomly presented. This direction judgment task was used to
ensure participants kept track of their movements during scanning. The
two compartments of the spaceship were visited alternatively for each of
4 scanning sessions. Half of the participants started in one compartment
and half started in the other compartment. Each scanning session lasted
~11min with a short break between the sessions, making a total func-
tional scanning time of ~50min.

2.2.5. Post-scan debriefing
After scanning, participants were debriefed about how much they felt

immersed in the virtual environment during the pre-scan session with VR
head mounted display and during scanning. Participants chose from
multiple options: “I felt like I was really in the spaceship”; “I occasionally
thought about the environment as being computer-generated, but overall
the environment was convincing and I felt I was moving around in the
spaceship”; “I was often distracted by the feeling that I was not in a real
environment”.

2.2.6. Behavioural analyses
For the pre-scan memory task, we report the mean angular deviation

for the main trials (where participants had to look towards the remem-
bered location of the ball within the same compartment of the environ-
ment). We then report the overall accuracy of the direction judgment task
during scanning (chance¼ 20%) to check whether participants knew in
which direction they were moving in the 3D environment. Further data
and analyses related to the vertical and horizontal direction sensitivity,
are available in preprint form here (Kim and Maguire, in press) . For the
debriefing question, we counted the number of responses for each option.

2.2.7. Scanning and pre-processing
T2*-weighted echo planar images (EPI) were acquired using a 3T

Siemens Trio scanner (Siemens, Erlangen, Germany) with a 32-channel
head coil. Scanning parameters optimised for reducing susceptibility-
induced signal loss in areas near the orbitofrontal cortex and medial
temporal lobe were used: 44 transverse slices angled at �30�,
TR ¼ 3.08 s, TE ¼ 30 ms, resolution ¼ 3 � 3 � 3mm, matrix
size ¼ 64� 74, z-shim gradient moment of �0.4mT/m ms (Weiskopf
et al., 2006). Fieldmaps were acquired with a standard manufacturer's
double echo gradient echo field map sequence (short TE¼ 10ms, long
TE¼ 12.46ms, 64 axial slices with 2mm thickness and 1mm gap
yielding whole brain coverage; in-plane resolution 3� 3mm). After the
functional scans, a 3D MDEFT structural scan was obtained with 1mm
isotropic resolution.

Preprocessing of data was performed using SPM12 (www.fil.ion.ucl.
ac.uk/spm). The first 5 volumes from each functional session were dis-
carded to allow for T1 equilibration effects. The remaining functional
images were realigned to the first volume of each run and geometric
distortion was corrected by the SPM unwarp function using the field-
maps. Each participant's anatomical image was then coregistered to the
distortion corrected mean functional images. Functional images were
normalised to MNI space and smoothed with 6mm kernel.

2.2.8. ROI selection
We used anatomical ROIs, left and right EC masks (Fig. 7A). The ROIs
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were manually delineated on the group-averaged MRI scans from a
previous independent study on 3D space representation (Kim et al.,
2017) following the protocol in Pruessner et al. (2002). The number of
functional voxels (3� 3� 3mm) within the ROI masks was 47 (left) and
49 (right). Of note, EC was further divided into posterior medial and
anterior lateral parts in one previous fMRI study (Bellmund et al., 2016),
based on the finding in rodents that grid cells are typically reported in the
medial EC. However, our study used standard resolution fMRI and
further segmentation of this kind was not feasible. Functional speciali-
sation within the EC is an interesting topic that needs to be further
addressed in future studies with high-resolution scanning sequences.

Another important consideration for selecting EC ROIs is that EC is
notoriously difficult to image because of fMRI susceptibility artefact in
this vicinity. Although sequence development continues in this regard,
EC still has inherently low raw BOLD signal compared to other cortical
regions. Crucially, standard fMRI analysis software like SPM excludes
voxels of low signal by default. The “global masking threshold” param-
eter in the first-level model specification in SPM determines which voxels
are to be included in the analysis based on the raw intensity, and EC
voxels can often be excluded. It can also result in a different number of
voxels in an EC ROI for each participant. We caution researchers about
excluding voxels for two reasons. First, an exclusion criterion based on
the mean BOLD intensity can be arbitrary. Depending on the version of
the software, some voxels can be included or excluded from the analysis.
Second, raw BOLD intensity alone does not predict whether a voxel
shows functional modulation. For instance, whereas the raw signal in-
tensity of cerebrospinal fluid (CSF) is higher than most other cortical
areas, we rarely observe meaningful signals in the CSF in typical cogni-
tive experimental paradigms. In our study, we defined the EC ROIs purely
anatomically, without excluding any voxels based on raw signal intensity.

2.2.9. Main grid analysis
We applied the 3D grid analysis that we described in detail above to

the preprocessed fMRI dataset. In essence, we estimated the orientation
of the 3D grid axis for the FCC model in each voxel and scanning session
by iteratively fitting the fMRI time series to the predicted grid alignment
score defined as the cosine of movement direction and the nearest grid
axis. The grid model was tested on another scanning session. Because our
virtual spaceship had two compartments, we trained and tested the grid
cell models within each compartment, and averaged the regression co-
efficient of the two compartments.

We then tested whether the estimated grid orientation of the FCC
model was clustered across voxels within participants or across multiple
participants. To test the voxel-wise clustering within participants, we
calculated the percentage distribution of angular distance between the
circular mean grid orientation and the estimated grid orientation of each
voxel within ROIs in each participant (¼histogram with bins centred at
�45,�30,�15, 0, 15, 30, 45, 60� difference in putative grid orientation).
If the grid orientation was clustered across voxels, this distribution would
be non-uniformly distributed with the mode centred at 0. We averaged
the angular distance distribution across participants, then applied a V-
test for non-uniformity. To test the clustering across participants, we
applied a Rayleigh test for non-uniformity to the circular mean grid
orientation across participants. If the grid axis was anchored to visual
features in the environment such as landmarks or the boundary, every
participant would exhibit a similar grid orientation. The circular mean
and non-uniformity test was computed using the CircStat 2012a toolbox
(Berens, 2009). We normalised the grid orientation into 2*pi radians
before we applied the V-test or Rayleigh test because the putative grid
orientation was defined between 0 and 120� whereas standard circular
statistics is applied for 0–360�.

We also tested whether the HCP grid model explained signal in the EC
despite the methodological limitation which we explained earlier.

2.2.10. Control analysis – direction or view encoding model
Our 3D grid analysis (as well as the 2D grid analyses in the literature)

http://www.fil.ion.ucl.ac.uk/spm
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Fig. 7. 3D grid-like representations in the left EC. A. Bilateral EC (red) ROIs are shown on the group-averaged structural MRI scan. B. The mean beta of the FCC grid
cell model was significantly positive in the left EC. There was a similar trend in the right EC (p¼ 0.054). C. Putative FCC grid orientation in the left EC was clustered
around the mean grid orientation within participants (the left rose plot), but random across participants (the right polar plot). D. The HCP model was not significant in
either EC (see the main text for a methodological limitation related to this). E. Control models (view or direction encoding models, a square lattice model and an
azimuth-only grid model) were also not significant in the EC. *p < 0.01. The error bars are 1 SEM.
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relies on the dependency of the neural signal on movement direction, and
one concern is whether a neural signal that is responsive to one particular
direction (or the view associated with a direction) could be weakly
correlated with a grid model and so identified as a grid signal. This
was why we used a direction (or view) encoding model as a control
analysis. We created a direction-sensitive model signal which was sen-
sitive to one of nine 3D directions that were visited by participants in a
virtual environment. The nine directions were regularly sampled both
horizontally and vertically: (azimuth, pitch in degrees) ¼ (�60, �60),
(�60, 0), (�60, 60), (0, �60), (0, 0), (0, 60), (60, �60), (60, 0), (60, 60).
Following Bellmund et al. (2016), we assumed that each
direction-sensitive neural response had a margin of 30�. This meant that
neurons or voxels that responded strongly to (0, 0) direction would also
respond strongly to (�30, �30), and would respond weakly to the rest of
the movement directions. We convolved the binary direction response
vector with the hemodynamic response function. We created a GLM
similar to the grid cell model described in the previous section but now
the grid signal was replaced by the direction encoding signal. Again, the
best direction-encoding model was selected for each voxel from one
scanning session and then tested on a different scanning session. If voxels
in our ROIs (left and right EC) responded to unique directions, we would
see a significantly positive regression coefficient for a direction model at
the group level.

2.2.11. Control analyses – other grid models
In 2D, a non-hexagonal grid model, such as a 4-fold symmetry, has

been used as a control model (Doeller et al., 2010). Similarly, we tested
whether fMRI signal in the EC was explained by a square lattice model
(Fig. 8A). A square lattice model has a lower packing density than the
FCC and HCPmodels, so the square lattice model is not an optimal way of
encoding 3D space. Just as in our testing of the FCC and HCP models, we
assumed that the activity of a grid voxel was modulated by the alignment
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score (cosine of angle) between movement direction and the grid axis
orientation (Fig. 8A).

We also tested a hexagonal grid model which was only responsive to
the horizontal axis (“Azimuth-only”). This model is related to the pre-
vious observation in rats that receptive fields of grid cells were vertically
elongated in a spiral staircase apparatus (Hayman et al., 2011) (Fig. 8B).
We know nothing about whether or not there are direction-modulated
signals when grid cells have such anisotropic receptive fields, but we
think it is reasonable to assume that grid activity would be only modu-
lated by the horizontal angle between movement direction and the grid
axis, independent of pitch, in this case (Fig. 8B). For example, grid ac-
tivity would be high if a participant moves in a 0�, 60�, 120�, 180�, 240�,
300� direction (azimuth-wise) independent of whether they move up or
down.

2.2.12. Control analysis –primary sensory cortex ROIs
We tested the FCC grid model in size-matched control brain regions to

reassure that the grid-like representation we identified in EC was not
merely an artefact that was present across the whole brain. We defined
spherical ROIs (radius 7mm) centred at peak coordinates from the fMRI
meta-analysis toolbox Neurosynth using the key words “primary audi-
tory” [-44, �24, 8] and “primary visual” [-8, �86, 0] (Yarkoni et al.,
2011). In addition, we tested the view encoding model in the primary
visual cortex ROI.

3. Empirical results

3.1. Behavioural

During the pre-scan memory task, participants were reasonably suc-
cessful at locating a ball's position (mean error 21�, SD 9�, Fig. 6B). The
mean accuracy of direction judgments during scanning was well above



Fig. 8. Control grid models. A. Receptive
fields of hypothetical grid cells which follow
a square lattice arrangement (the left panel).
The grid activity is expected to be modulated
by the movement direction (the black arrow)
relative to the orthogonal grid axis (the
green lines, the middle panel). It displays 90�

periodicity for azimuth (ϕ) when vertical
pitch (θ) is close to zero (the right panel). B.
Receptive fields of hypothetical grid cells
which show hexagonal periodicity only
along the horizontal axes and not along the
vertical axis (the left panel). The grid activity
is expected to be modulated by the horizon-
tal movement (ϕ) independent of whether a
participant is moving up or down (θ, the
middle and the right panels).
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chance level (mean 74%, SD 16%; chance 20%), suggesting that partic-
ipants knew their 3D movement direction in the virtual environment
during scanning.

The rating data showed that participants felt immersed in the virtual
environment, with the vast majority choosing either “I felt like I was
really in the spaceship” (57% for the pre-scan VR head mounted display
task, 10% for the scanning task) or “I occasionally thought about the
environment as being on a computer screen, but overall the environment
was convincing and I felt I was moving around in the spaceship” (43% for
the pre-scan VR head mounted display task, 80% for the scanning task).
This result implies that our virtual environment effectively conveyed a
sense of being in 3D space.

3.2. fMRI – main grid analysis

We tested whether fMRI signals in the left and right EC was modu-
lated by participants’ 3D direction as predicted by the FCC lattice model.
The FCC grid model was significant in the left EC (t(28)¼ 2.6, p¼ 0.008,
one-sided), and showed a trend in the right EC (t(28)¼ 1.7, p¼ 0.054,
one-sided) (Fig. 7B).

The putative FCC grid orientation of each voxel was clustered around
the mean orientation within participants (V-test in the left EC, V ¼ 33.6,
p ¼ 1.0*10�6; the right EC, V ¼ 30.5, p ¼ 7.9*10�6, Fig. 7C) similar to
previous studies (Nau et al., 2018; Julian et al., 2018). By contrast, the
mean grid orientation was not significantly clustered across participants
(Rayleigh's test for non-uniformity in the left EC, roomA, z¼ 1.6, p¼ 0.2;
room B, z¼ 1.5, p¼ 0.2; the right EC, room A, z¼ 1.6, p¼ 0.2; room B,
z¼ 0.3, p¼ 0.8, Fig. 7C), suggesting that the grid axis was not
anchored to, or driven by, particular features of the environment. This
non-clustered grid orientation across participants is consistent with
previous studies which used a circular arena (Doeller et al., 2010; Nau
et al., 2018). Of note, Julian et al. (2018) observed a clustering of grid
orientation around 7.5� to the cardinal axis (modulo 15�) for a square
arena, but not for a rectangular environment that was similar to that of
our spaceship.

We also tested the HCP grid model with the assumption that the fMRI
signal is modulated by the local grid axis. The HCP model did not
significantly explain the response of either EC (the left EC, t(29)¼ 0.4,
p¼ 0.3, the right EC, t(29)¼ 0.4, p¼ 0.3, one-sided, Fig. 7D). However,
as we explained in the Methods section, an fMRI analysis that relies on a
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direction-modulated grid signal is not ideal for detecting the HCP model
because it lacks a global grid axis. Thus, a further comparison between
the FCC and HCPmodels requires future electrophysiological studies that
can directly assess the receptive fields of grid cells.

3.3. fMRI – control analyses

To exclude the possibility of a neural signal sensitive to one particular
direction (or associated view) being identified as a grid voxel, we tested a
unique direction encoding model as a control. The direction encoding
model was not significant in either EC (left EC, t(29)¼ -1.8, p¼ 0.9; right
EC, t(29)¼ -1.5, p¼ 0.9, one-sided, Fig. 7E), suggesting that the FCC
grid-like signal that we observed in the EC was not driven by one
particular direction.

We also tested a square lattice model and an azimuth-only model
where vertical pitch was ignored. Neither of these models significantly
explained the fMRI signal in the EC (square lattice model: left EC,
t(29)¼ -1.1, p¼ 0.9; right EC, t(29)¼ -0.7, p¼ 0.7; azimuth-only model:
left EC, t(29)¼ 1.0, p¼ 0.2; right EC, t(29)¼ 1.0, p¼ 0.2, one-sided,
Fig. 7E).

Finally, we tested the FCC grid model in size-matched primary
auditory cortex and visual cortex ROIs. The primary auditory cortex did
not show a grid-like signal (primary auditory cortex, t(29)¼ 0.6, p¼ 0.6,
one-sided), suggesting that the FCC grid-like signal that we identified in
the EC was not a spurious effect that was detectable anywhere in the
brain. However, the FCC grid model was significant in the primary visual
cortex ROI (t(29)¼ 1.71, p¼ 0.049, one-sided) (Supplementary Fig. 3).
We think the grid model partly explained this response because the pri-
mary visual cortex is modulated by views and the view-dependent signal
could be weakly correlated with the direction-modulated grid model.
Indeed, our view encoding control model was highly significant in the
primary visual cortex (t(29)¼ 7.35,¼ 2.1*10�8, one-sided) and R square
was higher for the view encoding model than the FCC grid model in the
visual cortex, implying that this response was better explained by the
view encoding model than the FCC grid model (Supplementary Fig. 3).
This result was in contrast to the response in EC where only the FCC grid
model was significant, not the individual view encoding model. If there
were periodic visual features and these were the sole reason for the 3D
grid-like signal observed in the EC then the response profiles should have
been identical for the visual cortex and the EC, which they were not.
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4. Discussion

In the present study, we presented a novel analysis method to
investigate 3D grid codes non-invasively in humans. Simulation and
actual fMRI data suggested that it is possible to probe one type of 3D grid
model, an FCC lattice model, by relying on direction-modulated grid
signals at the macroscopic level. We also developed associated software
to help researchers visualize 3D receptive fields of grid cells and predict
their responses. Here we discuss the implications and limitations of our
study and make suggestions for future studies on 3D grid codes.

The main finding of this study relates to our probing of putative grid
cells using fMRI by predicting the neural signal as a function of 3D
movement direction and the grid axis. The principle of measuring
direction-modulated grid signals has been widely used in 2D (Doeller
et al., 2010; Constantinescu et al., 2016; Bellmund et al., 2016). How-
ever, in our study we extended, for the first time, this principle into 3D
volumetric space, thereby opening up the possibility of empirically
studying grid cells in high-dimensional space. We successfully demon-
strated the feasibility of this analysis approach by finding our data was
concordant with the FCC model in the left EC, the candidate brain
structure for 3D grid encoding. Importantly, we also exposed the
fundamental limitation of movement direction-based grid analysis in 3D.
Unlike in typical 2D environments where grid fields align with regular
grid axes (but see Krupic et al., 2014 for distorted grid axes in 2D), some
proposed 3D grid models like the HCP model lack global grid axes
(Mathis et al., 2015). The summed response of numerous grid cells is
unknown in the absence of global axes. Nevertheless, we attempted to
test the HCP model using locally defined grid axes, and the HCP model
did not fit our empirical data. Due to the grid axes issue, we cannot claim
superiority of the FCC model over the HCP model. Rather, we suggest
that direct recording of grid cells is needed to compare different potential
3D grid models, as they can circumvent the issue of grid axis and
direction-modulation.

Once there is a fuller understanding of the cellular physiology of grid
cells, it will be possible to determine the optimal fMRI analysis protocol
by considering the multiple factors we have described here, such as
whether the orientation of the 3D grid axis is parallel to the ground or
not, the precise model between the grid alignment and the fMRI signal
(e.g. cosine, linear, binary), and the distribution of the grid orientation
across different voxels within EC. Furthermore, a better understanding of
the spatial organisation of grid cells might allow us to measure the grid
signal without relying on the direction-modulation principle. For
example, though speculative, there might be a bias in grid phase at the
voxel level whereby some voxels contain more grid cells with a particular
grid phase. This would result in a periodic response as a function of
location which may be detectable by a spectral analysis. This might
enable us to directly compare the FCC, HCP and other 3D grid models.
Previous optical imaging methods revealed a micro-organisation of 2D
grid cells in the medial EC, although the spatial scale was much finer than
the typical fMRI voxel size (Heys et al., 2014; Gu et al., 2018).

Regarding the experimental design for future investigations of 3D
grid code, the use of an immersive volumetric environment is important.
A 3D lattice structure like FCC is optimal for encoding volumetric space
(Mathis et al., 2015), and the existence of substructures like 2D walls or a
1D track could affect the response of grid cells. For instance, grid cells
recorded in rats moving on a sloped terrain showed a firing pattern
similar to a 2D horizontal plane rather than a 3D lattice pattern (Hayman
et al., 2015). Therefore, in the current study we built a fully volumetric
virtual “zero-gravity” environment where participants could move freely
in all directions. Furthermore, we complemented the fMRI scanning,
where only visual input was available because of in-scanner head
immobilisation, by using a VR head mounted display during pre-scan
tasks as in Shine et al. (2016). We believe this pre-scan experience of
physical head rotation when using the VR head mounted display was
particularly helpful to participants in building the mental and neural
representation of a 3D space, and this was supported by participants’
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reports in the debriefing session at the end of the experiment.
Future studies examining 3D grid codes should also consider using

active movement paradigms that sample all possible movement di-
rections. In the current study, participants were passively moved during
scanning for ease of controlling movement trajectories and to achieve
even sampling of each 3D direction. Although previous fMRI studies have
successfully observed grid signals using imagination tasks without active
self-motion (Bellmund et al., 2016; Horner et al., 2016), it is known that
passive movement disrupts velocity-modulated theta and grid firing in
rodents (Winter et al., 2015). Self-motion signals are therefore critical for
path integration associated with grid cells (McNaughton et al., 2006)
and, consequently, more robust grid signals might be detected if active
(virtual) movement paradigms are employed. One might also improve
the power of detecting grid signals by sampling all 3D directions. In the
present experiment, we only sampled movement directions spanning
120� vertically and horizontally due to limited scanning time. This
limited sampling caused unbalanced data when investigating individual
directional responses relative to the grid axis (e.g. participant A moved
0�–120� relative to the putative grid orientation whereas participant B
moved �30� to 90� relative to the grid orientation).

In summary, we believe that our experimental paradigm, analysis
method and software serve as a useful initial stepping-stone for studying
grid cells in realistic 3D worlds. Animal electrophysiology and human
fMRI studies also suggest that a grid code is employed to encode not only
physical space, but also more abstract knowledge (Aronov et al., 2017;
Constantinescu et al., 2016; Nau et al., 2018; Julian et al., 2018), and we
hope our approach will in due course also encourage interrogation of
abstract high-dimensional cognitive processes.
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