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SUBDIFFUSION WITH A TIME-DEPENDENT COEFFICIENT:

ANALYSIS AND NUMERICAL SOLUTION

BANGTI JIN, BUYANG LI, AND ZHI ZHOU

Abstract. In this work, a complete error analysis is presented for fully dis-

crete solutions of the subdiffusion equation with a time-dependent diffusion
coefficient, obtained by the Galerkin finite element method with conform-

ing piecewise linear finite elements in space and backward Euler convolu-

tion quadrature in time. The regularity of the solutions of the subdiffusion
model is proved for both nonsmooth initial data and incompatible source term.

Optimal-order convergence of the numerical solutions is established using the

proven solution regularity and a novel perturbation argument via freezing the
diffusion coefficient at a fixed time. The analysis is supported by numerical

experiments.

1. Introduction

Let Ω ⊂ Rd (d ≥ 1) be a convex polyhedral domain with a boundary ∂Ω.
Consider the following fractional-order parabolic problem for the function u(x, t):

∂αt u(x, t)−∇ · (a(x, t)∇u(x, t)) = f(x, t) (x, t) ∈ Ω× (0, T ],

u(x, t) = 0 (x, t) ∈ ∂Ω× (0, T ],

u(x, 0) = u0(x) x ∈ Ω,

(1.1)

where T > 0 is a fixed final time, f ∈ L∞(0, T ;L2(Ω)) and u0 ∈ L2(Ω) are given
source term and initial data, respectively, and a(x, t) ∈ Rd×d is a symmetric matrix-
valued diffusion coefficient such that for some constant λ ≥ 1

λ−1|ξ|2 ≤ a(x, t)ξ · ξ ≤ λ|ξ|2, ∀ ξ ∈ Rd, ∀ (x, t) ∈ Ω× (0, T ],(1.2)

|∂ta(x, t)|+ |∇xa(x, t)|+ |∇x∂ta(x, t)| ≤ c, ∀ (x, t) ∈ Ω× (0, T ].(1.3)

The notation ∂αt u(t) denotes the Caputo derivative in time of order α ∈ (0, 1),
defined by [16, p. 70]

∂αt u(x, t) =
1

Γ(1− α)

∫ t

0

(t− s)−α∂su(x, s)ds.(1.4)

The literature on the numerical analysis of the subdiffusion problem is vast; see
[21, 11, 9, 15] for a rather incomplete list and the overview [10] (and the references
therein). The work [11] analyzed two spatially semidiscrete schemes, i.e., Galerkin
finite element method (FEM) and lumped mass method, and derived nearly opti-
mal order error estimates for the homogeneous problem. The inhomogeneous case
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was analyzed in [9]. See [15] for a finite volume element discretization, and [14]
for a unified approach. There are a number of fully discrete schemes, e.g., convo-
lution quadrature [36, 12], piecewise polynomial interpolation [33, 21, 2, 7, 35, 32],
discontinuous Galerkin method [26, 27]; and some of them have an O(τ) rate for
nonsmooth data, with τ being time step size. However, all these works analyzed
only the case that the diffusion coefficient a is independent of the time t. These
works mostly employ Laplace transform and its discrete analogue for analysis, which
are not directly applicable to the case of a time-dependent coefficient. Recently,
Mustapha [28] analyzed the spatially semidiscrete Galerkin FEM for (1.1) using
a novel energy argument, and proved optimal-order convergence rates for both
smooth and nonsmooth initial data (with a zero source term) based on certain
assumptions on the regularity of the PDE’s solution.

In this article, using a novel perturbation argument, we present a new approach
to analyze a fully discrete scheme for problem (1.1) based on the Galerkin FEM
in space and backward Euler (BE) convolution quadrature in time, covering initial
data and source term simultaneously. The main contributions of this paper are as
follows. First, we give a complete existence, uniqueness and regularity theory for
problem (1.1) in Theorems 2.1–2.3, which are crucial to the error analysis. Second,
we derive sharp error estimates for the spatially semidiscrete Galerkin FEM. This
is achieved by combining error estimates for a time-independent coefficient and a
perturbation argument in time. Third, we derive nearly sharp error estimates for
the fully discrete method. All error estimates are given directly in terms of the
regularity of the initial data and source term, under mild regularity assumptions
on the diffusion coefficient a(x, t) that are weaker than the assumptions in [28]; see
Remark 2.2 for the precise statement.

There are a few relevant works on standard parabolic problems with a time-
dependent coefficient [24, 30, 31, 19]. For example, Luskin and Rannacher [24]
proved optimal order error estimates for both spatially semidiscrete and fully dis-
crete problems (by BE method) using a novel energy argument, and Sammon [30]
analyzed fully discrete schemes with linear multistep methods. Our error analysis
relies crucially on a perturbation argument, using basic estimates given in Lemmas
3.1 and 3.2, which are of independent interest. Generally, the idea of freezing coef-
ficients and perturbation in time has been proved very useful in combination with
energy estimates [31] and Lp estimates [1, 18, 20]. In this work, we have successfully
adapted the idea to the subdiffuion model.

The rest of the paper is organized as follows. In Section 2, we discuss temporal
and spatial regularity of the solution for nonsmooth problem data. Then in Section
3, we prove optimal-order convergence of the spatially semidiscrete Galerkin FEM
for both homogeneous and inhomogeneous problems. In Section 4, we present
the error analysis for the fully discrete FEM and prove first-order convergence in
time. Last, in Section 5, we present numerical examples to support the theoretical
analysis. Throughout, the notation c, with or without a subscript, denotes a generic
positive constant, which may differ at each occurrence, but is always independent
of the mesh size h and step size τ .

2. Regularity theory

In this section we investigate the regularity of the solutions of problem (1.1).
For any function f(x, t) defined on Ω × (0, T ), we denote by f(t) the function
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f(·, t). Let −∆ : H1
0 (Ω) ∩ H2(Ω) → L2(Ω) be the negative Laplacian operator

with a zero Dirichlet boundary condition, and {(λj , ϕj)} be its eigenvalues ordered
nondecreasingly (with multiplicity counted) and the corresponding eigenfunctions

normalized in the L2(Ω) norm. For any r ≥ 0, we denote the space Ḣr(Ω) = {v ∈
L2(Ω) : (−∆)

r
2 v ∈ L2(Ω)}, with the norm [34, Chapter 3]

‖v‖2
Ḣr(Ω)

=

∞∑
j=1

λrj(v, ϕj)
2.

Then we have Ḣ0(Ω) = L2(Ω), Ḣ1(Ω) = H1
0 (Ω), and Ḣ2(Ω) = H2(Ω) ∩H1

0 (Ω).

2.1. Subdiffusion with a time-independent coefficient. First we recall basic
properties of the subdiffusion model with a time-independent diffusion coefficient,
i.e., a(x, t) = a(x). Accordingly, we denote by A : H1

0 (Ω) ∩ H2(Ω) → L2(Ω) an
elliptic operator, defined by

Aφ(x) := −∇ · (a(x)∇φ(x)),

and consider the problem

(2.1) ∂αt u(t) +Au(t) = f(t) t ∈ (0, T ], with u(0) = u0.

This problem has been studied in [3, 4, 23, 25, 29, 13]. The following maximal
Lp-regularity holds [3].

Lemma 2.1. If u0 = 0 and f ∈ Lp(0, T ;L2(Ω)) with 1 < p < ∞, then problem

(2.1) has a unique solution u ∈ Lp(0, T ; Ḣ2(Ω)) such that ∂αt u ∈ Lp(0, T ;L2(Ω))
and

‖u‖Lp(0,T ;Ḣ2(Ω)) + ‖∂αt u‖Lp(0,T ;L2(Ω)) ≤ c‖f‖Lp(0,T ;L2(Ω)),

where the constant c does not depend on f and T .

By means of Laplace transform, the solution u(t) can be represented by [13,
Section 4]

u(t) = F (t)u0 +

∫ t

0

E(t− s)f(s)ds,(2.2)

where the solution operators F (t) and E(t) are respectively defined by

F (t) :=
1

2πi

∫
Γθ,δ

eztzα−1(zα +A)−1 dz,(2.3)

E(t) :=
1

2πi

∫
Γθ,δ

ezt(zα +A)−1 dz,(2.4)

with integration over a contour Γθ,δ ⊂ C (oriented with an increasing imaginary
part):

Γθ,δ = {z ∈ C : |z| = δ, | arg z| ≤ θ} ∪ {z ∈ C : z = ρe±iθ, ρ ≥ δ}.

Throughout, we fix θ ∈ (π2 , π) so that zα ∈ Σαθ ⊂ Σθ := {0 6= z ∈ C : arg(z) ≤ θ},
for all z ∈ Σθ. The next lemma gives smoothing properties of F (t) and E(t), which
follow from the resolvent estimate

(2.5) ‖(z +A)−1‖ ≤ cφ|z|−1, ∀z ∈ Σφ, ∀φ ∈ (0, π),

where ‖ · ‖ denotes the operator norm from L2(Ω) to L2(Ω).
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Lemma 2.2. The operators F and E defined in (2.3) and (2.4) satisfy the following
properties.

(i) t−α‖A−1(F (t)− I)‖+ ‖F (t)− I‖ ≤ c, ∀ t ∈ (0, T ];
(ii) t1−α‖E(t)‖+ t2−α‖E′(t)‖+ t‖AE(t)‖ ≤ c, ∀ t ∈ (0, T ];
(iii) tα‖AF (t)‖+ t1−βα‖A−βF ′(t)‖ ≤ c, ∀ t ∈ (0, T ], β ∈ [0, 1].

Proof. Parts (i) and (ii) have been shown in [13, Lemma 3.4]. By letting δ = t−1 in
Γθ,δ and z = s cosϕ+ is sinϕ, using (2.5), we have (with |dz| being the arc length
of Γθ,δ)

‖AF (t)‖ =

∥∥∥∥ 1

2πi

∫
Γθ,δ

eztzα−1A(zα +A)−1 dz

∥∥∥∥ ≤ c∫
Γθ,δ

e<(z)t|z|α−1 |dz|

≤ c
∫ ∞
δ

est cos θsα−1ds+ c

∫ θ

−θ
ecosϕδαdϕ ≤ ct−α.

Next, direct computation gives F ′(t) = 1
2πi

∫
Γθ,δ

eztzα(zα +A) dz, and thus by the

estimate (2.5),

‖F ′(t)‖ ≤ c
∫

Γθ,δ

e<(z)t|z|α|z|−α |dz| ≤ ct−1,

which shows the assertion for β = 0. Meanwhile, by the identity zα(zα + A)−1 =
I−A(zα+A)−1, we have F ′(t) = 1

2πi

∫
Γθ,δ

eztzα(zα+A) dz = − 1
2πi

∫
Γθ,δ

eztA(zα+

A) dz, and thus

‖A−1F ′(t)‖ ≤ c
∫

Γθ,δ

e<(z)t|z|−α |dz| ≤ ct−1+α.

This shows the assertion for β = 1. Then the desired bound on t1−βα‖A−βF ′(t)‖
in part (iii) follows by interpolation. �

2.2. Regularity theory for subdiffusion with a time-dependent coefficient.
Now we develop the regularity theory for the case of a time-dependent diffusion
coefficient. The work [37] gave some interior Hölder estimates for bounded mea-
surable coefficients. Recently, Kubica et al [17] showed the unique existence by
approximating the coefficients by smooth functions, and derived several regularity
estimates. We shall provide a different approach to derive regularity estimates in
Sobolev spaces, which are essential for the error analysis in Sections 3 and 4.

We define a time-dependent elliptic operator A(t) : Ḣ2(Ω)→ L2(Ω) by

A(t)φ = −∇ · (a(x, t)∇φ), ∀φ ∈ Ḣ2(Ω).

Under condition (1.3), the following estimate holds:

(2.6) ‖(A(t)−A(s))v‖L2(Ω) ≤ c|t− s|‖v‖H2(Ω).

First we give the existence, uniqueness and regularity of solutions to problem
(1.1) with u0 = 0.

Theorem 2.1. Under conditions (1.2)-(1.3), with u0 = 0 and f ∈ Lp(0, T ;L2(Ω)),

1/α < p <∞, problem (1.1) has a unique solution u ∈ C([0, T ];L2(Ω))∩Lp(0, T ; Ḣ2(Ω))
such that ∂αt u ∈ Lp(0, T ;L2(Ω)).
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Proof. For any θ ∈ [0, 1], consider the following fractional-order parabolic problem

∂αt u(t) +A(θt)u(t) = f(t), t ∈ (0, T ], with u(0) = 0,(2.7)

and define a set

D ={θ ∈ [0, 1] : (2.7) has a solution u ∈ Lp(0, T ; Ḣ2(Ω))

such that ∂αt u ∈ Lp(0, T ;L2(Ω))}.

Lemma 2.1 implies 0 ∈ D and so D 6= ∅.
For any θ ∈ D, by rewriting (2.7) as

∂αt u(t) +A(θt0)u(t) = f(t) + (A(θt0)−A(θt))u(t), t ∈ (0, T ],(2.8)

with u(0) = 0, and by applying Lemma 2.1 in the time interval (0, t0), we obtain

‖∂αt u‖Lp(0,t0;L2(Ω)) + ‖u‖Lp(0,t0;H2(Ω))

≤c‖f‖Lp(0,t0;L2(Ω)) + c‖(A(θt0)−A(θt))u(t)‖Lp(0,t0;L2(Ω))

≤c‖f‖Lp(0,t0;L2(Ω)) + c‖(t0 − t)u(t)‖Lp(0,t0;H2(Ω)),(2.9)

where the last line follows from (2.6). Let g(t) = ‖u‖pLp(0,t;H2(Ω)), which satisfies

g′(t) = ‖u(t)‖pH2(Ω). Then (2.9) and integration by parts imply

g(t0) ≤ c‖f‖pLp(0,t0;L2(Ω)) + c

∫ t0

0

(t0 − t)pg′(t)dt

= c‖f‖pLp(0,t0;L2(Ω)) + cp

∫ t0

0

(t0 − t)p−1g(t)dt

≤ c‖f‖pLp(0,t0;L2(Ω)) + c

∫ t0

0

g(t)dt,

which implies (via the standard Gronwall’s inequality)

g(t0) ≤ c‖f‖pLp(0,t0;L2(Ω)), i.e., ‖u‖Lp(0,t0;H2(Ω)) ≤ c‖f‖Lp(0,t0;L2(Ω)).

Substituting the last inequality into (2.9) yields

‖∂αt u‖Lp(0,t0;L2(Ω)) + ‖u‖Lp(0,t0;H2(Ω)) ≤ c‖f‖Lp(0,t0;L2(Ω)).(2.10)

Since the estimate (2.10) is independent of θ ∈ D, D is a closed subset of [0, 1].
Now we show that D is also open with respect to the subset topology of [0, 1].

In fact, if θ0 ∈ D, then problem (2.7) can be rewritten as

∂αt u(t) +A(θ0t)u(t) + (A(θt)−A(θ0t))u(t) = f(t), t ∈ (0, T ], with u(0) = 0,

(2.11)

which is equivalent to[
1 + (∂αt +A(θ0t))

−1(A(θt)−A(θ0t))
]
u(t) = (∂αt +A(θ0t))

−1f(t).(2.12)

It follows from (2.10) that the operator (∂αt +A(θ0t))
−1(A(θt)−A(θ0t)) is small in

the sense that

‖(∂αt +A(θ0t))
−1(A(θt)−A(θ0t))‖Lp(0,T ;H2(Ω))→Lp(0,T ;H2(Ω)) ≤ c|θ − θ0|.

Thus for θ sufficiently close to θ0, the operator 1 + (∂αt +A(θ0t))
−1(A(θt)−A(θ0t))

is invertible on Lp(0, T ; Ḣ2(Ω)), which implies θ ∈ D. Thus D is open with respect
to the subset topology of [0, 1]. Since D is both closed and open respect to the
subset topology of [0, 1], D = [0, 1]. Further, note that for 1/α < p < ∞, the
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inequality (2.10) and the condition u(0) = 0 directly imply u ∈ C([0, T ];L2(Ω))
[13, Theorem 2.1], which completes the proof of the theorem. �

The following generalized Gronwall’s inequality is useful ([5, Lemma 6.3] and [8,
Exercise 3, p. 190]).

Lemma 2.3. Let the function ϕ(t) ≥ 0 be continuous for 0 < t ≤ T . If

ϕ(t) ≤ at−1+α + b

∫ t

0

(t− s)−1+βϕ(s)ds, 0 < t ≤ T,

for some constants a, b ≥ 0, α, β > 0, then there is a constant c = c(b, T, α, β) such
that

ϕ(t) ≤ cat−1+α, 0 < t ≤ T.

Next we give the spatial regularity of the solution u for the case f = 0.

Theorem 2.2. Under conditions (1.2)-(1.3), with u0 ∈ Ḣβ(Ω), 0 ≤ β ≤ 2, and

f = 0, problem (1.1) has a unique solution u ∈ C([0, T ];L2(Ω)) ∩ C((0, T ]; Ḣ2(Ω))
such that ∂αt u ∈ C((0, T ];L2(Ω)), and

‖u(t)‖H2(Ω) ≤ ct−(1−β/2)α‖u0‖Ḣβ(Ω).

Proof. The existence and uniqueness of a solution can be proved in the same way
as Theorem 2.1 based on the a priori estimate below. We rewrite problem (1.1) as

∂αt u(t) +A(t0)u(t) = (A(t0)−A(t))u(t) + f(t), t ∈ (0, T ], with u(0) = u0,

Then the solution u(t) can be represented by

u(t) = F (t; t0)u0 +

∫ t

0

E(t− s; t0)(A(t0)−A(s))u(s)ds

+

∫ t

0

E(t− s; t0)f(s)ds,(2.13)

where the operators F (t; t0) and E(t; t0) are defined respectively by

F (t; t0) :=
1

2πi

∫
Γθ,δ

eztzα−1(zα +A(t0))−1 dz,

and

E(t; t0) :=
1

2πi

∫
Γθ,δ

ezt(zα +A(t0))−1 dz.

In the case f = 0, applying A(t0) to both sides of (2.13) yields

A(t0)u(t) =A(t0)F (t; t0)u0 +

∫ t

0

A(t0)E(t− s; t0)(A(t0)−A(s))u(s)ds.

Then conditions (1.2)-(1.3) and Lemma 2.2(ii) imply

‖u(t0)‖H2(Ω) ≤ c‖A(t0)F (t0; t0)u0‖L2(Ω)

+ c

∫ t0

0

‖A(t0)E(t0 − s; t0)‖‖(A(t0)−A(s))u(s)‖L2(Ω)ds

≤ ct−(1−β/2)α
0 ‖u0‖Ḣβ(Ω) + c

∫ t0

0

(t0 − s)−1(t0 − s)‖u(s)‖H2(Ω)ds
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= ct
−(1−β/2)α
0 ‖u0‖Ḣβ(Ω) + c

∫ t0

0

‖u(s)‖H2(Ω)ds, ∀ t0 ∈ (0, T ].

The desired estimate follows from the generalized Gronwall’s inequality in Lemma
2.3. It remains to show u ∈ C([0, T ];L2(Ω)) ∩ C((0, T ];H2(Ω)). Indeed, note that
(by fixing t0 = 0)

‖u(t)− u0‖L2(Ω) ≤ ‖F (t; 0)u0 − u0‖L2(Ω) +

∫ t

0

(t− s)−αs‖u(s)‖H2(Ω)ds,

which together with the bound on ‖u(s)‖H2(Ω) implies

lim
t→0+

‖u(t)− u0‖L2(Ω)

≤ lim
t→0+

‖F (t; 0)u0 − u0‖L2(Ω) + lim
t→0+

c

∫ t

0

(t− s)α−1s1−(1−β/2)αds‖u0‖Ḣβ(Ω) = 0.

i.e., limt→0+ u(t) = u0 in L2(Ω). The rest of the assertion follows similarly. This
completes the proof. �

To analyze the temporal regularity, we first give three technical lemmas.

Lemma 2.4. Let conditions (1.2) and (1.3) be fulfilled, and u be the solution to
problem (1.1) with u0 ∈ L2(Ω) and f = 0. Then there holds

‖ d

dt

∫ t

0

E(t− s; t0)(A(t0)−A(s))u(s)ds
∣∣
t=t0
‖L2(Ω) ≤ c‖u0‖L2(Ω).

Proof. Let I = d
dt

∫ t
0
E(t− s; t0)(A(t0)−A(s))u(s)ds|t=t0 . Then

I = lim
ε→0

1

ε

(∫ t0+ε

0

E(t0 + ε− s; t0)(A(t0)−A(s))u(s)ds

−
∫ t0

0

E(t0 − s; t0)(A(t0)−A(s))u(s)ds

)
=: lim

ε→0
Λ(ε).(2.14)

If ε > 0, then

Λ(ε) =
1

ε

∫ t0+ε

t0

E(t0 + ε− s; t0)(A(t0)−A(s))u(s)ds

+

∫ t0

0

E(t0 + ε− s; t0)− E(t0 − s; t0)

ε
(A(t0)−A(s))u(s)ds

=: I+ + II+.(2.15)

By applying Lemma 2.2(ii), (2.6) and Theorem 2.2, we deduce

‖I+‖L2(Ω) ≤ cε−1

∫ t0+ε

t0

‖E(t0 + ε− s; t0)‖‖(A(t0)−A(s))u(s)‖L2(Ω)ds

≤ cε−1

∫ t0+ε

t0

|t0 + ε− s|α−1|t0 − s|‖u(s)‖H2(Ω)ds

≤ cε−1

∫ t0+ε

t0

|t0 + ε− s|α−1|t0 − s|s−α‖u0‖L2(Ω)ds

≤ cε−1

∫ t0+ε

t0

|t0 + ε− s|α−1(ε)t−α0 ‖u0‖L2(Ω)ds ≤ cεαt−α0 ‖u0‖L2(Ω),
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and similarly,

‖II+‖L2(Ω) =

∥∥∥∥ ∫ t0

0

∫ 1

0

E′(t0 + θε− s; t0)(A(t0)−A(s))u(s) dθds

∥∥∥∥
L2(Ω)

≤ c
∫ 1

0

∫ t0

0

(t0 + θε− s)α−2(t0 − s)‖u(s)‖H2(Ω) dsdθ

≤ c
∫ t0

0

(t0 − s)α−1‖u(s)‖H2(Ω) ds

≤ c
∫ t0

0

(t0 − s)α−1s−α‖u0‖L2(Ω) ds ≤ c‖u0‖L2(Ω).

If −t0 < ε < 0, then

Λ(ε) = ε−1

∫ t0

t0−|ε|
E(t0 − s; t0)(A(t0)−A(s))u(s)ds

+

∫ t0−|ε|

0

E(t0 − s; t0)− E(t0 − |ε| − s; t0)

ε
(A(t0)−A(s))u(s)ds

=: I− + II−,

and similarly, we obtain

‖I−‖L2(Ω) ≤ cεα(t0 + ε)−α‖u0‖L2(Ω) and ‖II−‖L2(Ω) ≤ c‖u0‖L2(Ω).

Combining the preceding estimates yields the assertion. �

Lemma 2.5. Let conditions (1.2) and (1.3) be fulfilled, and u be the solution

to problem (1.1) with f ∈ C([0, T ];L2(Ω)),
∫ t

0
(t − s)α−1‖f ′(s)‖L2(Ω)ds < ∞ and

u0 = 0. Then there holds∫ t

0

(t− s)α−1‖u(s)‖H2(Ω)ds ≤ c‖f(0)‖L2(Ω) + c

∫ t

0

(t− s)α−1‖f ′(s)‖L2(Ω)ds.

Proof. By the solution representation (2.13) with u0 = 0, we have

A(t0)u(t0) =

∫ t0

0

A(t0)E(t0 − s; t0)f(s)ds

+

∫ t0

0

A(t0)E(t0 − s; t0)(A(s)−A(t0))u(s)ds := I + II.

It follows directly from the definition of the operators E(s; t0) and F (s; t0) that the
identity A(t0)E(s; t0) = − d

dsF (s; t0) = d
ds (I − F (s; t0)) holds. So upon changing

variables and integration by parts, we obtain

I =

∫ t0

0

A(t0)E(s; t0)f(t0 − s)ds =

∫ t0

0

d

ds
(I − F (s; t0))f(t0 − s)ds

= (F (t0; t0)− I)f(0)−
∫ t0

0

(I − F (s; t0))
d

ds
f(t0 − s)ds,

where we have used the identity F (0; t0) = I. Thus, by Lemma 2.2(i), we obtain

‖I‖L2(Ω) ≤ c‖f(0)‖L2(Ω) + c

∫ t0

0

‖f ′(s)‖L2(Ω)ds.
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Similarly, by Lemma 2.2(ii) and (2.6), for the term II, we have

‖II‖L2(Ω) ≤ c
∫ t0

0

(t0 − s)−1|t0 − s|‖A(t0)u(s)‖L2(Ω)ds = c

∫ t0

0

‖A(t0)u(s)‖L2(Ω)ds.

Let g(t) =
∫ t

0
(t− s)α−1‖u(s)‖H2(Ω)ds. Then the last two estimates together give

g(t) ≤ c
∫ t

0

(t− s)α−1(‖I‖L2(Ω) + ‖II‖L2(Ω)) ds

≤ c
∫ t

0

(t− s)α−1
(
‖f(0)‖L2(Ω) +

∫ s

0

‖f ′(ξ)‖L2(Ω)dξ +

∫ ξ

0

‖u(ξ)‖H2(Ω)dξ
)

ds

≤ ctα‖f(0)‖L2(Ω) + c

∫ t

0

(t− s)α‖f ′(s)‖L2(Ω)ds+ c

∫ t

0

g(s) ds,

where the last line follows directly from the semigroup property of Riemann-Liouville
integral and change of integration orders. Now Gronwall’s inequality gives

g(t) ≤ ctα‖f(0)‖L2(Ω) + c

∫ t

0

(t− s)α‖f ′(s)‖L2(Ω)ds,

from which the desired assertion follows directly. �

Lemma 2.6. Let conditions (1.2) and (1.3) be fulfilled, and u be the solution

to problem (1.1) with f ∈ C([0, T ];L2(Ω)),
∫ t

0
(t − s)α−1‖f ′(s)‖L2(Ω)ds < ∞ and

u0 = 0. Then there holds

‖ d

dt

∫ t

0

E(t− s; t0)(A(t0)−A(s))u(s)ds
∣∣
t=t0
‖L2(Ω)

≤c‖f(0)‖L2(Ω) + c

∫ t0

0

(t0 − s)α−1‖f ′(s)‖L2(Ω)ds.

Proof. For any small ε > 0, we employ the splitting (2.14). By Lemma 2.2(ii) and
(2.6), we bound the term I+ by

‖I+‖L2(Ω) ≤ ε−1

∫ t0+ε

t0

‖E(t0 + ε− s; t0)‖‖(A(t0)−A(s))u(s)‖L2(Ω)ds

≤ cε−1

∫ t0+ε

t0

|t0 + ε− s|α−1|t0 − s|‖u(s)‖H2(Ω)ds

≤ c
∫ t0+ε

t0

|t0 + ε− s|α−1‖u(s)‖H2(Ω)ds.

This estimate, Hölder’s inequality and Theorem 2.1 directly imply limε→0+ ‖I+‖L2(Ω) =
0. For the term II+, Lemma 2.2(ii) gives

‖II+‖L2(Ω) =

∥∥∥∥∫ t0

0

∫ 1

0

E′(t0 + θε− s; t0)(A(t0)−A(s))u(s) dθds

∥∥∥∥
L2(Ω)

≤ c
∫ 1

0

∫ t0

0

(t0 + θε− s)α−2(t0 − s)‖u(s)‖H2(Ω) dsdθ

≤ c
∫ t0

0

(t0 − s)α−1‖u(s)‖H2(Ω) ds,

which together with Lemma 2.5 yields the assertion for ε > 0. Similar estimates
hold for the case ε < 0, and this completes the proof of the lemma. �
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Remark 2.1. Note that the bound on II+ in Lemma 2.4 blows up for α→ 1−:∫ t0

0

(t0 − s)α−1s−α ds = B(α, 1− α),

and in view of the asymptotics B(α, 1 − α) = O((1 − α)−1) as α → 1−, it blows
up at a rate 1/(1 − α). Actually, this can be avoided by the following alternative
argument:

‖II+‖L2(Ω)

=

∥∥∥∥ ∫ t0

0

∫ 1

0

E′(t0 + θε− s; t0)A(t0)1/2A(t0)1/2(1−A(t0)−1A(s))u(s) dθds

∥∥∥∥
L2(Ω)

≤ c
∫ 1

0

∫ t0

0

(t0 + θε− s)α/2−2(t0 − s)‖A(t0)1/2u(s)‖L2(Ω) dsdθ

≤ c
∫ t0

0

(t0 − s)α/2−1‖u(s)‖H1(Ω) ds

≤ c
∫ t0

0

(t0 − s)α/2−1s−α/2‖u0‖L2(Ω) ds ≤ c‖u0‖L2(Ω),

where the first inequality is due to (2.6), Corollary 3.1 below and interpolation. The
same argument can be applied to the term II+ in Lemma 2.6. Thus, the involved
constants are bounded for α→ 1−.

Now we can give the temporal regularity of the solution u.

Theorem 2.3. Let conditions (1.2)-(1.3) be fulfilled, and u be the solution to prob-
lem (1.1).

(i) For u0 ∈ Ḣβ(Ω), 0 ≤ β ≤ 2, and f = 0, then

‖u′(t)‖L2(Ω) ≤ ct−(1−αβ/2)‖u0‖Ḣβ(Ω).

(ii) For u0 = 0, f ∈ C([0, T ];L2(Ω)) and
∫ t

0
(t − s)α−1‖f ′(s)‖L2(Ω) ds < ∞,

then

‖u′(t)‖L2(Ω) ≤ ct−(1−α)‖f(0)‖L2(Ω) + c

∫ t

0

(t− s)α−1‖f ′(s)‖L2(Ω) ds.

(iii) For u0 = 0 and f ∈ Lp(0, T ;L2(Ω)) with 2/α < p <∞, then

‖u(t)‖H1(Ω) ≤ c‖f‖Lp(0,t;L2(Ω)).

Proof. The proof employs the solution representation (2.13). By Lemma 2.2(iii),
we have ∥∥ d

dt
F (t; t0)u0

∣∣
t=t0

∥∥
L2(Ω)

≤ ct−(1−αβ/2)
0 ‖u0‖Ḣβ(Ω).

This and Lemma 2.4 yield the assertion in part (i).
To show part (ii), differentiating (2.13) with respect to t yields

u′(t0) =
d

dt

∫ t

0

E(t− s; t0)(A(t0)−A(s))u(s)ds

∣∣∣∣
t=t0

(2.16)

+
d

dt

∫ t

0

E(s; t0)f(t− s)ds
∣∣∣∣
t=t0

.
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In view of the identity

d

dt

∫ t

0

E(s; t0)f(t− s)ds = E(t; t0)f(0) +

∫ t

0

E(s; t0)f ′(t− s)ds,

by Lemma 2.2(ii), we have∥∥∥∥ d

dt

∫ t

0

E(s; t0)f(t− s)ds
∥∥∥∥
L2(Ω)

≤ ‖E(t; t0)f(0)‖L2(Ω) +

∫ t

0

‖E(s; t0)f ′(t− s)‖L2(Ω)ds,

≤ ct−(1−α)‖f(0)‖L2(Ω) + c

∫ t

0

sα−1‖f ′(t− s)‖L2(Ω) ds.(2.17)

This and Lemma 2.6 complete the proof of part (ii).
Last, for the choice 2/α < p <∞, Lemma 2.1 implies

u ∈ Lp(0, T ;H2(Ω)) ∩Wα,p(0, T ;L2(Ω)) ↪→Wα/2,p(0, T ; (L2(Ω), H2(Ω))1/2)

= Wα/2,p(0, T ;H1(Ω)) ↪→ C([0, T ];H1(Ω)),

where (L2(Ω), H2(Ω))1/2 denotes the complex interpolation space between L2(Ω)

and H2(Ω), and the last embedding is a consequence of [13, equation (2.3)]. Then
the proof of Theorem 2.3 is complete. �

Remark 2.2. In the error analysis, the work [28] requires the following conditions
on the coefficient a(x, t): a(x, t), ∂ta(x, t) ∈ L∞(0, T ;W 1,∞(Ω)) and ∂2

tta(x, t) ∈
L∞(0, T ;L∞(Ω)), which are more stringent than (1.3). Further, the work [28] has
assumed the following regularity on the solution u to the homogeneous problem:
for 0 ≤ p ≤ q ≤ 2,

‖u(t)‖Ḣq(Ω) + t‖u′(t)‖Ḣq(Ω) ≤ ct
−(q−p)α/2‖u0‖Ḣp(Ω).

In contrast, for the homogeneous problem, we proved the following estimates under
assumption (1.3):

t(1−β/2)α‖u(t)‖H2(Ω) + t1−αβ/2‖u′(t)‖L2(Ω) ≤ c‖u0‖Ḣβ(Ω)

and similar estimates for the inhomogeneous problem. It is worth noting that
unlike the argument in [28], the error analysis below does not need the regularity
‖u′(t)‖Ḣ2(Ω), which allows us to relax the regularity assumption on the coefficient

a(x, t).

Remark 2.3. Our discussions focus on the low regularity in space, i.e., u(t) ∈ H2(Ω),
which is sufficient for the error analysis of the piecewise linear FEM in Section 3.
These results cannot be further improved for u0 ∈ L2(Ω) or f ∈ Lp(0, T ;L2(Ω)),
due to the limited smoothing properties of the solution operators (at most of order
two in space). For smoother problem data, one may expect higher spatial regularity
of the solution. For example, for the homogeneous problem with a time-independent
elliptic operator, there holds for any β ≥ 0 [29]

‖u(t)‖Ḣ2+β(Ω) ≤ ct
−α‖u0‖Ḣβ(Ω), t > 0.

Naturally, one may expect similar estimates for the case of a time-dependent elliptic
operator, provided both the domain Ω and the coefficient a(x, t) are sufficiently
smooth. Further, note that the regularity analysis extends straightforwardly to the
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slightly more general elliptic operators with the potential and convective terms,
provided that the coefficients in the lower-order terms have suitable regularity.

3. Semi-discrete Galerkin finite element method

In this part we investigate the semidiscrete Galerkin FEM. Let Th be a shape
regular quasi-uniform triangulation of the domain Ω into simplicial elements, and
h be the maximal diameter of the elements. Let Sh ⊂ H1

0 (D) be the space of
continuous piecewise linear functions over the triangulation Th. Then we define the
L2(Ω) orthogonal projection Ph : L2(Ω)→ Sh by

(Phϕ, χ) = (ϕ, χ) ∀ϕ ∈ L2(Ω), ∀χ ∈ Sh.
The operator Ph satisfies the following error estimate

‖Phϕ− ϕ‖L2(Ω) + h‖∇(Phϕ− ϕ)‖L2(Ω) ≤ chq‖ϕ‖Hq(Ω), ϕ ∈ Ḣq(Ω), q = 1, 2.

The spatially semidiscrete FEM for problem (1.1) reads: find uh(t) ∈ Sh such
that

(∂αt uh(t), χ) + (a(·, t)∇uh(t),∇χ) = (f(·, t), χ), ∀χ ∈ Sh, t ∈ (0, T ],(3.1)

with uh(0) = Phu0. Then we define a time-dependent operator Ah(t) : Sh → Sh by

(Ah(t)vh, χ) = (a(·, t)∇vh,∇χ), ∀ vh, χ ∈ Sh.
Under condition (1.2), Ah(t) : Sh → Sh is bounded and invertible on Sh, and
problem (3.1) can be rewritten as

∂αt uh(t) +Ah(t)uh(t) = Phf(t), ∀ t ∈ (0, T ], with uh(0) = Phu0.(3.2)

3.1. Perturbation lemmas. In this part we give two crucial perturbation results.
We need a time-dependent Ritz projection operator Rh(t) : H1

0 (Ω) → Sh defined
by

(3.3) (a(·, t)∇Rh(t)ϕ,∇χ) = (a(·, t)∇ϕ,∇χ), ∀ϕ ∈ H1
0 (Ω), χ ∈ Sh.

The operator Rh(t) satisfies the following approximation property [24, p. 99]:
(3.4)

‖Rh(t)ϕ−ϕ‖L2(Ω) +h‖∇(Rh(t)ϕ−ϕ)‖L2(Ω) ≤ chq‖ϕ‖Hq(Ω), ϕ ∈ Ḣq(Ω), q = 1, 2.

Lemma 3.1. Under conditions (1.2)-(1.3), the following estimate holds:

‖(I −Ah(t)−1Ah(s))vh‖L2(Ω) ≤ c|t− s|‖vh‖L2(Ω), ∀ vh ∈ Sh.

Proof. For any given vh ∈ Sh, let ϕh = Ah(s)vh and wh = Ah(t)−1ϕh. Then

(Ah(t)wh, χ) = (ϕh, χ) = (Ah(s)vh, χ), ∀χ ∈ Sh,
which implies

(a(·, t)∇wh,∇χ) = (a(·, s)∇vh,∇χ), ∀χ ∈ Sh.
Consequently,

(a(·, t)∇(wh − vh),∇χ) = ((a(·, s)− a(·, t))∇vh,∇χ), ∀χ ∈ Sh.

Let φ ∈ H1
0 (Ω) be the weak solution of the elliptic problem

(a(·, t)∇φ,∇ξ) = ((a(·, s)− a(·, t))∇vh,∇ξ), ∀ ξ ∈ H1
0 (Ω).(3.5)

By Lax-Milgram theorem, φ satisfies the following a priori estimate:

‖φ‖H1(Ω) ≤ c‖(a(·, s)− a(·, t))∇vh‖L2(Ω) ≤ c|t− s|‖vh‖H1(Ω).
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Thus, with the Ritz projection Rh(t), cf. (3.3), we have wh − vh = Rh(t)φ.
By the error estimate (3.4) and the inverse inequality,

‖wh − vh − φ‖L2(Ω) ≤ ch‖φ‖H1(Ω) ≤ ch|t− s|‖vh‖H1(Ω)

≤ c|t− s|‖vh‖L2(Ω).

Thus, the triangle inequality implies

‖wh − vh‖L2(Ω) ≤ c|t− s|‖vh‖L2(Ω) + ‖φ‖L2(Ω).(3.6)

For any ϕ ∈ L2(Ω), let ξ ∈ Ḣ2(Ω) be the solution of the elliptic problem

−∇ · (a(·, t)∇ξ) = ϕ.

Then ‖ξ‖H2(Ω) ≤ c‖ϕ‖L2(Ω). By substituting ξ into (3.5), we obtain

|(φ, ϕ)| = |(a(·, t)∇φ,∇ξ)|
= |((a(·, s)− a(·, t))∇vh,∇ξ)|
= |(vh,∇ · (a(·, s)− a(·, t))∇ξ)|
≤ c|t− s|‖vh‖L2(Ω)‖ξ‖H2(Ω)

≤ c|t− s|‖vh‖L2(Ω)‖ϕ‖L2(Ω).

This implies (via duality)

‖φ‖L2(Ω) = sup
ϕ∈L2(Ω)

|(φ, ϕ)|
‖ϕ‖L2(Ω)

≤ c|t− s|‖vh‖L2(Ω).

Substituting the last inequality back into (3.6), we deduce

‖wh − vh‖L2(Ω) ≤ c|t− s|‖vh‖L2(Ω).

This completes the proof of Lemma 3.1. �

Remark 3.1. Note that the semidiscrete operator Ah(t) is self-adjoint. Then Lemma
3.1 together with a duality argument yields

‖(I −Ah(s)Ah(t)−1)vh‖L2(Ω) ≤ c|t− s|‖vh‖L2(Ω), ∀ vh ∈ Sh.
Consequently,

‖(Ah(t)−Ah(s))vh‖L2(Ω) ≤ ‖(I −Ah(s)Ah(t)−1)Ah(t)vh‖L2(Ω)

≤ c|t− s|‖Ah(t)vh‖L2(Ω).

Further, the interpolation between β = 0, 1 yields

‖Aβh(t)(I −Ah(t)−1Ah(s))vh‖L2(Ω) ≤ c|t− s|‖Aβh(t)vh‖L2(Ω).

The following result is the continuous analogue of Lemma 3.1, and it is indepen-
dent interest.

Corollary 3.1. Under conditions (1.2)-(1.3), the following estimate holds:

‖(I −A(t)−1A(s))v‖L2(Ω) ≤ c|t− s|‖v‖L2(Ω), ∀ v ∈ H1
0 (Ω).

Proof. For any v ∈ Ḣ2(Ω), there holds Ah(s)Rh(s)v = PhA(s)v [34, equation
(1.34), p. 11]. By the standard error estimates for Galerkin FEM,

‖Ah(t)−1Ah(s)Rh(s)v −A(t)−1A(s)v‖L2(Ω)

=‖(Ah(t)−1Ph −A(t)−1)A(s)v‖L2(Ω)
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≤ch2‖A(s)v‖L2(Ω) ≤ ch2‖v‖H2(Ω).

Then by Lemma 3.1 and the triangle inequality, we deduce

‖(I −A(t)−1A(s))v‖L2(Ω)

≤‖(I −Ah(t)−1Ah(s))Rh(s)v‖L2(Ω) + ch2‖v‖H2(Ω)

≤c|t− s|‖Rh(s)v‖L2(Ω) + ch2‖v‖H2(Ω)

≤c|t− s|‖v‖L2(Ω) + c|t− s|‖Rh(s)v − v‖L2(Ω) + ch2‖v‖H2(Ω)

≤c|t− s|‖v‖L2(Ω) + (c|t− s|+ c)h2‖v‖H2(Ω), ∀ v ∈ Ḣ2(Ω).

Then the assertion follows by letting h → 0 and noting that the space Ḣ2(Ω) is
dense in H1

0 (Ω). �

Lemma 3.2. Under conditions (1.2)-(1.3), the following estimate holds:

‖(Rh(t)−Rh(s))v‖L2(Ω) ≤ ch2|t− s|‖v‖H2(Ω), ∀ v ∈ Ḣ2(Ω).(3.7)

Proof. By the definition of Ritz projection, cf. (3.3), the difference ηh = Rh(t)v −
Rh(s)v ∈ Sh satisfies

(a(·, s)∇ηh,∇χ) = ((a(·, t)− a(·, s))∇(v −Rh(t)v),∇χ), ∀χ ∈ Sh.

Let η ∈ H1
0 (Ω) be the weak solution of the elliptic problem

(a(·, s)∇η,∇ξ) = ((a(·, t)− a(·, s))∇(v −Rh(t)v),∇ξ), ∀ ξ ∈ H1
0 (Ω).(3.8)

By the definition of Rh(s), cf. (3.3), ηh = Rh(s)η and by the error estimate (3.4),
there holds

‖ηh − η‖L2(Ω) ≤ ch‖η‖H1(Ω) ≤ ch‖(a(·, t)− a(·, s))∇(v −Rh(t)v)‖L2(Ω)

≤ ch2|t− s|‖v‖H2(Ω).

The triangle inequality implies

‖ηh‖L2(Ω) ≤ ch2|t− s|‖v‖H2(Ω) + ‖η‖L2(Ω).(3.9)

Next we use a duality argument to bound ‖η‖L2(Ω). For any ϕ ∈ L2(Ω), let ξ ∈
Ḣ2(Ω) be the solution of the elliptic problem

−∇ · (a(·, s)∇ξ) = ϕ.

Upon substituting ξ into (3.8), we obtain

|(η, ϕ)| = |(a(·, s)∇η,∇ξ)| = |((a(·, t)− a(·, s))∇(v −Rh(t)v),∇ξ)|
= |(v −Rh(t)v,∇ · ((a(·, t)− a(·, s))∇ξ)|
≤ c‖v −Rh(t)v‖L2(Ω)|t− s|‖ξ‖H2(Ω)

≤ ch2‖v‖H2(Ω)|t− s|‖ϕ‖L2(Ω),

which implies (via duality)

‖η‖L2(Ω) ≤ ch2‖v‖H2(Ω)|t− s|.

Substituting the above inequality into (3.9) yields Lemma 3.2. �
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3.2. Semidiscrete scheme and error estimates. By the discrete maximal Lp-
regularity, one can show the existence and uniqueness of a FEM solution uh(t).
We also have the following stability estimates. The proof is identical with that for
Theorems 2.1–2.3, using the estimates in Section 3.1, and hence it is omitted.

Theorem 3.1. Let conditions (1.2)-(1.3) be fulfilled, and uh be the solution to
problem (3.1).

(i) For u0 ∈ Ḣβ(Ω), 0 ≤ β ≤ 2, and f = 0, then

‖Ahuh(t)‖L2(Ω) ≤ ct−(1−β/2)α‖u0‖Ḣβ(Ω),

‖u′h(t)‖L2(Ω) ≤ ct−(1−αβ/2)‖u0‖Ḣβ(Ω).

(ii) For u0 = 0, f ∈ C([0, T ];L2(Ω)) and
∫ t

0
(t − s)α−1‖f ′(s)‖L2(Ω) ds < ∞,

then

‖Ahuh‖Lp(0,T ;L2(Ω)) + ‖∂αt uh‖Lp(0,T ;L2(Ω)) ≤ c‖f‖Lp(0,T ;L2(Ω)),

‖u′h(t)‖L2(Ω) ≤ ct−(1−α)‖f(0)‖L2(Ω) + c

∫ t

0

(t− s)α−1‖f ′(s)‖L2(Ω) ds,∫ t

0

(t− s)α−1‖Ahuh(s)‖L2(Ω)ds ≤ c‖f(0)‖L2(Ω) + c

∫ t

0

(t− s)α−1‖f ′(s)‖L2(Ω)ds.

(iii) For u0 = 0 and f ∈ Lp(0, T ;L2(Ω)) with p ∈ (2/α,∞), then

‖uh(t)‖H1(Ω) ≤ c‖f‖Lp(0,t;L2(Ω)).

Now we derive error estimates for the semidiscrete solution uh. Problem (3.1)
can be rewritten as

∂αt uh(t) +Ah(t0)uh(t) = Phf(t) + (Ah(t0)−Ah(t))uh(t), t ∈ (0, T ],

with uh(0) = Phu0, whose solution is given by

uh(t) = Fh(t; t0)Phu0 +

∫ t

0

Eh(t− s; t0)
(
Phf(s) + (Ah(t0)−Ah(s))uh(s)

)
ds,

(3.10)

where the semidiscrete solution operators Fh(t; t0) and Eh(t; t0) are defined respec-
tively by

Fh(t; t0) :=
1

2πi

∫
Γθ,δ

eztzα−1(zα +Ah(t0))−1 dz

and

Eh(t; t0) :=
1

2πi

∫
Γθ,δ

ezt(zα +Ah(t0))−1 dz.

Let eh = Phu− uh. Then by (2.13) and (3.10), eh can be represented by

eh(t) =(PhF (t; t0)u0 − Fh(t; t0)Phu0) +

∫ t

0

(PhE(t− s; t0)− Eh(t− s; t0)Ph)f(s)ds

+

∫ t

0

(PhE(t− s; t0)− Eh(t− s; t0)Ph)(A(t0)−A(s))u(s)ds

+

∫ t

0

Eh(t− s; t0)
(
Ph(A(t0)−A(s))u(s)− (Ah(t0)−Ah(s))uh(s)

)
ds



16 BANGTI JIN, BUYANG LI, AND ZHI ZHOU

=:

4∑
i=1

Ii(t).

(3.11)

The terms I1(t) and I2(t) represent the errors for the homogeneous and inho-
mogeneous problems with a time-independent operator A(t0), respectively, which
have been analyzed: [11, Theorem 3.7] implies

(3.12) ‖I1(t0)‖L2(Ω) ≤ ct
−(1−β/2)α
0 h2‖u0‖Ḣβ(Ω), β ∈ [0, 2],

and by the argument in [9], there holds (with `h = log(1 + 1/h))

(3.13) ‖I2(t0)‖L2(Ω) ≤ ch2`2h‖f‖L∞(0,T ;L2(Ω)).

It remains to bound the two terms I3(t) and I4(t), which are given below. We
shall discuss the homogeneous and inhomogeneous problems separately.

Lemma 3.3. Under conditions (1.2) and (1.3), for u0 ∈ L2(Ω) and f = 0, for the
term I3(t), there holds

‖I3(t0)‖L2(Ω) ≤ ch2‖u0‖L2(Ω).

Proof. By the definitions of the operators E(t; t0) and Eh(t; t0), we have

‖I3(t0)‖L2(Ω)

≤c
∫ t0

0

∫
Γθ,δ

|ez(t0−s)|
∥∥(zα +A(t0))−1 − (zα +Ah(t0))−1Ph

∥∥
L2(Ω)

× ‖(A(t0)−A(s))u(s)‖ |dz|ds.

By condition (1.2), for any z ∈ Γθ,δ, we have [6, p. 820]

‖(zα +A(t0))−1 − (zα +Ah(t0))−1Ph
∥∥ ≤ ch2,

where the constant c is independent of z. Meanwhile, condition (1.3) implies

‖(A(t0)−A(s))u(s)‖L2(Ω) ≤ c|t0 − s|‖u(s)‖H2(Ω).

Thus by Theorem 2.2,

‖I3(t0)‖L2(Ω) ≤ ch2

∫ t0

0

(t0 − s)−1(t0 − s)‖u(s)‖H2(Ω)ds ≤ ch2

∫ t0

0

‖u(s)‖H2(Ω)ds

= ch2

∫ t0

0

s−α‖u0‖L2(Ω)ds ≤ ch2‖u0‖L2(Ω).(3.14)

This completes the proof of the lemma. �

Lemma 3.4. Under conditions (1.2) and (1.3), for u0 ∈ L2(Ω) and f = 0, for the
term I4(t), there holds

‖I4(t0)‖L2(Ω) ≤ ch2‖u0‖L2(Ω) + c

∫ t0

0

‖eh(s)‖L2(Ω)ds.

Proof. Let eh = Phu− uh. Using the identity PhA(s) = Ah(s)Rh(s) [34, (1.34), p.
11] and the triangle inequality, we derive

‖I4(t0)‖L2(Ω) =

∥∥∥∥∫ t0

0

Eh(t0 − s; t0)
(

(Ah(t0)Rh(t0)−Ah(s)Rh(s))u(s)
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− (Ah(t0)−Ah(s))uh(s)
)

ds

∥∥∥∥
L2(Ω)

≤
∥∥∥∥∫ t0

0

Eh(t0 − s; t0)(Ah(t0)−Ah(s))eh(s)ds

∥∥∥∥
L2(Ω)

+

∥∥∥∥∫ t0

0

Eh(t0 − s; t0)
(
Ah(t0)(Rh(t0)− Ph)u(s)

−Ah(s)(Rh(s)− Ph)u(s)
)

ds

∥∥∥∥
L2(Ω)

=: I4,1(t0) + I4,2(t0).

For the term I4,1(t0), by Lemmas 2.2(ii) and 3.1, we have

I4,1(t0) =

∥∥∥∥ ∫ t0

0

Ah(t0)Eh(t0 − s; t0)(I −Ah(t0)−1Ah(s))eh(s)ds

∥∥∥∥
L2(Ω)

≤
∫ t0

0

‖Ah(t0)Eh(t0 − s; t0)‖‖(I −Ah(t0)−1Ah(s))eh(s)‖L2(Ω)ds

≤ c
∫ t0

0

(t0 − s)−1(t0 − s)‖eh(s)‖L2(Ω)ds = c

∫ t0

0

‖eh(s)‖L2(Ω)ds.

For the term I4,2(t0), by the triangle inequality, we further split it into

I4,2(t0) ≤
∥∥∥∥∫ t0

0

Eh(t0 − s; t0)Ah(t0)(Rh(t0)−Rh(s))u(s)ds

∥∥∥∥
L2(Ω)

+

∥∥∥∥∫ t0

0

Eh(t0 − s; t0)(Ah(t0)−Ah(s))(Rh(s)− Ph)u(s)
)

ds

∥∥∥∥
L2(Ω)

=: I′4,2(t0) + I′′4,2(t0).

Now by Lemmas 2.2(ii) and 3.2 and Theorem 2.2, we bound I′4,2(t0) by

I′4,2(t0) ≤
∫ t0

0

‖Eh(t0 − s; t0)Ah(t0)‖‖(Rh(t0)−Rh(s))u(s)‖L2(Ω)ds

≤ c
∫ t0

0

(t0 − s)−1(t0 − s)h2‖u(s)‖H2(Ω)ds

≤ ch2

∫ t0

0

s−α‖u0‖L2(Ω)ds ≤ ch2‖u0‖L2(Ω).

Likewise, by Lemma 3.1 and Theorem 2.2, we bound I ′′4,2(t0) by

I′′4,2(t0) =

∥∥∥∥∫ t0

0

Ah(t0)Eh(t0 − s; t0)(I −Ah(t0)−1Ah(s))(Rh(s)− Ph)u(s)
)

ds

∥∥∥∥
L2(Ω)

≤
∫ t0

0

‖Ah(t0)Eh(t0 − s; t0)‖‖(I −Ah(t0)−1Ah(s))(Rh(s)− Ph)u(s)‖L2(Ω)ds

≤ c
∫ t0

0

(t0 − s)−1(t0 − s)‖(Rh(s)− Ph)u(s)‖L2(Ω)ds

≤ ch2

∫ t0

0

‖u(s)‖H2(Ω)ds ≤ ch2

∫ t0

0

s−α‖u0‖L2(Ω)ds ≤ ch2‖u0‖L2(Ω).

The desired assertion follows by combining the preceding estimates. �
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Now we can state the main result of this part, i.e., error estimate on the semidis-
crete solution uh.

Theorem 3.2. Under conditions (1.2) and (1.3), for u0 ∈ L2(Ω) and f = 0, there
holds

‖u(t)− uh(t)‖L2(Ω) ≤ ch2t−α‖u0‖L2(Ω).

Proof. Substituting (3.12) and Lemmas 3.3 and 3.4 into (3.11) yields

‖Phu(t0)− uh(t0)‖L2(Ω) ≤ ct−α0 h2‖u0‖L2(Ω)

+ c

∫ t0

0

‖Phu(s)− uh(s)‖L2(Ω)ds, ∀ t0 ∈ (0, T ].

By Gronwall’s inequality from Lemma 2.3, we obtain

‖Phu(t)− uh(t)‖L2(Ω) ≤ ct−αh2‖u0‖L2(Ω), ∀ t ∈ (0, T ].

By the approximation property of Ph and Theorem 2.2, we have

‖u(t0)− Phu(t0)‖L2(Ω) ≤ ch2‖u(t0)‖H2(Ω) ≤ ct−α0 h2‖u0‖L2(Ω).

The last two estimates together imply the desired result. �

A similar error estimate holds for the inhomogeneous problem.

Theorem 3.3. Under conditions (1.2) and (1.3), for u0 = 0 and f ∈ L∞(0, T ;L2(Ω)),
there holds

‖u(t)− uh(t)‖L2(Ω) ≤ ch2`2h‖f‖L∞(0,t;L2(Ω)), with `h = log(1 + 1/h).

Proof. The proof is similar to Theorem 3.2, in view of (3.13), and the following
estimates:

‖I3(t0)‖L2(Ω) ≤ ch2‖f‖L∞(0,t0;L2(Ω)),

‖I4(t0)‖L2(Ω) ≤ ch2‖f‖L∞(0,t0;L2(Ω)) + c

∫ t0

0

‖eh(s)‖L2(Ω)ds,

which follow similarly as Lemmas 3.3 and 3.4. Actually, the first follows from (3.14)
and Theorem 2.1 by

‖I3(t0)‖L2(Ω) ≤ ch2

∫ t0

0

‖u(s)‖H2(Ω)ds ≤ ch2‖f‖L∞(0,t0;L2(Ω)).

Similarly, the second follows from the expressions of I′4,1 and I′′4,2 in Lemma 3.4,
and Theorem 2.1. �

Remark 3.2. We have only discussed discretization by piecewise linear finite ele-
ments. It is of much interest to extend the analysis to high-order finite elements.
This seems missing even for the case of a time-independent diffusion coefficient
when problem data are nonsmooth, partly due to the limited smoothing property
of the solution operators [10].
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4. Time discretization

Now we study the time discretization of problem (1.1). We divide the time
interval [0, T ] into a uniform grid, with tn = nτ , n = 0, . . . , N , and τ = T/N
being the time step size. Then we approximate the Riemann-Liouville fractional
derivative

R∂αt ϕ(t) =
1

Γ(1− α)

d

dt

∫ t

0

(t− s)−αϕ(s)ds

by the backward Euler (BE) convolution quadrature (with ϕj = ϕ(tj)) [22, 12]:

R∂αt ϕ(tn) ≈ τ−α
n∑
j=0

bjϕ
n−j := ∂̄ατ ϕ

n, with

∞∑
j=0

bjξ
j = (1− ξ)α.

The fully discrete scheme for problem (1.1) reads: find unh ∈ Sh such that

∂̄ατ (unh − u0
h) +Ah(tn)unh = Phf(tn), n = 1, 2, . . . , N,(4.1)

with the initial condition u0
h = Phu0 ∈ Sh. Similar to the semidiscrete case, for a

given m ∈ N with 1 ≤ m ≤ N , we rewrite (4.1) as

∂̄ατ (unh − u0
h) +Ah(tm)unh = Phf(tn) + (Ah(tm)−Ah(tn))unh.(4.2)

By means of discrete Laplace transform, the fully discrete solution umh ∈ Sh is given
by

umh = Fmτ,mu
0
h + τ

m∑
k=1

Em−kτ,m [Phf(tk) + (Ah(tm)−Ah(tk))ukh],(4.3)

where the fully discrete operators Fnτ,m and Enτ,m are respectively defined by (with
δτ (ξ) = (1− ξ)/τ)

Fnτ,m =
1

2πi

∫
Γτθ,δ

eznτδτ (e−zτ )α−1(δτ (e−zτ )α +Ah(tm))−1 dz,(4.4)

Enτ,m =
1

2πi

∫
Γτθ,δ

eznτ (δτ (e−zτ )α +Ah(tm))−1 dz,(4.5)

with the contour Γτθ,δ := {z ∈ Γθ,δ : |=(z)| ≤ π/τ} (oriented with an increasing

imaginary part).
The next lemma gives elementary properties of the kernel δτ (e−zτ ).

Lemma 4.1. For any θ ∈ (π/2, π), there exists θ′ ∈ (π/2, π) and positive constants
c, c1, c2 (independent of τ) such that for all z ∈ Γτθ,δ

c1|z| ≤ |δτ (e−zτ )| ≤ c2|z|, δτ (e−zτ ) ∈ Σθ′ ,

|δτ (e−zτ )− z| ≤ cτ |z|2, |δτ (e−zτ )α − zα| ≤ cτ |z|1+α.

By the solution representations (3.10) and (4.3), the temporal error emh = umh −
uh(tm) satisfies

emh = (Fh(tm; tm)Phu0 − Fmτ,mu0
h

)
+
(
τ

m∑
k=1

Em−kτ,m Phf(tk)−
m∑
k=1

∫ tk

tk−1

Eh(tm − s)Phf(s)ds
)

+
(
τ

m∑
k=1

Em−kτ,m (Ah(tm)−Ah(tk))ukh
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−
m∑
k=1

∫ tk

tk−1

Eh(tm − s)(Ah(tm)−Ah(s))uh(s)ds
)

=

3∑
i=1

Imi .(4.6)

For the first two terms, there hold [12, Theorem 3.5]

‖Im1 ‖L2(Ω) ≤ cτt−(1−αβ/2)
m ‖u0‖Ḣβ(Ω), β ∈ [0, 2],

‖Im2 ‖L2(Ω) ≤ cτt−(1−α)
m ‖f(0)‖L2(Ω) + cτ

∫ tm

0

(tm − s)α−1‖f ′(s)‖L2(Ω) ds.

To estimate Im3 , we need two preliminary bounds on the operator Enτ,m.

Lemma 4.2. For the operator Em−kτ,m defined in (4.5), there holds for any β ∈ [0, 1]∥∥∥[τAβh(tm)Em−kτ,m −
∫ tk

tk−1

Aβh(tm)Eh(tm − s; tm) ds]
∥∥∥ ≤ cτ2(tm − tk + τ)−(2−(1−β)α).

Proof. First we consider the case β = 0. By the definition of the operator Eh(t; tm),
we have∫ tk

tk−1

Eh(tm − s; tm) ds =
1

2πi

∫
Γθ,δ

(zα +Ah(tm))−1

∫ tk

tk−1

ez(tm−s) dsdz

=
1

2πi

∫
Γθ,δ

ez(tm−tk)z−1(ezτ − 1)(zα +Ah(tm))−1 dz.

This and the defining relation (4.5) yield

τEm−kτ,m −
∫ tk

tk−1

Eh(tm − s; tm) ds

=
1

2πi

∫
Γτθ,δ

ez(tm−tk)
[
τ(δτ (e−zτ )α +Ah(tm))−1 − z−1(ezτ − 1)(zα +Ah(tm))−1

]
dz

− 1

2πi

∫
Γθ,δ\Γτθ,δ

ez(tm−tk)z−1(ezτ − 1)(zα +Ah(tm))−1 dz := I + II.

For k < m, let δ = (tm − tk + τ)−1 and z = s cosϕ + is sinϕ. By Lemma 4.1 and
(2.5), we obtain∥∥τ(δτ (e−zτ )α +Ah(tm))−1 − z−1(ezτ − 1)(zα +Ah(tm))−1

∥∥ ≤ cτ2|z|−α+1, ∀z ∈ Γτθ,δ.

Then the bound on the term I follows by

‖I‖ ≤ cτ2

∫ π
τ sin θ

δ

es(tm−tk) cos θs−α+1ds+ cτ2

∫ θ

−θ
ecosϕδ−α+2dϕ

≤ cτ2(tm − tk + τ)α−2.

Similarly, Taylor expansion of ezτ , (2.5) and Lemma 4.1 bound the term II by

‖II‖ ≤ cτ
∫

Γθ,δ\Γτθ,δ
|ez(tm−tk)||z|−α|dz| ≤ cτ

∫ ∞
π

τ sin θ

es(tm−tk) cos θs−αds

≤ cτ2

∫ ∞
π

τ sin θ

es(tm−tk) cos θs1−αds ≤ cτ2(tm − tk)−(2−α).

For k = m, there hold

‖I‖ ≤ cτ2

∫ π
τ sin θ

δ

s−α+1ds+ cτ2

∫ θ

−θ
δ−α+2dϕ ≤ cτα,
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‖II‖ ≤ c
∫

Γθ,δ\Γτθ,δ
|z|−α−1|dz| ≤ c

∫ ∞
π

τ sin θ

s−α−1ds ≤ cτα.

The proof for the case β = 1 is analogous, and the intermediate case β ∈ (0, 1)
follows by interpolation. �

The next result gives the smoothing property of the operator Enτ,m.

Lemma 4.3. For the operator Enτ,m defined in (4.5), there holds

‖Ah(tm)Enτ,m‖ ≤ c(tn + τ)−1, n = 0, 1, . . . , N.

Proof. Upon letting δ = (tn + τ)−1 in Γτθ,δ and z = s cosϕ + is sinϕ, by (2.5) and
Lemma 4.1, we have

‖Ah(tm)Enτ,m‖ =

∥∥∥∥ 1

2πi

∫
Γτθ,δ

eztnAh(tm)(δτ (e−zτ )α +Ah(tm))−1 dz

∥∥∥∥
≤ c

∫ π
τ sin θ

(tn+τ)−1

estn cos θds+ c

∫ θ

−θ
ecosϕ(tn + τ)−1dϕ ≤ c(tn + τ)−1.

This completes the proof of the lemma. �

Below we analyze the scheme (4.1) for the homogeneous and inhomogeneous
problems separately.

4.1. Error estimate for the homogeneous problem. First we analyze the ho-
mogeneous problem. It suffices to bound the term Im3 in the splitting (4.6).

Lemma 4.4. Under conditions (1.2)-(1.3), for u0 ∈ L2(Ω) and f = 0, there holds

‖Im3 ‖L2(Ω) ≤ cτ log(1 + tm/τ)t−1
m ‖u0‖L2(Ω) + cτ

m∑
k=1

‖ekh‖L2(Ω).

Proof. Let ekh = ukh− uh(tk), and Q(t) = (Ah(tm)−Ah(t))uh(t). Then we split the
summand of Im3 into

τEm−kτ,m (Ah(tm)−Ah(tk))ukh −
∫ tk

tk−1

Eh(tm − s; tm)Q(s) ds

=
(
τEm−kτ,m (Ah(tm)−Ah(tk))ekh

)
+ (τEm−kτ,m −

∫ tk

tk−1

Eh(tm − s; tm) ds)Q(tk)

+

∫ tk

tk−1

Eh(tm − s; tm)(Q(tk)−Q(s)) ds =: Ik + IIk + IIIk.

It remains to bound the terms Ik, IIk and IIIk. First, Lemmas 4.3 and 3.1 bound
the term ‖Ik‖L2(Ω) by:

‖Ik‖L2(Ω) = τ‖Ah(tm)Em−kτ,m (I −A−1
h (tm)Ah(tk))ekh‖L2(Ω)

≤ cτ(tm − tk + τ)−1‖(I −A−1
h (tm)Ah(tk))ekh‖L2(Ω) ≤ cτ‖ekh‖L2(Ω).

Second, by Lemma 4.2 (with β = 0) and Remark 3.1, we bound the term IIk by

‖IIk‖L2(Ω) ≤ ‖τEm−kτ,m −
∫ tk

tk−1

Eh(tm − s; tm) ds‖‖Q(tk)‖L2(Ω)

≤ cτ2(tm − tk + τ)α−1‖Ah(tm)uh(tk)‖L2(Ω),
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and consequently, by Theorem 3.1(i), we deduce

m∑
k=1

‖IIk‖L2(Ω) ≤ cτ2
m∑
k=1

(tm − tk + τ)α−1‖Ah(tm)uh(tk)‖L2(Ω)

≤ cτ2‖u0‖L2(Ω)

m∑
k=1

(tm − tk + τ)α−1t−αk ≤ cτ‖u0‖L2(Ω),

where the last line follows from the inequality

τ

m∑
k=1

(tm − tk + τ)α−1t−αk ≤ c.

Last, for the third term IIIk, with k = 1, by Lemma 3.1, we have

‖III1‖L2(Ω) ≤
∫ τ

0

‖Eh(tm − s; tm)Q(τ)‖L2(Ω) ds+

∫ τ

0

‖Eh(tm − s; tm)Q(s)‖L2(Ω) ds

=

∫ τ

0

‖Ah(tm)Eh(tm − s; tm)Ah(tm)−1Q(τ)‖L2(Ω) ds

+

∫ τ

0

‖Ah(tm)Eh(tm − s; tm)Ah(tm)−1Q(s)‖L2(Ω) ds

≤ c
∫ τ

0

(tm − s)−1((tm − τ) + (tm − s)) ds‖u0‖L2(Ω) ≤ cτ‖u0‖L2(Ω).

Meanwhile, for k > 1, we further split the term IIIk into

IIIk =

∫ tk

tk−1

Eh(tm − s; tm)

∫ s

tk

Q′(ξ) dξ ds

=

∫ tk

tk−1

Eh(tm − s; tm)

∫ s

tk

(Ah(tm)−Ah(ξ))u′h(ξ) dξ ds

−
∫ tk

tk−1

Eh(tm − s; tm)

∫ s

tk

A′h(ξ)uh(ξ) dξ ds =: IIIk,1 + IIIk,2.

By Lemmas 3.1 and 2.2(ii), the term IIIk,1 for any k > 1 can be bounded by

‖IIIk,1‖L2(Ω) ≤
∫ tk

tk−1

‖Ah(tm)Eh(tm − s; tm)‖

×
∫ tk

s

‖(I −Ah(tm)−1Ah(ξ))u′h(ξ)‖L2(Ω) dξ ds

≤ c
∫ tk

tk−1

(tm − s)−1

∫ tk

s

(tm − ξ)‖u′h(ξ)‖L2(Ω) dξ ds

≤ c
∫ tk

tk−1

(tm − s)−1

∫ tk

s

(tm − ξ)ξ−1‖u0‖L2(Ω) dξ ds,

where the last step is due to Theorem 3.1(i). Now we note the elementary inequality∫ tk

tk−1

(tm − s)−1

∫ tk

s

(tm − ξ)ξ−1dξds =

∫ tk

tk−1

(tm − ξ)ξ−1

∫ ξ

tk−1

(tm − s)−1dsdξ

≤
∫ tk

tk−1

(tm − ξ)(tm − ξ)−1τξ−1dξ = τ

∫ tk

tk−1

ξ−1dξ.
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Consequently,

‖IIIk,1‖L2(Ω) ≤ cτ
∫ tk

tk−1

ξ−1 dξ‖u0‖L2(Ω),

and
m∑
k=2

‖IIIk,1‖L2(Ω) ≤ cτ
∫ tm

τ

ξ−1 dξ‖u0‖L2(Ω) = cτ log(tm/τ).

Similarly, by Theorem 3.1(i), the term IIIk,2 for any k > 1 is bounded by

‖IIIk,2‖L2(Ω) =

∫ tk

tk−1

‖Eh(tm − s; tm)‖
∫ tk

s

‖A′h(ξ)uh(ξ)‖L2(Ω) dξ ds

≤ c
∫ tk

tk−1

(tm − s)α−1

∫ tk

s

ξ−α dξ ds‖u0‖L2(Ω)

≤ cτ
∫ tk

tk−1

(tm − s)α−1s−α ds‖u0‖L2(Ω),

where the last line follows from the trivial inequality
∫ tk
s
ξ−αdξ ≤ s−α

∫ tk
s

dξ ≤
s−ατ. Thus,

m∑
k=1

‖IIIk,2‖L2(Ω) ≤ cτ
∫ tm

0

(tm − s)α−1s−α ds‖u0‖L2(Ω) ≤ c‖u0‖L2(Ω).

Hence, there holds
m∑
k=1

‖IIIk‖L2(Ω) ≤ cτ(1 + log(tm/τ))‖u0‖L2(Ω).

Combining the preceding estimates completes the proof of the lemma. �

Now we can state an error estimate for the homogeneous problem.

Theorem 4.1. Under conditions (1.2)-(1.3), u0 ∈ L2(Ω) and f = 0, there holds

‖umh − uh(tm)‖L2(Ω) ≤ cτt−1
m log(1 + tm/τ))‖u0‖L2(Ω).

Proof. It follows from Lemma 4.4 that

‖emh ‖L2(Ω) ≤ cτ(t−1
m + log(1 + tm/τ))‖u0‖L2(Ω) + cτ

m∑
k=1

‖ekh‖L2(Ω).

The desired estimate follows from a variant of the discrete Gronwall’s inequality
[34, p. 258]. �

Remark 4.1. The logarithmic factor log(1+tm/τ) is also present for the BE method
for standard parabolic problems with a time-dependent diffusion coefficient [24,

Theorem 2, p. 95]. For u0 ∈ Ḣβ(Ω), β ∈ (0, 2], it may be improved:

‖umh − uh(tm)‖L2(Ω) ≤ cτt−(1−βα/2)
m ‖u0‖Ḣβ(Ω).

In fact, the argument of Lemma 4.4 (together with Theorem 3.1(i)) implies

‖IIIk,1‖L2(Ω) ≤ c
∫ tk

tk−1

(tm − s)−1

∫ tk

s

(tm − ξ)‖u′h(ξ)‖L2(Ω) dξ ds

≤ c
∫ tk

tk−1

(tm − s)−1

∫ tk

s

(tm − ξ)ξ−(1−αβ/2)‖u0‖Ḣβ(Ω) dξ ds
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≤ cτ
∫ tk

tk−1

ξ−(1−βα/2) dξ‖u0‖Ḣβ(Ω),

and

‖IIIk,2‖L2(Ω) =

∫ tk

tk−1

‖Eh(tm − s; tm)‖
∫ tk

s

‖A′h(ξ)uh(ξ)‖L2(Ω) dξ ds

≤ c
∫ tk

tk−1

(tm − s)α−1

∫ tk

s

ξ−(1−β/2)α dξ ds‖u0‖Ḣβ(Ω)

≤ cτ
∫ tk

tk−1

(tm − s)α−1s−(1−β/2)α ds‖u0‖Ḣβ(Ω).

Thus, for any β ∈ (0, 2], there holds
m∑
k=1

∥∥∥∥∫ tk

tk−1

E(tm − s; tm)(Q(tk)−Q(s)) ds

∥∥∥∥ ≤ cτ‖u0‖Ḣβ(Ω).

Then the desired estimate follows by repeating the argument for Theorem 4.1.

4.2. Error estimate for the inhomogeneous problem. Now we give the tem-
poral discretization error for the inhomogeneous problem.

Theorem 4.2. Under conditions (1.2)-(1.3), u0 = 0, f ∈ C([0, T ];L2(Ω)) and∫ t
0
(t− s)α−1‖f ′(s)‖L2(Ω)ds <∞ for any 0 < t ≤ T , there holds

‖umh − uh(tm)‖L2(Ω) ≤ cτ
(
t−(1−α)
m ‖f(0)‖L2(Ω) +

∫ tm

0

(tm − s)α−1‖f ′(s)‖L2(Ω) ds
)
.

Proof. The argument is similar to Theorem 4.1, and thus we only sketch the main
steps. It suffices to bound the terms IIk and IIIk in Lemma 4.4. By Theorem
3.1(iii), Remark 3.1 and Lemma 4.2 (with β = 1/2), the following estimate holds:
m∑
k=1

‖IIk‖L2(Ω) ≤ cτ2
m∑
k=1

(tm − tk + τ)α/2−1‖A1/2
h (tm)uh(tk)‖L2(Ω)

≤ cτ2
m∑
k=1

(tm − tk + τ)α/2−1‖f‖L∞(0,tm;L2(Ω)) ≤ cτ‖f‖L∞(0,tm;L2(Ω)).

Meanwhile, upon noting tm ≤ T , we have

‖f‖L∞(0,tm;L2(Ω)) ≤ ‖f(0)‖L2(Ω) +

∫ tm

0

‖f ′(s)‖L2(Ω) ds

≤ ‖f(0)‖L2(Ω) + cT

∫ tm

0

(tm − s)α−1‖f ′(s)‖L2(Ω) ds.

Next, the two terms IIIk,1 and IIIk,2 can be bounded respectively by

‖IIIk,1‖L2(Ω) ≤ c
∫ tk

tk−1

(tm − s)−1

∫ tk

s

(tm − ξ)‖u′h(ξ)‖L2(Ω) dξ ds

= c

∫ tk

tk−1

(tm − ξ)‖u′h(ξ)‖L2(Ω)

∫ ξ

tk−1

(tm − s)−1 dsdξ

≤ cτ
∫ tk

tk−1

‖u′h(ξ)‖L2(Ω)dξ,
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and

‖IIIk,2‖L2(Ω) ≤
∫ tk

tk−1

‖Eh(tm − s; tm)‖
∫ tk

s

‖A′h(ξ)uh(ξ)‖L2(Ω) dξ ds

≤ c
∫ tk

tk−1

(tm − s)α−1

∫ tk

s

‖A′h(ξ)uh(ξ)‖L2(Ω) dξ ds

= c

∫ tk

tk−1

‖A′h(ξ)uh(ξ)‖L2(Ω)

∫ ξ

tk−1

(tm − s)α−1 dsdξ

≤ cτ
∫ tk

tk−1

(tm − ξ)α−1‖A′h(ξ)uh(ξ)‖L2(Ω)dξ.

Then by Theorem 3.1(ii), we have
m∑
k=1

‖IIIk,1‖L2(Ω) ≤ cτ
∫ tm

0

‖u′h(s)‖L2(Ω)ds

≤ cτ
(∫ tm

0

‖f(0)‖L2(Ω)ds+

∫ tm

0

∫ s

0

(s− ξ)α−1‖f ′(ξ)‖L2(Ω)dξds
)

= cτ
(∫ tm

0

‖f(0)‖L2(Ω)ds+

∫ tm

0

‖f ′(ξ)‖L2(Ω)

∫ tm

ξ

(s− ξ)α−1dsdξ
)

≤ cτ
(
‖f(0)‖L2(Ω) +

∫ tm

0

(tm − ξ)α−1‖f ′(ξ)‖L2(Ω)dξ
)
,

and similarly, by Theorem 3.1(ii), we deduce
m∑
k=1

‖IIIk,2‖L2(Ω) ≤ cτ
∫ tm

0

(tm − s)α−1‖A′h(s)uh(s)‖L2(Ω)ds

≤ cτ
(
‖f(0)‖L2(Ω) +

∫ tm

0

(tm − s)α−1‖f ′(s)‖L2(Ω)ds
)
.

These estimates and discrete Gronwall’s inequality complete the proof. �

Remark 4.2. The analysis in this part applies to other first-order methods, e.g., L1
scheme [21], and similar error estimates can be derived.

Remark 4.3. We briefly comment on the dependence of the constant c in error
estimates on the fractional order α. At a few occasions, it can blow up as α→ 1−;
see e.g., I3(t0) in Lemma 3.3, I4,2(t0) in Lemma 3.4 and IIIk,2 in Lemma 4.4. This
phenomenon does not fully agree with the results for the continuous model. Such
a blowup phenomenon appears also in some existing error analysis; see, e.g., [28,
eq. (2.2)] and [32, Lemma 4.3], and it is of interest to further refine the estimates
to fill in the gap.

5. Numerical results

Now we present numerical examples to verify the theoretical results in Sections
3 and 4. We consider problem (1.1) with a time-dependent elliptic operator A(t) =
−(2 + cos(t))∆ on the domain Ω = (0, 1) and the following two sets of problem
data:

(a) u0(x) = x−1/4 ∈ H1/4−ε(Ω) with ε ∈ (0, 1/4) and f ≡ 0.
(b) u0(x) = 0 and f = et(1 + χ(0,1/2)(x)).
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Unless otherwise specified, the final time T is fixed at T = 1.
We divide the domain Ω into M subintervals of equal length h = 1/M . The nu-

merical solutions are computed using the Galerkin FEM in space, and the backward
Euler (BE) CQ or L1 scheme in time. To evaluate the convergence, we compute
the spatial error es and temporal error et, respectively, defined by

es(tN ) = ‖uh(tN )− u(tN )‖L2(Ω) and et(tN ) = ‖uNh − uh(tN )‖L2(Ω).

Since the exact solution is unavailable, we compute reference solutions on a finer
mesh: for the error es, we take the time step τ = 1/10000 and mesh size h = 1/1280,
and for the error et, take h = 1/100 and τ = 1/10000, unless otherwise specified.

First we examine the spatial convergence of the semidiscrete Galerkin scheme
(3.2). The spatial errors for case (a) are shown in Table 1, which indicates a steady
O(h2) rate for the semidiscrete scheme (3.2), just as predicted by Theorem 3.2.
The O(h2) rate holds for all three fractional orders and different terminal times.
Since the initial data is nonsmooth, the spatial error es(tN ) decreases with the
time tN , which is in good agreement with the regularity result in Theorem 2.2.
To further illuminate the precise dependence of the spatial error es(tN ) on tN , in
Table 2, we present the error es as the time tN → 0 for case (a). By repeating

the argument for Theorem 3.2, there holds es(tN ) ≤ ct
−(2−β)α/2
N h2‖v‖Ḣβ(Ω), 0 ≤

β ≤ 2. For case (a), this estimate predicts an exponent 7α/8 for the dependence
on the time tN , which gives the numbers shown in the bracket in Table 2. Table
2 indicates that the empirical rate agrees excellently with the predicted one, fully
confirming the analysis. Similar observations hold also for the numerical results for
the inhomogeneous problem in case (b), cf. Table 3. These results fully support
the error analysis of the semidiscrete scheme in Section 3.

Table 1. Spatial errors es for example (a) with τ = 1/10000 and
h = 1/M .

T
α

N
10 20 40 80 160 rate

0.25 1.44e-5 3.62e-6 9.06e-7 2.26e-7 5.62e-8 2.00 (2.00)
1 0.50 1.02e-5 2.56e-6 6.40e-7 1.60e-7 3.97e-8 2.00 (2.00)

0.75 5.18e-6 1.30e-6 3.25e-7 8.12e-8 2.02e-8 2.00 (2.00)
0.25 6.26e-5 1.57e-5 3.93e-6 9.80e-7 2.44e-7 2.01 (2.00)

10−3 0.50 2.12e-4 5.31e-5 1.33e-5 3.32e-6 8.24e-7 2.01 (2.00)
0.75 5.99e-4 1.50e-4 3.75e-5 9.36e-6 2.33e-6 2.01 (2.00)

Table 2. Spatial errors es for example (a) with h = 1/200 and
N = 10000, at T = 10−k.

α
k

2 3 4 5 6 7 rate

0.25 2.40e-6 4.04e-6 6.58e-6 1.05e-5 1.65e-5 2.66e-5 0.21 (0.22)
0.5 5.28e-6 1.31e-5 3.36e-5 9.02e-5 2.40e-4 6.40e-4 0.43 (0.44)
0.75 9.95e-6 3.90e-5 1.70e-4 7.45e-4 3.26e-3 1.39e-2 0.64 (0.66)
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Table 3. Spatial errors es for example (b) at T = 1 with τ =
1/10000 and h = 1/M .

α
M

10 20 40 80 160 rate

0.25 2.03e-4 5.06e-5 1.27e-5 3.16e-6 7.85e-7 2.01 (2.00)
0.50 2.08e-4 5.19e-5 1.30e-5 3.24e-6 8.04e-7 2.01 (2.00)
0.75 2.13e-4 5.32e-5 1.33e-5 3.32e-6 8.25e-7 2.01 (2.00)

Next we turn to the temporal convergence, and present numerical results for
both BE and L1 schemes, cf. Remark 4.2. The temporal errors et for case (a) at
two time instances are given in Table 4, which indicate an O(τ) convergence rate
for both time stepping schemes. Further, the accuracy of both schemes is largely
comparable. The convergence is very steady for both schemes, and the convergence
rate is independent of the fractional order α and the final time tN (so long as
it is fixed). Further, it is observed that the error et decreases with the time tN .
To show the dependence of the temporal error et(tN ) with the time tN , in Table
5, we present et(tN ) as the time tN tends to zero. In view of Remark 4.1, there

holds et(tN ) ≤ cτt
−(1−βα/2)
N ‖u0‖Ḣβ(Ω), 0 < β ≤ 2. This estimate predicts a decay

O(N−α/8) for case (a), which agrees excellently with the empirical rate (in the
bracket) in Table 5, thereby confirming the sharpness of the error estimate. These
observations hold also for the inhomogeneous problem in case (b), cf. Table 6.
These numerical results fully support the error analysis of the fully discrete scheme
in Section 4.

Table 4. Temporal errors et for example (a) with h = 1/100 and
τ = T/N .

T
α

N
100 200 400 800 1600 rate

0.25 5.43e-5 2.71e-5 1.35e-5 6.76e-6 3.38e-6 1.00 (1.00)
BE 0.50 9.49e-5 4.73e-5 2.36e-5 1.18e-5 5.90e-6 1.00 (1.00)

1 0.75 9.01e-5 4.49e-5 2.24e-5 1.12e-5 5.59e-6 1.00 (1.00)
0.25 4.35e-5 2.17e-5 1.08e-5 5.41e-6 2.70e-6 1.00 (1.00)

L1 0.50 6.33e-5 3.15e-5 1.57e-5 7.84e-6 3.92e-6 1.00 (1.00)
0.75 5.12e-5 2.54e-5 1.26e-5 6.29e-6 3.14e-6 1.01 (1.00)
0.25 2.00e-4 9.99e-5 4.99e-5 2.49e-5 1.25e-5 1.00 (1.00)

BE 0.50 8.16e-4 4.08e-4 2.04e-4 1.02e-4 5.10e-5 1.00 (1.00)
10−3 0.75 7.58e-4 3.79e-4 1.89e-4 9.46e-5 4.73e-5 1.00 (1.00)

0.25 1.69e-4 8.43e-5 4.21e-5 2.10e-5 1.05e-5 1.00 (1.00)
L1 0.50 8.08e-4 3.99e-4 1.98e-4 9.84e-5 4.90e-5 1.01 (1.00)

0.75 8.28e-4 4.11e-4 2.04e-4 1.02e-4 5.07e-5 1.01 (1.00)
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Table 5. Temporal errors et for example (a) with α = 0.5, h =
10−3 and N = 5, at T = 10−k.

α
k

3 4 5 6 7 8 rate

0.5 BE 1.65e-2 1.06e-2 8.79e-3 7.45e-3 6.33e-3 5.39e-3 0.07 (0.06)
L1 1.91e-2 1.41e-2 1.06e-2 8.95e-3 7.59e-3 6.46e-3 0.07 (0.06)

0.8 BE 1.61e-2 1.23e-2 9.52e-3 7.44e-3 5.84e-3 4.56e-3 0.11 (0.10)
L1 1.83e-2 1.40e-2 1.08e-2 8.46e-3 6.64e-3 5.19e-3 0.11 (0.10)

Table 6. Temporal errors et for example (b) at T = 1 with h =
1/100 and τ = T/N .

α
N

100 200 400 800 1600 rate

0.25 3.26e-6 1.63e-6 8.15e-7 4.07e-7 2.04e-7 1.00 (1.00)
BE 0.50 4.76e-6 2.37e-6 1.18e-6 5.92e-7 2.96e-7 1.00 (1.00)

0.75 2.76e-6 1.37e-6 6.84e-7 3.41e-7 1.71e-7 1.00 (1.00)
0.25 2.33e-6 1.17e-6 5.85e-7 2.93e-7 1.47e-7 1.00 (1.00)

L1 0.50 3.25e-6 1.64e-6 8.29e-7 4.18e-7 2.10e-7 0.99 (1.00)
0.75 1.85e-6 9.89e-7 5.22e-7 2.72e-7 1.41e-7 0.94 (1.00)
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