
Optimization and Guess-then-Solve
Attacks in Cryptanalysis

Guangyan Song

A dissertation submitted in partial fulfillment

of the requirements for the degree of

Doctor of Philosophy

of

University College London.

Department of Computer Science

University College London

December 4, 2018



2

I, Guangyan Song, confirm that the work presented in this thesis is my own.

Where information has been derived from other sources, I confirm that this has been

indicated in the work.



Abstract

In this thesis we study two major topics in cryptanalysis and optimization: software

algebraic cryptanalysis and elliptic curve optimizations in cryptanalysis. The idea

of algebraic cryptanalysis is to model a cipher by a Multivariate Quadratic (MQ)

equation system. Solving MQ is an NP-hard problem. However, NP-hard prob-

lems have a point of phase transition where the problems become easy to solve.

This thesis explores different optimizations to make solving algebraic cryptanalysis

problems easier.

We first worked on guessing a well-chosen number of key bits, a specific opti-

mization problem leading to guess-then-solve attacks on GOST cipher. In addition

to attacks, we propose two new security metrics of contradiction immunity and SAT

immunity applicable to any cipher. These optimizations play a pivotal role in recent

highly competitive results on full GOST. This and another cipher Simon, which we

cryptanalyzed were submitted to ISO to become a global encryption standard which

is the reason why we study the security of these ciphers in a lot of detail.

Another optimization direction is to use well-selected data in conjunction with

Plaintext/Ciphertext pairs following a truncated differential property. These allow

to supplement an algebraic attack with extra equations and reduce solving time.

This was a key innovation in our algebraic cryptanalysis work on NSA block cipher

Simon and we could break up to 10 rounds of Simon64/128. The second major

direction in our work is to inspect, analyse and predict the behaviour of ElimLin

attack the complexity of which is very poorly understood, at a level of detail never

seen before. Our aim is to extrapolate and discover the limits of such attacks, and

go beyond with several types of concrete improvement.



Abstract 4

Finally, we have studied some optimization problems in elliptic curves which

also deal with polynomial arithmetic over finite fields. We have studied existing

implementations of the secp256k1 elliptic curve which is used in many popular

cryptocurrency systems such as Bitcoin and we introduce an optimized attack on

Bitcoin brain wallets and improved the state of art attack by 2.5 times.

Keywords: algebraic cryptanalysis, SAT solver, ElimLin, symmetric encryp-

tion, GOST, Simon, Bitcoin brain wallets, Elliptic curves



Impact Statement

This thesis aims to make both acdemic and non acdemic research impacts. We aim

to make contribution to the reasearch area in algebraic cryptanalysis. We proposed

a few methods to improve algebraic attack, such as using well selected plaintext

ciphertext pairs, guessing a selected set of key bits. We studied fisrt time in detail

how ElimLin algorithm works and developed tools for analysising newly generated

linear equations.

Our proposed methods are preformed on well known or widely used ciphers:

Russian GOST cipher and new NSA block cipher SIMON. Both of them has been

submitted to ISO in order to become an international standard. As an impact of

our research, together with other people’s research work, ISO rejected both of the

ciphers.

We also studied the security of Bitcoin brain wallets, and published a brain-

wallet attack which improved the state of art by a factor of 2.5. Our work has

been reported by a number of tech websites, also widely read within Bitcoin com-

munity. We made Bitcoin brain wallets users relise it’s not a secure way to store

their money. As a result, Brainwallet.org, the website which are used by Bitcoin

comunity to generate brain wallets has permenantly closed.



Acknowledgements

I would like to express my sincere gratitude to my supervisor Dr. Nicolas Courtois

for his guidance and advice throughout my research. He is an excellent example of

codebreaker and a great mentor. His patience, motivation, enthusiasm and immense

knowledge have been invaluable throughout my academic and personal develop-

ment.

I would like to express my great appreciation to Dr. Daniel Hulme for his

endless support, continuous encouragement, valuable suggestions and the working

opportunity he offered from Satalia over the years. Furthermore, I thank my UCL

colleagues Dr. Theodosis Mourouzis, Dr. Jie Xiong and Yongxin Yang for the

sleepless nights when we were working together before deadlines, and for all the

fun we have had in the last few years.

I extend my gratitude to Dr. Mark Herbster, Dr. David Clark, Dr. Earl Barr

from UCL and Steven Poulson from Cisco, for their kindness and advice, offer-

ing internship opportunities in their groups and leading me in working on exciting

projects.

Finally, and most importantly, a very special thank you goes to my parents and

my wife for their love during all these years of my Ph.D. studies. It would have

been impossible to have done it without them.



Contents

I Background and Related Work 17

1 Introduction 18

2 Introduction to Cryptography 22

2.1 Symmetric and Asymmetric Encryptions . . . . . . . . . . . . . . . 23

2.2 Block Ciphers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

2.2.1 Substitution Ciphers . . . . . . . . . . . . . . . . . . . . . 26

2.2.2 Transposition Systems . . . . . . . . . . . . . . . . . . . . 27

2.2.3 Product Ciphers . . . . . . . . . . . . . . . . . . . . . . . . 28

2.2.4 Courtois Toy Cipher . . . . . . . . . . . . . . . . . . . . . 30

2.2.5 DES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

3 Cryptanalysis of Block Ciphers 34

3.1 Classification of Attacks . . . . . . . . . . . . . . . . . . . . . . . 36

3.2 Brute-force Attacks . . . . . . . . . . . . . . . . . . . . . . . . . . 38

3.3 Linear Cryptanalysis . . . . . . . . . . . . . . . . . . . . . . . . . 38

3.4 Differential Cryptanalysis . . . . . . . . . . . . . . . . . . . . . . . 40

3.5 Algebraic Attacks . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

3.5.1 Algebraic Attacks Solving Stage . . . . . . . . . . . . . . . 45

3.5.2 Algebraic Complexity Reduction . . . . . . . . . . . . . . 48

3.6 Cryptanlysis of GOST Block Cipher . . . . . . . . . . . . . . . . . 49

3.6.1 GOST And ISO Standardisation. . . . . . . . . . . . . . . . 50

3.6.2 Cryptanalysis of GOST . . . . . . . . . . . . . . . . . . . . 50



Contents 8

3.6.3 The Internal Structure of GOST . . . . . . . . . . . . . . . 52

3.7 Cryptanalysis of SIMON Block Cipher . . . . . . . . . . . . . . . . 54

3.7.1 SIMON Structure . . . . . . . . . . . . . . . . . . . . . . . 56

3.7.2 Key Schedule . . . . . . . . . . . . . . . . . . . . . . . . . 58

3.8 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

4 Introduction to Elliptic Curves 60

4.1 Mathematical Foundations . . . . . . . . . . . . . . . . . . . . . . 60

4.2 Elliptic Curves . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

4.2.1 Elliptic Curves Over Fp . . . . . . . . . . . . . . . . . . . 63

4.2.2 Binary Elliptic Curves . . . . . . . . . . . . . . . . . . . . 64

4.3 Point Arithmetic . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

4.4 ECDLP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

4.5 An Interesting Research Question - Semaev Cipher . . . . . . . . . 69

4.5.1 Summation Polynomials . . . . . . . . . . . . . . . . . . . 69

4.5.2 Solving Semaev Equations with Extra Variables . . . . . . . 71

4.6 Elliptic Curve in Cryptography . . . . . . . . . . . . . . . . . . . . 72

4.6.1 Domain Parameters . . . . . . . . . . . . . . . . . . . . . . 73

4.6.2 Key Pair Generation . . . . . . . . . . . . . . . . . . . . . 73

4.6.3 Elliptic Curve Digital Signature Algorithm . . . . . . . . . 74

4.7 Bitcoin and Brain Wallet Attacks . . . . . . . . . . . . . . . . . . . 75

4.8 Bitcoin Elliptic Curve . . . . . . . . . . . . . . . . . . . . . . . . . 76

4.9 Brain Wallets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

4.9.1 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . 79

4.10 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

II The Path to Better Software Algebraic Cryptanalysis 81

5 Contradiction Immunity and Application to GOST 82

5.1 Contradiction Immunity and SAT Immunity . . . . . . . . . . . . . 82

5.1.1 Software Algebraic Attack with SAT Solver . . . . . . . . . 82



Contents 9

5.1.2 Contradiction Immunity and SAT Immunity . . . . . . . . . 84

5.1.3 Applications of UNSAT/SAT Immunities . . . . . . . . . . 85

5.2 Applying SAT/UNSAT Immunity to GOST and DES . . . . . . . . 86

5.2.1 Application to DES . . . . . . . . . . . . . . . . . . . . . . 86

5.2.2 Contradiction Immunity of GOST . . . . . . . . . . . . . . 87

5.2.3 SAT Immunity of GOST . . . . . . . . . . . . . . . . . . . 89

5.2.4 Low Data Complexity Meet-In-The-Middle Attack for 8

Rounds GOST . . . . . . . . . . . . . . . . . . . . . . . . 89

5.3 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

6 Algebraic Cryptanalysis of Simon 92

6.1 How to Write Simon Equations . . . . . . . . . . . . . . . . . . . . 93

6.2 Differential-Algebraic Cryptanalysis of Simon . . . . . . . . . . . . 93

6.3 Algebraic Attacks experiments and results . . . . . . . . . . . . . . 95

6.3.1 Experiments with 2 P/C pairs . . . . . . . . . . . . . . . . 96

6.3.2 Experiments with more P/C pairs . . . . . . . . . . . . . . 97

6.3.3 ElimLin Results . . . . . . . . . . . . . . . . . . . . . . . 99

6.4 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

7 Re-Designing Algebraic Attacks Beyond ElimLin 101

7.1 ElimLin Overview . . . . . . . . . . . . . . . . . . . . . . . . . . 101

7.1.1 Phase transitions . . . . . . . . . . . . . . . . . . . . . . . 102

7.2 Experimental Setup and Notation . . . . . . . . . . . . . . . . . . . 103

7.3 Experiment Results . . . . . . . . . . . . . . . . . . . . . . . . . . 105

7.3.1 The Big Picture . . . . . . . . . . . . . . . . . . . . . . . . 105

7.3.2 On Growth Rate in ElimLin . . . . . . . . . . . . . . . . . 106

7.3.3 Predict The Success of ElimLin . . . . . . . . . . . . . . . 108

7.3.4 Phase Transition in Other Ciphers . . . . . . . . . . . . . . 109

7.4 Deep Inspection . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

7.4.1 Known Plaintext vs Chosen Plaintext . . . . . . . . . . . . 114

7.5 Equations In ElimLin vs. Direct Approximation . . . . . . . . . . . 117



Contents 10

7.5.1 Polynomial Approximation in Practice . . . . . . . . . . . . 118

7.6 Conclusions and Future Work . . . . . . . . . . . . . . . . . . . . . 122

7.6.1 Algebraic Attacks Beyond ElimLin . . . . . . . . . . . . . 123

III Speed Optimisation for Bitcoin Brain Wallet Attacks 125

8 Improving Brain Wallet Attacks 126

8.1 Bitcoin Elliptic Curve Implementation and Benchmarking . . . . . 126

8.1.1 Dedicated Scalar Multiplication Method . . . . . . . . . . . 126

8.1.2 Point Representation . . . . . . . . . . . . . . . . . . . . . 129

8.2 On Cracked Brain Wallets . . . . . . . . . . . . . . . . . . . . . . 135

8.2.1 Network Stress Test . . . . . . . . . . . . . . . . . . . . . 135

8.2.2 Disclosure of Results . . . . . . . . . . . . . . . . . . . . . 136

8.3 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136

9 Conclusions 138

Appendices 141

A Full Instruction for ElimLin Experiments 141

B Java Tool for Deep Inspection of ElimLin 143

C Examples of Cracked Brainwallet Passwords 144

Bibliography 146



List of Figures

2.1 Hybrid encryption . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

2.2 Feistel network . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

2.3 CTC Cipher . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

2.4 DES Round Fuction . . . . . . . . . . . . . . . . . . . . . . . . . . 33

3.1 Toy example for modelling Simon block cipher with a multivariate

quadratic equation system . . . . . . . . . . . . . . . . . . . . . . . 44

3.2 Block cipher topology . . . . . . . . . . . . . . . . . . . . . . . . . 45

3.3 Algebraic Complexity Reduction from 32 to 8 rounds of GOST . . . 52

3.4 One Round of GOST And Connections in The Following Round . . 53

3.5 The round function of Simon . . . . . . . . . . . . . . . . . . . . . 57

4.1 Example of elliptic curve over F24 . . . . . . . . . . . . . . . . . . 65

4.2 Elliptic curve point addition . . . . . . . . . . . . . . . . . . . . . 66

4.3 Elliptic curve point doubling . . . . . . . . . . . . . . . . . . . . . 67

4.4 Brainwallet generated by password “password” . . . . . . . . . . . 78

4.5 Password strength comparison between using password and

passphrase . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

5.1 Our best set of 78 bits for UNSAT . . . . . . . . . . . . . . . . . . 88

5.2 Our best set of 68 bits for SAT . . . . . . . . . . . . . . . . . . . . 90

6.1 Our three attack scenarios . . . . . . . . . . . . . . . . . . . . . . . 94

7.1 Number of variables when ElimLin terminates Vunbroken for 8 rounds

of Simon 64/128 obtained with our experiments. . . . . . . . . . . . 106



List of Figures 12

7.2 Number of linearly independent equations generated at step 1,2,3

of the ElimLin algorithm . . . . . . . . . . . . . . . . . . . . . . . 107

7.3 Number of linearly independent equations generated at step 4 . . . . 108

7.4 Number of linearly independent equations generated at step 1,2 of

the ElimLin algorithm for DES and CTC2 . . . . . . . . . . . . . . 110

7.5 Number of linearly independent equations generated at step 3 for

DES and CTC2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

7.6 Number of variables when ElimLin terminates Vunbroken for 4 rounds

DES and CTC2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

7.7 Example of a non-trivial equation found by ElimLin . . . . . . . . . 114

7.8 Experiment results for 8R Simon64/128 for theoretical upper bound

on ElimLin attack . . . . . . . . . . . . . . . . . . . . . . . . . . 121

7.9 Classification of cryptanalysis methods and their connections . . . . 123

8.1 Example of tagged brain wallet address . . . . . . . . . . . . . . . 136



List of Tables

2.1 CTC S-Box . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

3.1 Key Schedule in GOST . . . . . . . . . . . . . . . . . . . . . . . . 51

4.1 NIST’s recommendation for practical applications revision 4 [130] . 68

6.1 Best results obtained by a SAT solver using 2P/C pairs . . . . . . . 97

6.2 Best results obtained by a SAT solver for 8 rounds with 6 P/C pairs . 98

6.3 Best results obtained by a SAT solver . . . . . . . . . . . . . . . . 98

6.4 Best results obtained by a ElimLin Algorithm . . . . . . . . . . . . 99

7.1 Example of equations growing faster than linear as a function of K . 113

7.2 Scaling down method results for 32 Rounds Simon . . . . . . . . . 116

7.3 Scaling down method results for 8 Rounds CTC2 . . . . . . . . . . 116

7.4 Scaling down method results for 8 Rounds DES . . . . . . . . . . . 117

7.5 ElimLin vs Upper bound . . . . . . . . . . . . . . . . . . . . . . . 120

8.1 Time cost for different window width w, point addition method

secp256k1 library [167] secp256k1 gej add ge . . . . . . . . . . . 129

8.2 Benchmarking OpenSSL and MPIR library for field multiplication,

square and modular inverse in affine coordinate . . . . . . . . . . . 130

8.3 Operation counts for point addition and doubling. A = affine, P =

standard projective, J = Jacobian [100, 29] . . . . . . . . . . . . . . 131

8.4 Field operation counts and benchmark results . . . . . . . . . . . . 133

8.5 Time cost for different window width w for EC key generation . . . 134



List of Tables 14

A.1 Data gathered by running ElimLin on 7 rounds of Simon 64/128 . . 142

A.2 Data gathered by running ElimLin on 8 rounds of Simon 64/128 . . 142



List of Publications

• Courtois, N.T., Gawinecki, J.A. and Song, G., 2012. Contradiction immunity

and guess-then-determine attacks on GOST. Tatra Mountains Mathematical

Publications, 53(1), pp.65-79.

• Courtois, N., Mourouzis, T., Song, G., Sepehrdad, P. and Susil, P., 2014.

Combined algebraic and truncated differential cryptanalysis on reduced-

round Simon. In Proceedings of the 11th International Conference on Se-

curity and Cryptography, pp. 399-404.

• Courtois, N.T., Mourouzis, T., Misztal, M., Quisquater, J.J. and Song, G.,

2015. Can GOST Be Made Secure Against Differential Cryptanalysis?.

Cryptologia, 39(2), pp.145-156.

• Mourouzis, T., Song, G., Courtois, N. and Christofii, M., 2015. Advanced

differential cryptanalysis of reduced-round simon64/128 using large-round

statistical distinguishers. Cryptology ePrint Archive, Report 2015/481

• Nicolas Courtois, Guangyan Song, Ryan Castellucci: Speed Optimizations

in Bitcoin Key Recovery Attacks, will appear in journal post-proceedings of

CECC 2016, Central European Conference on Cryptology, Tatra Mountains

Mathematic Publications.

• Courtois N., Sepehrdad P., Song G. and Papapanagiotakis-Bousy I. 2016. Pre-

dicting Outcomes of ElimLin Attack on Lightweight Block Cipher Simon.

International Conference on Security and Cryptography pp. 465-470.



List of Software Deliverables

• N Courtois, T Mourouzis, G Song. Simonspeck. https://github.com/

GSongHashrate/SimonSpeck NSA Simon and Speck C++ implemen-

tation, equation generator for all versions of Simon cipher.

• Nicolas Courtois, Jason Papapanagiotakis, Guangyan Song, Chris Park: ”Fast

Bitcoin data mining Tutorial” (used in GA18 and GA12 teaching/projects at

University College London) http://www.nicolascourtois.com/

bitcoin/fast_bitcoin_data_mining.pdf

• DeepElimLin: “Java tool for DEEP INSPECTION of equations generated

with ElimLin over GF(2) in Cryptalanalysis of Block Ciphers”, developed

by Guangyan Song and Nicolas Courtois. Available at: http://www.

cryptosystem.net/aes/tools.html

• How to crack bitcoin passwords at a very high speed: brainflayer cracker.

https://github.com/ryancdotorg/brainflayer written by

Ryan Castellucci. Nicolas Courtois and Guangyan Song contributed the

code in ec pubkey fast.c which more than doubles the speed of public key

computations.

• How to crack bitcoin and LinkedIn passwords at home (easy starter project

for UCL students and GA18 code breaking competition, by Nicolas Cour-

tois and Guangyan Song. Cf. https://drive.google.com/open?

id=0B0iephZbbC3uSU9WRUdWZVZfa1U and database files https://

drive.google.com/file/d/0B0iephZbbC3uWERlanN5b3hJak0.

https://github.com/GSongHashrate/ SimonSpeck
https://github.com/GSongHashrate/ SimonSpeck
http://www.nicolascourtois.com/bitcoin/fast_bitcoin_data_mining.pdf
http://www.nicolascourtois.com/bitcoin/fast_bitcoin_data_mining.pdf
http://www.cryptosystem.net/aes/tools.html
http://www.cryptosystem.net/aes/tools.html
https://github.com/ryancdotorg/brainflayer
https://drive.google.com/open?id=0B0iephZbbC3uSU9WRUdWZVZfa1U
https://drive.google.com/open?id=0B0iephZbbC3uSU9WRUdWZVZfa1U
https://drive.google.com/file/d/0B0iephZbbC3uWERlanN5b3hJak0
https://drive.google.com/file/d/0B0iephZbbC3uWERlanN5b3hJak0


Part I

Background and Related Work

17



Chapter 1

Introduction

Cryptography is the study of mathematical techniques that ensure the confidential-

ity and integrity of information. Cryptography is one of the oldest fields of techni-

cal study which we can find records of. Going back to 1900 BC, cryptography is

found in non-standard hieroglyphs carved into monuments from the Old Kingdom

of Egypt [108]. Modern cryptography started out as classified military technology,

but now has become very common in our daily lives. Cryptography is not only

used in banking cards, secure websites and electronic signatures, but also in public

transport cards, car keys, and building passes.

Block cipher is one of the main tools in cryptography; It uses a secret key to

transform a plaintext into a ciphertext in such a way that this secret key is needed

to recover the original plaintext. During the last 30 years, the academic research

on the security of block ciphers has evolved from an empirical way to solve the

problem of designing a secure algorithm towards a list of well-understood and well-

established security properties that a block cipher must fulfil in order to be secure.

Unfortunately, the security of a block cipher is still heavily dependent on the talent,

the intuition, and the time at disposal of the people attempting to break it!

Currently, because of the continuously growing impact of mobile phones,

smart cards, RFID tags, sensor networks, and the rapid development in the In-

ternet of Things (IoT), there is a huge demand to provide security and to design

suitable cryptographic algorithms that can be efficiently implemented in resource-

constrained devices. The area of cryptography that studies the design and the secu-



19

rity of such lightweight cryptographic primitives, called lightweight cryptography,

is rapidly evolving and becoming increasingly important.

Most of the cryptographic primitives have been carefully designed, especially

those that have been standardized. However, not all of them have been well studied

by researchers. Special properties inside widely used cryptography schemes, which

might lead to faster attacks, are discovered every year. Also, in real life cryptogra-

phy applications, bad design, implementation or choice of parameters could lead to

huge security issues.

The main aim of my PhD research is to investigate the use of and to develop

various optimization tools and software, such as SAT solver and evolutionary al-

gorithms, in the field of automated cryptanalysis; apply cryptanalysis techniques to

modern block ciphers, (such as GOST [97], Simon [14] and even elliptic curve cryp-

tography problems) with optimization tools or software; and check if such tools can

improve the current best attacks and discover new attacks. We hope to contribute to

future government standards and popular cryptography applications. In this thesis,

our cryptanalysis targets are the Russian government standard cipher GOST, the

NSA newly proposed cipher Simon, and Bitcoin Elliptic Curve.

The first part of this thesis gives the general introduction of cryptography, cypt-

analysis and elliptic curve. We will review existing cryptanalysis methods, also

provide a review of related work on GOST, SIMON and Bitcoin brain wallets.

The second part focuses on software algebraic crytanalysis. Automated black

box techniques, such as SAT solvers or Gröbner basis computations, have become

increasingly sophisticated and powerful. In the domain of algebraic cryptanalysis,

they are used to solve equation systems that are converted from the cipher. Solving

such equation systems is an NP-hard problem. When the problem becomes larger

(e.g., trying to solve a larger number of rounds), it becomes impossible to solve

using a normal PC. This is the fundamental problem of software algebraic crypt-

analysis. However, NP-hard problems normally have a “phase transition” point

when the problem is suddenly changed from “hard to solve” to “easy to solve”.

This phase transition also appears in software algebraic cryptanalysis, for example,



20

using chosen plaintext in a counter mode then solving by ElimLin [58]. In this

thesis, we explore different ways to improve software algebraic cryptanalysis. We

introduce two possible directions: guessing a set of well chosen key bits and using

well-chosen samples. We study GOST and Simon for a concrete number of rounds,

discover properties inside the cipher structure which will lead to more efficient at-

tacks. We will then demonstrate how to make these attacks work better by:

• Inspection: Learn what is trivial and non-trivial behavior of ElimLin algo-

rithm by inspecting the equations found by ElimLin.

• Guess-then-solve: With some “cost of guessing”, we can reduce the solving

complexity. Selecting the right set of bits to guess makes the problem easier

to solve.

• Selection of samples: Use specific plaintexts suggested by independent well-

known attacks, such as [generalized] linear attacks, truncated differential

properties and cube attacks.

The third part of this thesis is about understanding how elliptic curve cryp-

tography can be efficiently coded for fast implementation and also cryptanalysis.

We will discuss implemented a dedicated speed optimization for Bitcoin brain wal-

let attack. Bitcoin is a cryptocurrency that was invented in 2008 and has become

extremely popular since 2012. Bitcoin users can deterministically derive the pri-

vate key used for transmitting money from a password. Such wallets are known as

brain wallets. Brain wallets are appealing because they free users from storing their

private keys. Unfortunately, brain wallets were not designed carefully enough and

allowed attackers to conduct unlimited offline password guessing. In 2015, a white

hat hacker published the implementation of the brain wallet attack. The results of

this attack were later published in 2016 [164]. We believe that such an attack can

be made faster to make brain wallets much more vulnerable. In order to optimize

the attack, we study Elliptic Curve secp256k1, which is used in Bitcoin. We focus

on the speed of the key generation process and provide the first detailed bench-

marks for all the major implementations of this curve. The key generation process



21

is a fundamental part in the Bitcoin brain wallet attack, which is also the most part

cost most time to compute. As a result, we are able to examine passwords in brain

wallets 2.5 times faster than the state of the art.



Chapter 2

Introduction to Cryptography

Cryptology is the science of hiding and recovering secret information. It is mainly

divided into two research areas: the areas of cryptography and cryptanalysis. Tra-

ditionally, cryptography is the study and practice of techniques that are used to

establish secure communication between two parties in the presence of unautho-

rized third parties, usually called adversaries or attackers. Cryptography aims to

prevent the adversary from learning anything about the original content of the com-

munication, even if the adversary has some type of access to the communication

channel.

In general, if two parties would like to share some confidential information,

they will share some secret information in advance. The piece of secret information

will be used to transfer the original ordinary message (plaintext P) into an unintel-

ligible message (ciphertext C) by the sender S. Additionally, C can be transferred

back to P by the receiver R using the same piece of secret information. Formally,

this secret information is called the key which is usually a short string of bits that

needed to decrypt the ciphertext, while the transformations are called the encryption

and decryption algorithms.

Cryptanalysis is the sophisticated analysis and study of the security that a given

cryptographic scheme offers. It focuses on the techniques related to recovering ei-

ther the original content of an encrypted message without the knowledge of the

secret key or some fraction of information from the message. This analysis is per-

formed under different scenarios related to the adversary’s resources, type of access,



2.1. Symmetric and Asymmetric Encryptions 23

and the adversary’s objectives. In general, the main purpose of cryptanalysis is to

find the hidden weaknesses of a cryptosystem and develop a method of decryption.

In this chapter, we will give a brief introduction to two types of encryption

systems: symmetric encryption systems and asymmetric encryption systems. We

will discuss in detail block ciphers in symmetric cryptography, which are widely

used and primarily implemented in the real world.

2.1 Symmetric and Asymmetric Encryptions
Cryptographic algorithms are classified based on how key material is used and man-

aged. Normally, they are classified into three groups. There are keyless algorithms,

which do not use any key and do not need to trust anyone. Another type of algo-

rithm uses a shared key, which needs to trust everyone that has the key. The third

type is private-public key algorithm, in which the private key is only known by one

person [38].

Generally, a cryptosystem has a sender S and a receiver R who want to send

messages over an insecure channel. S and R are assumed to share a small amount of

information beforehand, which is called the key. A cryptosystem is an encryption

scheme that aims to protect the communication between S and R over an insecure

channel.

A cryptosystem often contains an encryption function E, which takes a plain-

text p and a secret key K which is composed of random bits and outputs a ciphertext

c = EK(p), and the decryption function D (inverse of E), which takes the ciphertext

c and the secret key K
′

as input and recovers the initial plaintext, i.e. DK′ (c) = p.

The cryptosystem should be designed in such a way that even when adversaries

obtain ciphertext, they cannot gain any information regarding the secret key or the

plaintext.

In a cryptosystem, if K = K
′
which means the same secret key is used for both

encryption and decryption, then the cryptosystem is called symmetric cryptosystem.

Definition 1 (Symmetric Cryptosystem). Let P be the finite set of plaintexts, C be

the finite set of ciphertexts, and K be the finite key space. An efficiently computable



2.1. Symmetric and Asymmetric Encryptions 24

encryption function E takes one plaintext in P and a key k ∈ K returns a ciphertext

in C. We write:

Ek : P→C

for the operation of executing E on k and P, and a corresponding efficiently com-

putable decryption function is given byDk:

Dk : C→ P

such that Dk(Ek(p)) = p for all plaintext p ∈ P.

If the keys used for encryption and decryption are different to each other, but

related in a way such that decryption of a given ciphertext c results in plaintext p,

then the cryptosystem is called asymmetric cryptosystem.

Definition 2 (Asymmetric Cryptosystem). Let P be the finite set of plaintexts, C

be the finite set of ciphertexts and K be the key space. An efficiently computable

key generation algorithm keyGen() randomly generates a pair of public key pk and

secret key sk; an efficiently computable encryption function E takes one pk ∈ K and

a plaintext in P returns a cipher in C. We write:

Epk : P→C

and an sk ∈ K for the operation of executing E on pk and P, and the corresponding

efficiently computable decryption function is given by Dsk ∈ D:

Dsk : C→ P

such that Dsk(Epk(p)) = p for all plaintexts p ∈ P.

Note that symmetric cryptosystems have two algorithms: encryption and de-

cryption. Asymmetric cryptosystems normally have at least three algorithms: key

generation, encryption, and decryption. In a symmetric cryptosystem, if the key is

compromised, then an adversary can decrypt any message passed from sender to



2.2. Block Ciphers 25

receiver and gains full control over the system. Asymmetric cryptosystems solve

this problem by using different, but corresponding keys, for encryption and decryp-

tion. However, modern cryptography sometimes requires a huge number of keys

that must be distributed securely.

Researchers start to solve the problem by combining both types of cryptosys-

tem, called a hybrid encryption scheme. This cryptosystem combines the conve-

nience of asymmetric with the efficiency of a symmetric cryptosystem [153]. In

hybrid encryption, symmetric cryptosystem is used for encryption, while the secret

key is shared using a protocol based on public-key cryptography, cf. Figure 2.1.

There are two main components of a hybrid encryption scheme, Key Encapsulation

Mechanism (KEM) and Data Encapsulation Mechanism (DEM). The key feature is

that the two parts are independent of one another. The framework was first formal-

ized by Cramer and Shoup in 2003 and we refer the reader to their work [76] for

more details.

Figure 2.1: Hybrid encryption

2.2 Block Ciphers
A block cipher is a type of symmetric encryption system. In block ciphers, the plain-

text is divided into blocks of a fixed length, which are then encrypted into blocks of

ciphertexts using the same key. Block ciphers are deterministic algorithms, which

means that the same inputs result in the same outputs [79]. Block ciphers are con-

sidered as highly secure cryptography. Normally block ciphers are designed to be

used for 50 years, while asymmetric cryptosystems are usually obsolete after 10



2.2. Block Ciphers 26

years (for example, NSA no longer recommends NIST P-256 elliptic curve in 2016

[129]).

The efficiently computable encryption algorithm EK(P) and decryption algo-

rithm Dk(C) in a block cipher both use blocks of n-bit as input and k-bit as a key K.

Dk(C) is the inverse of the encryption map EK(P). More formally, we have that:

C = EK(P) : {0,1}k×{0,1}n→{0,1}n

Dk(C) = E−1
K (P) : {0,1}k×{0,1}n→{0,1}n

such that D(Ek(P)) = P ∀K ∈ {0,1}k.

In general, for every key, a block cipher is a permutation of the form {0,1}n→

{0,1}n for n-bit block. So in total there are (2n!)' (2n−1)2n
possible permutations.

A block cipher which operates on n-bit blocks and uses k-bit keys is equivalent to

a collection of 2k distinct permutations on n-bit. A good design of a block cipher

aims to choose the 2k permutations uniformly at random1 from the set of all (2n!)

permutations.

Historical ciphers can be divided into three groups: substitution ciphers, trans-

position ciphers and product ciphers.

2.2.1 Substitution Ciphers

As indicated in the name, in substitution ciphers, every character in plaintext is sub-

stituted by some ciphertext character. There are four types of substitution ciphers:

simple substitution, polyalphabetic substitution, homophonic substitution and poly-

gram substitution [116]. In this thesis, we only discuss simple and polyalphabetic

substitutions:

Simple Substitution

In a simple substitution cipher, each plaint text character is transformed into

a ciphertext character via the same encryption function E. More formally, let

P = p0, ..., pn−1 be an n-character plaintext and C = c0, ...cn−1 be a ciphertext,

1Or it is impossible to see if it was otherwise.



2.2. Block Ciphers 27

∀i : 0≤ i < n

E : P→C

ci = E(pi)

Around 50 BC, Julius Caesar wrote to Marcus Cicero using a cipher that encrypted

messages by shifting every letter in the plaintext three positions to the right in the

alphabet. This cipher is based on shifted alphabets. For the Caesar cipher, the

secret key k is +3 mod 26. In general, the cipher is easily broken by shifting the

ciphertexts one position until the plaintext arises.

Polyalphabetic Substitution

In a polyalphabetic substitution, the characters in plaintext are transformed into

ciphertext using a j-character key K = k0,k1, ...k j−1, which defines j distinct en-

cryption functions Ek0,Ek1, ...,Ek j−1 . In this case, ∀i : 0≤ i < n

Ekl : P→C ∀l : 0≤ l < j

ci = Eki mod j(pi)

The Vigenère cipher [140], first published in 1586, uses polyalphabetic substitution

and is defined as follows:

ci = Eki mod j(pi) = pi + ki mod j

2.2.2 Transposition Systems

Transposition systems are essentially permutations of the characters in plaintext.

Therefore, a transposition cipher is defined as follows ∀i : 0≤ i < n

η : {0, ...,(n−1)}→ {0, ...,(n−1)}, a permutation

ci = E(pi) = pη(i)



2.2. Block Ciphers 28

Many transposition ciphers operate by blocks which permute characters with a fixed

period j. In that case:

η : {0, ...,( j−1)}→ {0, ...,( j−1)}, a permutation

ci = E(pi) = p(i div j)+η(i mod j)

The Vigenère and in general substitution ciphers can be broken when enough ci-

phertext is available to the cryptanalyst using the index of coincidence, Kasiski’s

method, etc. [78, 140, 108]. Transposition ciphers can be broken using the fre-

quency distributions for bigrams, trigrams, and N-grams [78, 140, 108]. This

knowledge about natural language is also very useful for our later work in pass-

word cracking.

2.2.3 Product Ciphers

To produce much stronger ciphers than the ones we have currently seen, we can

combine substitution and transposition ciphers. These ciphers are called product

ciphers. Most block ciphers that are still used today are product ciphers. An iterated

cipher is one kind of product ciphers in which the ciphertexts are computed by

iteratively applying a round function several times to the plaintext. In each round, a

round key is combined with the text input.

Definition 3. In an r-round iterated block cipher, the ciphertext is computed by

iteratively applying a round function g to the plaintext, such that

Ci = g(Ci−1,Ki), i = 1, ...,r

where C0 is the plaintext, Ki is a round key, and Cr is the ciphertext. Decryption

is done by reversing the above function. Therefore, for a fixed key Ki, g must be

invertible when Ki is fixed.

Feistel Ciphers

In general, it is not easy to make an invertible function that makes the encryption

and decryption process identical. One method was created by the German physicist



2.2. Block Ciphers 29

and cryptographer Horst Feistel, who was a pioneer in this area while working for

American IBM. Feistel, together with Don Coppersmith, introduced the concept of

Feistel networks while working on IBM’s “Lucifer” cipher in 1973 [91]. Their work

gained the respect of the United States Federal Government who adapted it to the

Data Encryption Standard (DES), which is based on the Lucifer project with some

changes done by the NSA [135].

Figure 2.2: Feistel network

Definition 4 (Feistel Network, cf. Figure 2.2). A Feistel cipher is an iterated cipher

that maps a 2t-bit plaintext block (L0,R0) where L0 and R0 are the left and right

t-bit halves respectively, to a 2t-bit block (Lr,Rr) after r-rounds of encryption.

The result of i-rounds encryption ∀i : 1≤ i < r−1 is computed as follows:

Li = Ri−1



2.2. Block Ciphers 30

Ri = Li−1⊕ f (Ri−1,Ki−1)

where Ki is the ith subkey derived from the secret key K and f the one-round func-

tion which takes a subkey and a t-block as input to map into another t-bit block.

We will assume that ⊕ is the bitwise exclusive-or operation, if not explicitly stated

otherwise. This process is iteratively applied for r− 2 rounds. In the last round,

there is no swap between two halves Li−1 and Ri−1. This makes the decryption of

the Feistel network the same as the encryption process, only requires a reversal of

the key schedule. The final output is given by the following:

Lr = Lr−1⊕ f (Rr−1,Kr−1)

Rr = Rr−1

Since the encryption and decryption processes are identical (except for the

key order), the software and hardware implementation of Feistel ciphers are much

easier.

2.2.4 Courtois Toy Cipher

Courtois Toy Cipher (CTC) is a block cipher designed by Courtois, as a research

tool cipher for performing experiments with algebraic attacks (see Section 3.5) us-

ing a PC with a reasonable quantity of RAM [42]. CTC has a substitution layer

followed by a diffusion layer in each round. This structure follows the concepts

of confusion and diffusion originally described by Claude Shannon [151]. A very

good description of confusion and diffusion properties is provided by Massey [109]:

Confusion: The ciphertext should depend on the plaintext statistics in a manner

too complicated to be exploited by the cryptanalyst

Diffusion: Each digit of the plaintext and each digit of the secret key should

influence many digits of the ciphetext.

In CTC substitution layer is done by a common component in block cipher

called substitution tables (S-boxes). Generally an S-box takes some number of

input bits m, transforms them into some number of output bits n, where n is not



2.2. Block Ciphers 31

necessarily equal to m. The S-boxes used in the CTC are random permutations on

three bits with no special structure (see Table 2.1).

Table 2.1: CTC 3-bits to 3-bit S-Box. It can be described by 14 quadratic equations in 22
monomials [42]

Input 0 1 2 3 4 5 6 7
Output 7 6 0 4 2 5 1 3

Figure 2.3: CTC Cipher - A toy cipher with B=2 S-boxes per round.

The structure of the cipher for Nr rounds and with B = 2 S-boxes is shown in

Figure 2.3. The bits of the block size are ordered as 0, ...,Bs−1, where s = 3 is the

S-box size. The bits in position 0,1,2 enter the first S-box, 3,4,5 enter the second

S-box and so on. Each round consists of the XOR with the derived key Ki−1 and a

linear diffusion layer D. The key size equals the block size. We donote by Xi( j) for

i= 1, ...,Nr, j = 1, ...,Bs−1 as the input bits to the i-th round after XORing with the

dervied key. Yi( j) as the output bits of S-box and Zi( j) as the corresponding output

of diffusion layer D. The i-th round derived key Ki is obtained from the secret key

K0 by a simple permutation as follows:

Ki( j) = K0(i+ j mod Bs) (2.1)

The diffusion part D of the cipher is as follows:

Zi( j·1987+257 mod Bs) = Yi( j),∀i = 1, ...,Nr, j = 0 (2.2)



2.2. Block Ciphers 32

Zi( j·1987+257 mod Bs) = Yi( j)⊕Yi( j+137 mod Bs),∀i = 1, ...,Nr, j 6= 0 (2.3)

The idea behind the design of CTC is to demonstrate that it is possible to

break a cipher with sufficiently good diffusion using a small number of plaintexts.

Intuitively, if the input parameters (e.g. number of S-boxes in each round B and

number of rounds Nr, ) are large enough, then the cipher is expected to be more

secure.

In 2007 Courtois suggested a tweaked version of CTC, named CTC2, which

is expected to be more secure and flexible [40]. The main difference is that the key

schedule of CTC2 has been extended to use keys of any size, independently of the

block size. In CTC2, the key size of key K, denoted by Hk, is not necessarily equal

to the block size Bs and it is computed in the following way:

Ki( j) = K( j+i·509 mod Hk) (2.4)

The diffusion part D of the cipher CTC2 is defined as follows:

Zi( j·1987+257 mod Bs) = Yi( j)⊕Yi( j+137 mod Bs)⊕Yi( j+274 mod Bs), if j = 257 mod Bs

(2.5)

Zi( j·1987+257 mod Bs) = Yi( j)⊕Yi( j+137 mod Bs),otherwise (2.6)

2.2.5 DES

DES is a block-cipher based on the Feistel Network iterative structure. It was

adopted in 1977 by the US Standards body National Institute of Standards and

Technology (NIST) for federal agencies to use in protecting sensitive, unclassified

information. It maps 64 bits to 64 bits using keys of 56 bits and consists of 16

rounds. It uses two 64-bit permutations IP(·) and FP(·) before and after the round

functions, respectively. These permutations satisfy FP = IP−1. These permutations

have no cryptographic effect and they are used for facilitating loading blocks in and

out of mid-1970s 8-bit based hardware [141].

The operations involved in the DES round function are shown in Figure 2.4.



2.2. Block Ciphers 33

Figure 2.4: DES Round Fuction

The key schedule of DES derives 16 48-bit sub-keys from the initial 56-bit key and

each sub-key is introduced in a different round via XOR operation. The Expansion

function E takes as input a 32-bit half block and ex- pands it into a 48-bit block by

repeating certain bits. The output of XOR operation is split into 8 consecutive 6-bit

sub-vectors x1,x2, ...,x8. Then each xi is given as input to a 6-bit to 4-bit S-box. A

permutation function P is applied to the 32-bit output such that each set of S-box’s

output bits are spread across 4 different S-boxes in the next round.

Nowadays, due to the 56 bits key size being too small, brute force attack is

possible to break DES. In 2005, NIST withdrew DES from being the encryption

standard.



Chapter 3

Cryptanalysis of Block Ciphers

The history of cryptanalysis is as long and as fascinating as the history of cryp-

tography. For example, in 1917, an article in “Scientific American” claimed that

the Vigenère cipher was “impossible of translation” [116]. Today, most cryptog-

raphy classes at university use the Vigenère cipher as an exercise to illustrate that

this claim is not true. When discussing the security of a cryptosystem, one needs

to define a model that works in the real world for which we will use the model of

Shannon [151].

The sender and the receiver share a common key K over a secure channel in

advance. The sender encrypts a plaintext P using the secret key K, sends ciphertext

C over an insecure channel to the receiver. The receiver then decrypts C to P using

K. The attacker has access to the insecure channel and can intercept the ciphertext.

In this chapter we assume that the sender and receiver use a secret key cipher EK(·)

of n-bits block size and k-bits size of key K.

The definition of security is also strongly related to what type of attackers you

are defending against. In chapter 5 of Bruce Schneier’s book [143], the author

categorizes attackers along the following basic lines:

1. Adversarial goals and motivations.

2. Resources: money, human resources, computing power, memory, risk, exper-

tise, etc.

3. Access to the system.



35

A system could be secure against one type of attackers but not secure to another

type. This reflects on the different types of security assumptions and classification

of attacks which we will discuss later.

To evaluate the security of a cipher we assume:

Assumption 1. All keys are equally likely and a key K is chosen uniformly at ran-

dom.

Also we will assume that the attacker knows all the details about the cryp-

tographic algorithm used by the sender and receiver, except the secret key. This

assumption is known as Kerckhoffs’s assumption [108].

Assumption 2.A. The enemy cryptanalyst knows all details of the enciphering pro-

cess and deciphering process except for the value of the secret key.

This is not quite realistic if we look at the history of cryptography and crypt-

analysis. As an extension of Assumption 2.A, we discuss the following two as-

sumptions.

Assumption 2.B. The enemy cryptanalyst knows all the details of the enciphering

process and deciphering process except the value of the key and the Substitution-

box (S-box) which is a core component of symmetric key algorithms that performs

substitution.

Under this assumption, the S-boxes are like the master key or a high-level

key, which is kept secret at a certain parameter (e.g., banks or country) and can be

computed by the enemy, but at a high cost. This is similar to the rotors used in

the German Enigma machine during World War II. The attacker has to recover the

S-boxes first through silicon reverse engineering or try for different sets of known

S-boxes, then perform normal cryptanalysis as in Assumption 2.A.

Assumption 2.C. The enemy cryptanalyst knows all the details of the enciphering

and deciphering processes except that the cipher has been tweaked; for example

90% of the cipher is what we know.



3.1. Classification of Attacks 36

For example, the encryption algorithm used in Chinese Sim cards is known as

COMP128-V0, which is defined by China Mobile and only used in China. In this

case, the attacker has again two steps under this assumption: first to recover the

cipher through reverse engineering and try different sets of known S-boxes; then

performs normal cryptanalysis as Assumption 2.A.

3.1 Classification of Attacks
Regarding access to the system, Schneier classifies the possible attacks an attacker

can perform as follows: [141]

1. Ciphertext-only Attack: The attacker processes a set of intercepted cipher-

texts.

2. Known Plaintext Attack: The attacker obtains a set of s plaintexts

P1,P2, ...,Ps, and the corresponding ciphertexts C1,C2, ...,Cs.

3. Chosen Plaintext Attack: The attacker chooses a prior set of s plain-

texts P1,P2, ...,Ps and obtains, in some way, the corresponding ciphertexts

C1,C2, ...,Cs.

4. Adaptively Chosen Plaintext Attack: The attacker chooses a set of s

plaintext P1,P2, ...,Ps interactively as he obtains the corresponding ciphertext

C1,C2, ...,Cs. That is, the attacker chooses P1, obtains C1, and then chooses

P2 etc.

5. Chosen Ciphertext Attacks: For symmetric ciphers, Chosen Ciphertext At-

tacks are similar to the Chosen Plaintext Attack and the Adaptively Chosen

Plaintext Attack.

6. Chosen Plaintext and Ciphertext Attack: The attacker has access to both

encryption and decryption oracles and can choose both plaintext and cipher-

text.

The chosen text attacks are the most powerful attacks. However, they are also

unrealistic in many applications. If redundancy exists in plaintext space, it will



3.1. Classification of Attacks 37

be very hard for an attacker to find an encrypted non-meaningful plaintext sent by

the sender, and to get the ciphertexts decrypted. However, if a system is secure

against an Adaptively Chosen Plaintext Attack, then it is also secure against all

other attacks.

Modern cryptanalysis of block ciphers has focused on finding the secret key K

for any scenario, even unrealistic ones. Importantly, there are other serious attacks

for public key cryptography, which do not find the secret key. Knudsen classifies

the types of attacks as follows [115]:

1. Total break: An attacker finds the secret key K.

2. Global deduction: An attacker finds an algorithm A, which is functionally

equivalent to EK(·)(or DK(·)) without knowing the key K.

3. Instance (local) deduction: An attacker finds the plaintext (ciphertext) of an

intercepted ciphertext (plaintext), which was not obtained from the legitimate

sender.

4. Information deduction: An attacker gains some information about the key,

plaintexts or ciphertexts, which was not obtained directly from the sender or

before the attack.

This classification is hierarchical, i.e., if a total break is possible, then a global

deduction is possible, etc.

Data Requirements

Attacks can also be characterized by the resources they require. These resources

include time complexity, memory usage, and data requirements. Although the first

two types of resources are very obvious, it is worth pointing out the data require-

ment is also a key component that makes an attack able to work in practice. Full

plaintext and ciphertext pairs are not easy to obtain in the real world. Some of the

attacks work only if all possible plaintext and ciphertext pairs for a single key are

known which is called single key scenario [21], and some of the attacks (which have

only appeared in recent years) are specifically designed to take advantage of a so-

called multiple key scenario, where the attacker has access to data encrypted with



3.2. Brute-force Attacks 38

more than one key (such attacks typically also work in standard single key scenario,

however in this case they will be less advantageous) [44, 63].

3.2 Brute-force Attacks
A brute-force attack or exhaustive key search is the most general attack that can be

applied to any block cipher. All block ciphers are totally breakable in a ciphertext-

only attack, just simply by trying all the possible keys one by one, and checking

whether the computed plaintext is meaningful. If the block size is equal to key

size, in the worst case, this attack requires the computation of 2k encryptions. The

dimension of the key space k, which is the length of the key, determines the prac-

tical feasibility of performing a brute-force attack. While in 2014 an paper written

by Huang and Lai [103] described a brute-force-like attack, with a time complex-

ity faster than the exhaustive key search by going over the entire key space, but

performing less than a full encryption for each possible key. The time complexity

of this attack is 2k(1− ε) (where ε > 0) on average regardless the block size, cf.

[103, 44]. For modern block ciphers, brute-force is always possible in theory, but

computationally infeasible in practice.

3.3 Linear Cryptanalysis
Linear cryptanalysis is a Known Plaintext Attack on block ciphers. It was pop-

ularised by Matsui in 1993 [123] and invented earlier by Gilbert and his student

[163]. A preliminary version of the attack on FEAL was described in 1992 [124].

A year later, Matsui published another attack on DES [123]. Although the published

attack on DES required 243 known plaintexts which is not very practical, it still was

a great improvement in experimental cryptanalysis.

In linear cryptanalysis the attacker exploits linear approximations of some bits

of the plaintext, ciphertext and key. In the attack on the DES (or on DES-like iter-

ated ciphers) the linear approximations are obtained by combining approximations

for each round under the assumption of independent round keys.

The attacker hopes to find an expression (equation 3.1), which holds with prob-

ability pL 6= 1
2 over the keys [123], such that ε =| pL− 1

2 |, called the bias, is maxi-



3.3. Linear Cryptanalysis 39

mal.

(P ·α)⊕ (C ·β ) = (K · γ) (3.1)

where P,C,α,β ,γ are m-bit strings and where ‘·’ denotes the dot product.

Given an approximation (equation 3.1) a linear attack using N plaintexts and

the N corresponding ciphertexts goes as follows [123].

1. for all plaintexts, P, and ciphertexts, C, let T be the number of times the left

hand side of equation 3.1 is 0.

2. if T > N
2 guess that K · γ = 0, otherwise guess that K · γ = 1 (majority vote).

By using the above method, the attacker can find one bit of information about the

secret key, K · γ . However, this is only one step in an attack, as it only finds one

bit or a linear equation about the key. Matsui also showed an extended linear attack

which finds more key bits [123]. Instead of approximating the first and last round,

the extended linear attack simply repeats the attack for all values of the relevant key

bits in those two rounds by using the following approximation equation:

(P ·α)⊕ (C ·β )⊕ (F(PR,K1) ·α1)⊕ (F(CR,Kr) ·αr) = (K · γ) (3.2)

where PR,CR are the right halves of the plaintexts and ciphertexts. K1 and KR are

the key bits affecting the linear approximation in the first and rth rounds. We refer

the reader to Matsui’s paper [123] for more details.

Kaliski and Robshaw showed an improved linear attack using multiple linear

approximations in 1994 [110]. In 1996, Knudsen and Robshaw introduced a linear

attack using non-linear approximations in the outer rounds of a block cipher [112].

Both of these have not been able to show any significant improvement compared to

Matsui’s linear attack. Kaliski’s and Knudsen’s attacks seem best suited for ciphers

with large S-boxes, such as LOKI [28, 112]. However in 2004 as an extension

of Knudsen and Robshaw’s work, new attacks were introduced by Courtois [59]

to attack Feistel schemes, which makes this non-linear approximation “penetrate”

inside the cipher and achieved a small improvement upon Matsui’s work.



3.4. Differential Cryptanalysis 40

3.4 Differential Cryptanalysis

Differential cryptanalysis is based on tracking changes in the differences between

two messages as they pass through the consecutive rounds of encryption. It is one

of the oldest classical attacks on modern block ciphers. In cryptographic literature,

it was first described and analyzed by Biham and Shamir, and applied to the DES

algorithm in the early 1990s [18]. However, Coppersmith, a member of the IBM

team that designed DES [35, 36, 67], reported that this attack was already known

to IBM designers around 1974. It was known under the name of T-attack or Tickle

attack, and DES had already been designed to resist this type of attack. A detailed

discussion of the specific original design criteria of DES can be found in the work

done by Courtois et al [67]. Moreover, it appears that IBM had agreed with the

NSA that the design criteria of DES should not be made public, precisely because

it would “weaken the competitive advantage the United States enjoyed over other

countries in the field of cryptography” cf. [35, 36]. In contrast, linear cryptanalysis

seems more recent.

Today, differential cryptanalysis is extremely well known. Numerous authors

studied various aspects of differential cryptanalysis extensively in the 1990s. Apart

from DES, differential cryptanalysis has also been successfully applied to a wide

range of iterated ciphers [114, 122]. Recent research work showed great success

using differential cryptanalysis to break the Russian standard GOST [70, 52] and

the NSA lightweight cipher Simon and Speck [19, 4].

Both linear and differential cryptanalysis require lots of data; however a major

difference between these two type of attacks is that differential cryptanalysis works

in a so-called multiple key scenario. In a multiple key scenario, where given 2X

devices with distinct keys, 2Y of data per device, and M = 2Z of memory, some

keys can be recovered at the total cost of T = 2Z [63]. This also appears in the

original Biham and Shamir paper in 1993 [18]. But this attack scenario has only

been discussed in recent years [63]. The fact that differential cryptanalysis works

with data collected from multiple keys (where linear cryptanalysis requires data on a

single key) makes differential cryptanalysis more practical than linear cryptanalysis,



3.4. Differential Cryptanalysis 41

as it’s easier for an attacker to get data from multiple keys than a single key in

practice.

The main task of differential cryptanalysis is to studies the propagation of input

differences from round to round inside the encryption system, and to find specific

differences that propagate with high probability. Such plaintext and ciphertext pair

(P/C pairs) can be used to recover some bits of the secret key. In general, differ-

ential cryptanalysis exposes the non-uniform distribution of the output differences

given one or several input differences. However, what really matters in differential

cryptanalysis is that some special events can happen at least once within a given

attack requirements.

Definition 5. A difference between two bit strings, X and X
′

of equal length is

defined as

4X = X⊗ (X
′
)−1

where ⊗ is the group operation on the group of bit strings used to combine the key

with the text input in the round function and (X)−1 is the inverse element of X with

respect to ⊗

Generally, the selection of the operator ⊗ depends on the way the round sub-

keys are introduced in each round. As many ciphers use XOR for the key application

in round function, the operator in Definition 5 is usually exclusive-or (⊕).

The attacker then computes the differences of the corresponding ciphertexts,

hoping to detect statistical patterns in their distribution. The resulting pair of differ-

ences is called a differential. Their statistical properties depend upon the internal

structure of the cipher. The attacker aims to find one particular ciphertext differ-

ence that is especially frequent. In this way, the cipher can be distinguished from

random.

Some differential cryptanalysis work study multiple input / output differences,

such as truncated differentials (which we will discuss later), and the work presented

in 2009 by Courtois [60] for cloning MiFare Classic building passes.



3.4. Differential Cryptanalysis 42

Truncated Differentials

Truncated Differential Cryptanalysis is a generalization of differential cryptanalysis

developed by Lars Knudsen in 1995 [113]. Unlike differential cryptanalysis, which

studies the propagation of the full difference between two plaintexts, truncated dif-

ferential cryptanalysis considers differences that are partially determined, since in

some ciphers it is possible and advantageous to predict the values of parts of the

differences after each round. This technique has been successfully applied to many

block ciphers, such as Camellia [159], TEA and XTEA [102], and Russian standard

GOST [61, 126, 72]. Truncated differential cryptanalysis has also been extensively

studied by Mourouzis in his PhD thesis [126]. Truncated differential is defined as

follows [113].

Definition 6. Let a = a0a1...an−1 be an n-bit string, then its truncation is the n-

bit string b given by b0b1...bn−1 = T RUNC(a0a1...an−1), where either bi = ai or

bi = ∗, for all 0≤ i≤ n−1 and ∗ is an unknown value

Definition 7. A differential that predicts only parts of a n-bit value is called a trun-

cated differential. More formally, let (a,b) be an i-round differential. If a
′

is a

truncation of a and b
′

is a truncation of b, then (a
′
,b
′
) is called an i-round trun-

cated differential.

A truncated differential can be considered as a collection of differentials.

For example, for an i-round 64-bit block cipher, a truncated differential ∆ =

[0000022200000080] in hexadecimal (which appears later in Section 6.2) is a col-

lection of 24− 1 differentials (a,b) where a and b can take any of the following

values:

00000200 00000000 00000020 00000000 00000002 00000000

00000000 00000080 00000220 00000000 00000202 00000000

00000200 00000080 00000022 00000000 00000020 00000080

00000002 00000080 00000222 00000000 00000220 00000080

00000202 00000080 00000022 00000080 00000222 00000080



3.5. Algebraic Attacks 43

3.5 Algebraic Attacks
In general, the security of a given block cipher will grow exponentially with the

number of rounds and so does the number of required Plaintext/Ciphertext pairs

that are needed in a linear and differential cryptanalytic attack. However, in most

cases, only a few Plaintext/Ciphertext pairs are available for cryptanalysis, so linear

or differential attacks are not expected to succeed. Thus, a new method needs to be

invented that will be able to recover the secret key when only a very limited amount

of data is available..

Claude Shannon, once suggested that the security of a cipher should be related

to the difficulty of solving the underlying system of equations and deriving the key:

“if we could show that solving a certain system requires at least as

much work as solving a system of simultaneous equations in a large

number of unknowns, of a complex type, then we would have a lower

bound of sorts for the work characteristic” [150].

This is the core concept behind algebraic attacks. An algebraic attack is a form of

Known Plaintext Attack which consists of the following two steps:

1. Modelling: Describe the cipher as a multivariate system of polynomial equa-

tions over a small finite field (like F2) or logical constraints in terms of the

secret key K, the plaintext P and the ciphertext C.

f1(K,P,C) = 0, ... fr(K,P,C) = 0⇐⇒ E(K,P) =C

2. Solving: Solve the underlying multivariate system of equations and obtain

the secret key. In order to reduce the complexity of solving the system, we

substitute all known Plaintext/Ciphertext pairs. The more pairs that are sub-

stituted, the more the equations we obtain involving the key bits. For many

known attacks, this can make the problem easier to solve.

Generally, each module of a block cipher can be described with a set of alge-

braic equations. By putting these algebraic equations together, we can get a large



3.5. Algebraic Attacks 44

precise system representing the whole cipher. The main idea of an algebraic at-

tack is to establish a series of low complexity algebraic equations of initial plaintext

and ciphertext, and then find the secret key by solving the equations. Such equation

systems are normally very large systems of quadratic multivariate polynomial equa-

tions over F2. Each variable represents a state-bit of the encryption algorithm. Then

the variables that represent state-bits from the initial round are set according to the

corresponding actual values of the plaintext; similarly variables that represent state-

bits from the last round are set according to the corresponding actual values of the

bits of the ciphertext. Therefore, the security of a block cipher depends on whether

an efficient algorithm exists to solve such large and sparse multivariate polynomial

equations. If we can solve the equation system faster than an exhaustive key search

attack, the cipher will be broken (in an academic sense).

Figure 3.1: Toy example for modelling Simon block cipher with a multivariate quadratic
equation system. The upper part is the main block encryption with extended
keys generated by a key schedule1(lower part).

In addition, some high profile cryptanalysis problems in public key cryptogra-

phy can be written in a form that contains a block cipher topology 2. Such equations

have a similar structure to a block cipher, where the beginning inputs and final out-

1The key schedule here has a specific recursive form in popular ciphers such as DES, AES and
Simon which optimizes storage or chip size and timing.

2 This is basically a property of the equations proposed by Semaev in 2015 [145, 147], they have
the same structure as on Figure 3.2 with variables progressively more and more remote from the
constraints which make that the system of equations have a unique solution. The key point is that
this sort of configuration leads to a system of equations which is really very hard to solve in the same
way as in algebraic attacks on block ciphers.



3.5. Algebraic Attacks 45

puts variables are easy to get and the middle part of the equation system is very

hard to analyse (see Figure 3.2). One example is Semaev’s summation polynomial

equations studied in elliptic curve cryptanalysis [145, 147] see Section 4.5.2.

Figure 3.2: Block cipher topology: the attacker can control or manipulate the inputs and
the outputs but it is quite hard to say anything about the variables in the middle

3.5.1 Algebraic Attacks Solving Stage

Solving a random system of multivariate non-linear boolean equations is an NP-

hard problem [93]. As many cryptographic primitives can be described by a sparse

multivariate non-linear system of equations over F2 or any other algebraic systems,

several techniques were developed to tackle the problem of solving these equations.

A classic approach is to use techniques from algebraic geometry, especially Gröbner



3.5. Algebraic Attacks 46

bases algorithms, to solve the system of equations [87]. But most of the time they

do not lead to solutions in practice due to the extremely high memory requirements.

Subsequently, some heuristic techniques were developed called linearization [51],

where all the non-linear terms are replaced by an independent linear variable and the

resulting linear system can be solved using Gaussian elimination [149]. However,

this requires there to be enough linearly independent equations and that the initial

system be highly over-defined and sparse. Then, the XL algorithm [51, 75] was

developed to make the system over-defined by adding new equations to the current

system. The XL proposal made it possible to solve the multi-order non-linear equa-

tions within polynomial time, which accelerated the development of the algebraic

attacks. Then researchers focused mainly on fast solutions to the algebraic equation

systems.

Since 2006, Courtois and Bard discovered that this problem could be solved

using tools and software [65], such as SAT solvers. SAT solvers are automated

software solvers which aim to solve one of the original NP-complete problems, the

so-called Boolean Satisfiability Problem.

Definition 8. [Boolean Satisfiability Problem] The SAT problem in Conjunctive

Normal Form (CNF) consists of the conjunction ( ∧ representing the Boolean AND

connective) of a number of clauses, where a clause is a disjunction ( ∨ representing

the Boolean OR connective) of a number of propositions or their negations (liter-

als).

If xi represent propositions that can assume only the values True (≡ 1≡>) or

False (≡ 0≡⊥), then an example formula in CNF would be:

(x0∨ x2∨ x3)∧ (x3)∧ (x1∨¬x2)

where ¬xi is the negation of xi. Given a set of clauses C0,C1, ...,Cm−1 on the propo-

sitions x0,x1, ...,xn−1, the problem is to determine whether the formula

F =
∧
j<m

C j



3.5. Algebraic Attacks 47

has an assignment of truth values to the propositions such that it evaluates to True.

In the past decade, the rapid improvements in SAT algorithms has made SAT

solvers increasingly popular. Modern SAT solvers have a significant impact on the

fields of electronic design automation, software verification, constraint solving in

artificial intelligence, and operations research, among others. Nicolas Courtois is

the pioneer of bringing SAT solvers into action in the area of symmetric cryptanal-

ysis. His paper [10] described how to convert a multivariate quadratic equation

system to CNF which can be solved automatically by SAT solvers. The advantage

of this technique is that SAT solvers can perform reasonably well and do not re-

quire a lot of memory as compared with Gröbner basis-based techniques [88]. The

only disadvantage is the unpredictability of its complexity. The first algebraic attack

on reduced-round block cipher DES was done by Courtois and Bard in 2007 [48].

Later in 2008, the first algebraic attack on full block cipher KeeLoq [66] took place.

In the past 10 years, SAT solvers have been used for attacks on block ciphers, such

as GOST [69, 44], KATAN32 [11] and the Chinese block cipher SMS4 [85], stream

ciphers, such as Crypto-1, HiTag2 and Bivium [155, 73], and MiFare Classic smart

cards [56].

Another method is to use the ElimLin algorithm [58]. ElimLin stands for

Eliminate Linear, and it is a simple algorithm for solving polynomial systems of

multivariate equations over small finite fields. It was initially proposed as a single

tool by Courtois to attack DES and CTC/CTC2 ciphers [48]. It is also known as the

inter-reduction step in all major algebra systems. Its main aim is to reveal some hid-

den linear equations existing in the ideal generated by the system of polynomials.

ElimLin is composed of two sequential stages:

• Gaussian Elimination: To discover all the linear equations in the linear span

of initial equations.

• Substitution: Variables are iteratively eliminated in the whole system based

on the linear equations found until no linear equation is left.

Given an initial multivariate system of equations over S0 in F2[x1,x2, ..,xn],



3.5. Algebraic Attacks 48

then the ElimLin is formally described in algorithm 1.

Algorithm 1 ElimLin Algorithm

Input: S0 = { f1, f2, ..., fm} ∈ F2[x1,x2, ..,xn]
Output: An updated system of equations ST and a system of linear equations SL
1. Set SL← Ø and ST ← S0 and k← 1
2. Repeat
For some ordering of equations and monomials perform Gauss(ST ) to eliminate
non-linear monomials
Set SL′ ← Linear Equations from Gauss(ST )
Set ST ← Gauss(ST )\SL′

for ∀l ∈ SL′ , l non-trivial (if l=1and unsolvable then terminate) do
Let xik be a monomial in l
Substitute xik in ST and SL′ and replace by l− xik
Insert l in SL

end for
k← k+1

The study of ElimLin is interesting [160, 161] precisely because it is sim-

pler to understand than more complex polynomial algebra techniques [51, 74, 168,

12, 101]. In recent years, ElimLin has been applied to NSA block cipher Simon,

LBlock, KATAN32 and PRESENT [55, 137, 161, 127]. The main characteristic of

ElimLin is that it quietly dissolves and makes non-linear equations disappear and

generates linear equations. Non-linearity is the main and only thing which makes

cryptographic schemes not broken by simple linear algebra. Intuitively, ElimLin

seems to work better in cases where there is low non-linearity, since this implies

the existence of more linear equations. Multiplicative complexity (MC) is another

notion of non-linearity which was studied in Mourouzis’s PhD thesis [126] and pos-

sibly Elimlin may work sufficiently well in cryptographic primitives with low MC.

However, the complexity of ElimLin attack or software algebraic attacks in general

is not well studied. It is not clear why this works and how well the ElimLin attack

scales for larger systems of equations. This is a major topic of interest in this thesis.

3.5.2 Algebraic Complexity Reduction

In order to break a full cipher, algebraic attacks are normally combined with other

cryptanalysis techniques to reduce the solving complexity. This attack scenario

consists of two independent tasks: one is how a reduced-round cipher can be solved



3.6. Cryptanlysis of GOST Block Cipher 49

by software algebraic cryptanalysis which we will discuss in Chapter 5-7. The other

task is called algebraic complexity reduction [62, 44], which focuses on how the

complexity of solving a full round cipher can be reduced to a problem of breaking a

cipher with much fewer rounds. Algebraic complexity reduction raises an important

optimization problem in algebraic cryptanalysis: one needs to minimize the costs

(regarding the probability that our assumptions hold) and to maximize the benefits

(regarding the number and the complexity of interesting relations which hold under

these assumptions). Amplification which was introduced by Courtois and Debraize

in 2008 [68] is a notion which occurs in such optimization problems.

Definition 9 (Amplification, Informal). The goal of the attacker is to find a reduc-

tion where he makes some assumptions at a certain initial cost. For example they

are true with probability 2−X or work for certain proportion 2−Z of keys. Then the

attacker can in constant time determine many other internal bits inside the cipher

to the total of Y bits.

We are only interested in cases in which the values X and Z are judged realis-

tically for a given attack, for example Z < 32 and X < 128.

We call amplification the ratio A = Y/X.

The idea of amplification is to gain additional information inside the cipher

with low cost. Amplification is also a general cryptanalysis principle which can

apply to many cryptanalysis attacks. For example, a guess-then-determine process

can be seen as a form of amplification. With the cost of guessing, attackers gain

additional information about the key bits which might lead to knowledge about

many other bits inside the cipher. Gordon Welchman’s diagonal board is also a form

of amplification which makes Turing’s Bombe machine gain additional information

about Enigma encryption settings [37].

3.6 Cryptanlysis of GOST Block Cipher
The Russian encryption standard GOST 28147-89 is an important government stan-

dard [97]. Its large key size of 256 bits makes GOST a plausible alternative for

AES-256 and 3-key triple DES. This indicates that GOST means to be a serious



3.6. Cryptanlysis of GOST Block Cipher 50

cipher for serious applications and at least two sets of GOST S-boxes have been ex-

plicitly identified as being used by the most prominent Russian banks, cf. [142, 1].

3.6.1 GOST And ISO Standardisation.

The cost of cryptography is still an important problem for the industry. For ex-

ample it was only around 2010 that Intel implemented an encryption algorithm in

some of its CPUs, and nowadays both Intel and AMD have very good support for

AES-NI instructions. It is therefore very important to notice that, in addition to

the very long bit keys, GOST has a much lower implementation cost than AES or

any other comparable encryption algorithm. For example, in hardware GOST 256

bits requires less than 800 GE3, while AES-128 requires 3100 GE [134]. Thus it

is not surprising that GOST became an Internet standard. It is part of many crypto

libraries such as OpenSSL [1], and is also increasingly popular outside its country

of origin [134]. It is hard to think about a better algorithm for the industry because

of its ultra-low implementation cost and 20 years of cryptanalysis efforts behind

it [134]. In 2010 GOST was submitted to ISO 18033 to become a worldwide en-

cryption standard. Less than 10 block ciphers have ever become an ISO standard.

Unhappily in 2011 several key recovery attacks on GOST were found by researchers

[106, 62, 44, 70, 61].

3.6.2 Cryptanalysis of GOST

The turning point in the security of GOST was the discovery of the so called “Re-

flection” property described by Kara in Indocrypt 2008 [111].

The reflection property in GOST is based on its key schedule. GOST is a

Feistel cipher with 32 rounds. In each round we have a round function fk(X) with a

32-bit sub-key which is the original 256-bit key divided into eight 32-bit segments

k = (k0,k1,k2,k3,k4,k5,k6,k7). One 32-bit sub-key is used in each round, and their

exact order is shown in Table 3.1:

Follow Kara’s work in Indocrypt 2008 [111], we write GOST as the following

3GE: (informally) 1 GE is equivalent to 1 AND gate



3.6. Cryptanlysis of GOST Block Cipher 51

Table 3.1: Key schedule in GOST

rounds 1 8 9 1617 2425 32
keys k0k1k2k3k4k5k6k7k0k1k2k3k4k5k6 k7 k0 k1k2k3k4k5k6 k7 k7 k6k5k4k3k2k1 k0

functional decomposition (to be read from right to left)

Enck =D◦S◦ ε ◦ ε ◦ ε

where ε is the first 8 rounds which exploits the whole 256-bit key, S is a swap

function which exchanges the left and right hand sides and does not depend on the

key, and D is the corresponding decryption function with ε ◦D=D◦ ε = Id.

Initially at Indocrypt 2008 only a weak-key attack with time complexity of 2192

was proposed, with a large proportion of 2−32 of weak keys. Then in 2011, Courtois

propsed an algebraic complex reduction attack which break full 32 rounds GOST

using pure algebraic cryptanalysis.

Assumption 3. [62] Let A be such that ε(D) = D where D is defined as D = ε3(A).

Fact 1. [62] Given 264 known plaintext there is on average one value A which

satisfies Assumption 3. For 63% of all GOST keys at least one such A exists.

Fact 2. [62] If A satisfies the Assumption 3 and defining B = ε(A) and C = ε(B)

we have:

1. Enck(A) = D. This is illustrated on the right hand side of Figure 3.3

2. Enck(B) =C. This can be seen on the left hand side of Figure 3.3

From 264 KP for 32 Rounds to 4 KP for 8 Rounds: Given 264 known plaintexts

for GOST, it is possible to obtain 4 P/C pairs for 8 rounds of GOST and our guess

will be correct with probability 2128. Thus we obtained 4 pairs for 8 rounds of

GOST: A→ B,B→ C,C→ D,D→ D. As a result breaking 4 P/C pairs 8 rounds

of GOST become the last step of breaking full GOST. Courtois said in his papaer

the time complexity of breaking 8 rounds GOST is 2120 [62]. In this thesis we

look precisely at questions pertaining to cryptanalysing 8 rounds GOST with less



3.6. Cryptanlysis of GOST Block Cipher 52

Figure 3.3: Algebraic Complexity Reduction from 32 to 8 rounds of GOST. Due to GOST’s
self similiarity in the key schedule, the problem of breaking full 32 rounds can
be reduced to 8 rounds. The idea is to find 2 Known Plaintext A and B that has
properties shown in this figure.

or equal than 4 P/C pairs which can be used as a plugin to replace already known

attacks on full GOST.

Many attacks which do not use any reflections have also been proposed [44,

62, 82] and also differential attacks which do not fall into the algebraic complexity

reduction category. The most recent advanced differential attack on GOST has a

time complexity of 2178 [70, 61] which is also the best single-key attack known.

3.6.3 The Internal Structure of GOST

GOST is a block cipher with a simple Feistel structure, 64-bit block size, 256-bit

keys and 32 rounds. Each round contains a key addition modulo 232, a set of 8

bijective S-boxes on 4 bits, and a simple rotation by 11 positions.

GOST has 32 identical rounds such as the one described on Figure 3.4 below.

They differ only by the subsets of 32 key bits which they use. GOST has a weak

key schedule which is the main source of all the attacks on full 32-round GOST

[62, 44, 106, 71, 70, 52, 61, 82]. In this thesis we only look at up to 8 rounds of

GOST which have independent 32-bit keys and don’t repeat.



3.6. Cryptanlysis of GOST Block Cipher 53

We number the inputs of the S-box Si for i = 1,2, . . . ,8 by integers from 4i+1

to 4i+4 out of 1..32 and its outputs are numbered according to their final positions

after the rotation by 11 positions: for example the inputs of S6 are 21,22,23,24 and

the outputs are 32,1,2,3.

Figure 3.4: One Round of GOST And Connections in The Following Round. This figure
describes the encryption process for one round of GOST. Firstly, the 32-bit
right half is added with ki (modulo 232, showed in figure as � ). Then, the
result is divided into eight 4-bit consecutive blocks and each block is given as
input to a different S-box. The first 4 bits go into the first S-box S1, bits 5-8 go
into S2 and so on. Then, the 32-bit output undergoes a 11-bit left circular shift
and finally the result is xored to the left 32-bit half of the data.

In Figure 3.4 we also show S-box numbers in the next round in the left mar-

gin. This is very helpful in order to see which bits are successfully determined in

our attacks on GOST. In a great simplification, in most cases, one S-box in one

round affects essentially only two consecutive S-boxes in the next round. Addi-

tional propagation is obtained due to the Feistel structure and due to carries in the

modular addition.

Modular Addition: The GOST cipher uses addition modulo 232 for key in-

sertion which is another source of introducing non-linearity in the cipher. Here

we explain how to algebraically encode modular addition, which is the modelling

step of algebraic cryptanalysis. The modular addition of two n-bit words x; y is



3.7. Cryptanalysis of SIMON Block Cipher 54

algebraically described as follows

(x,y) 7→ z = x+ y mod 2n (3.3)

The resulting n-bit word (zn−1, ...,z0) is given by:



z0 = x0 + y0

z1 = x1 + y1 + c1

z2 = x2 + y2 + c2

.

zi = xi + yi + ci

.

zn−1 = xn−1 + yn−1 + cn−1

where, 

c1 = x0y0

c2 = x1y1 + c1(x1 + y1)

.

ci = xi−1yi−1 + ci−1(xi−1 + yi−1)

.

cn−1 = xn−2 + yn−2 + cn−2(xn−2 + yn−2)

3.7 Cryptanalysis of SIMON Block Cipher

Nowadays lightweight cryptography is rapidly evolving and becoming more and

more important due to the increasing demand from mobile phones and the Internet

of Things. These lightweight cryptographic primitives are designed to be efficient

(in both hardware and software) when limited hardware resources are available and

at the same time to guarantee a desired level of security. The design of such prim-

itives is a great challenge and can be seen as a non-trivial optimization problem,

where several trade-offs are taken into account. They need to maintain a reasonable

balance between security and efficient software and hardware implementation with

very low overall cost with respect to several meaningful metrics (power consump-



3.7. Cryptanalysis of SIMON Block Cipher 55

tion, energy consumption, size of the circuit [50, 23, 25]).

The research community has proposed many lightweight hash functions, block

ciphers and stream ciphers which are reasonably good and satisfy at a reasonable

level the trade-off between efficiency and security. Nowadays, in cryptographic lit-

erature we find lots of such lightweight cryptographic primitives such as KATAN

[30], KLEIN [96], ICEBERG [158], HIGHT [80], LED [99], mCrypton [120],

PRESENT [20], Piccolo [152] and many others.

In July 2013, a team from the NSA proposed two new families of particularly

lightweight block ciphers, Simon and Speck, both coming in a variety of blocks and

key sizes [14]. We have developed a basic reference implementation of both ciphers

which can be found on Github [54], as well as a generator of algebraic equations to

be used in algebraic attacks.

The designers of Simon and Speck published the full specifications and pre-

sented only performance and implementation footprints, without providing any ad-

vanced security analysis against known cryptanalytic attacks. Both of them offer

excellent performance on both hardware and software platforms and perform ex-

ceptionally well across the majority of lightweight applications and not only on a

single platform. Compared to other lightweight cryptographic primitives, these two

are meant to have better performance with respect to the area needed for a given

throughput, code size and memory usage. Simon is designed for optimal perfor-

mance in hardware, and Speck for optimal performance in software. According to

Aysu’s analysis [7], Simon with an equivalent security level as AES, is 86% smaller

than AES, 70% smaller than PRESENT and its smallest hardware architecture only

costs 36 slices (72 look-up tables, 30 registers). Recent results about hardware im-

plementation of block ciphers emphasize reducing the size and/or Multiplicative

Complexity (MC) further possibly leads to optimal implementations [24, 50].

However, in the original NSA paper [14], there is no analysis of the security

of these 2 ciphers against major well-known attacks. In the same paper [14], the

authors briefly said that Simon and Speck were designed to provide security against

traditional adversaries who can adaptively encrypt and decrypt large amounts of



3.7. Cryptanalysis of SIMON Block Cipher 56

data, and some attention was given so that there are no related-key attacks. Except

for these comments, no more analysis against common attacks such as linear or

differential cryptanalysis was presented and the task of analyzing the resistance of

the ciphers against known attacks was left to the academic community. Immedi-

ately after the release of the specifications we had the first attempts using differen-

tial, linear and rotational cryptanalysis [86, 4]. Our attacks on Simon described in

Chapter 6 were the first algebraic cryptanalysis attacks attempted on Simon. The

work was published in 2014 [55]. In recent years Simon was studied heavily by a

lot of researchers, including differential attacks introduced by Biryukov et al [19],

Mourouzis et al [3] and Wang et al [165, 166], also combined differential and lin-

ear attacks by Farzaneh et al [86] and Alkhzaimi et al [4]. Most of them are using

statistical cryptanalysis techniques, the best results break around 70% rounds of

different versions of Simon. In 2015, Raddum [138] published another algebraic

cryptanalysis work on Simon for most of the versions (not including Simon 64/128

version). Raddum’s work uses more P/C pairs than our attack and breaks 16 (out of

72) rounds of Simon 128/256 version with ElimLin. This attack shows that there is

a need to understand better how ElimLin attacks can scale to larger attacks.

3.7.1 SIMON Structure

SIMON is a family of lightweight block ciphers with the aim of havingan opti-

mal hardware performance [14]. It follows the classical Feistel design paradigm4,

operating on two n-bit halves in each round and thus the general block size is

2n. The Simon block cipher with an n-bit word is denoted by Simon-2n, where

n = 16,24,32,48 or 64, and if it uses an m-word key (equivalently mn-bit key) we

denote it as Simon-2n/mn. In this chapter, we study the variant of Simon with

n = 32 and m = 4 (i.e. 128-bit key).

Each round of Simon applies a non-linear, non-bijective (and as a result non-

invertible) function

F : GF(2)n→ GF(2)n (3.4)

4Note that in classical Feistel structure computation is done on left side, see 2.2.3. In Simon
computation is done on right side see Figure 3.5



3.7. Cryptanalysis of SIMON Block Cipher 57

to the left half of the state which is repeated for 44 rounds. The operations used

are as follows:

1. bitwise XOR, ⊕

2. bitwise AND,

3. left circular shift, S j by j bits.

We denote the input to the i-th round by Li−1||Ri−1 and in each round the left

word Li−1 is used as input to the round function F defined by,

F(Li−1) = (Li−1 <<< 1)∧ (Li−1 <<< 8)⊕ (Li−1 <<< 2) (3.5)

Then, the next state Li||Ri is computed as follows (cf. Fig. 3.5),

Li = Ri−1⊕F(Li−1)⊕Ki−1 (3.6)

Ri = Li−1 (3.7)

Figure 3.5: The round function of Simon

The output of the last round is the ciphertext.



3.8. Summary 58

3.7.2 Key Schedule

The key schedule of Simon is based on an Linear-Feedback Shift Register(LSFR)-

like procedure [121], where the nm-bits of the key are used to generate the keys

K0,K1, ...,Kr−1 to be used in each round. There are three different key schedule

procedures depending on the number of words that the secret key consists of (m =

2,3,4).

At the beginning, the first m words K0,K1, ...,Km−1 are initialized with the

secret key, while the remaining are generated by the LSFR-like construction. For the

variant of interest, where m = 4, the remaining keys are generated in the following

way:

Y = Ki+1⊕ (Ki+3 >>> 3) (3.8)

Ki+4 = Ki⊕Y ⊕ (Y >>> 1)⊕ c⊕ (z j)i (3.9)

The constant c = 0x f f ... f c is used for preventing slide attacks and attacks ex-

ploiting rotational symmetries [14]. In addition, the generated subkeys are XORed

with a bit (z j)i, that denotes the i-th bit from the one of the five constant sequences

z0, ...,z4. These sequences are defined in the NSA’s orginial paper [14] and for our

variant we use z3. We have implemented a basic reference implementation of Si-

mon and Speck ciphers and a basic generator of equations that are used in algebraic

attacks [54] .

The Feistel network, the construction of the round function and the key gen-

eration of Simon, enables bit-serial hardware architectures which can significantly

reduce the cost of implementation [7]. Additionally, encryption and decryption can

be done using the same hardware.

3.8 Summary

Algebraic cryptanalysis attacks allow the cryptanalyst to recover secret key bits

given only one or very few plaintext / ciphertext pairs. However, one of the funda-

mental problems of algebraic cryptanalysis is that the runtime of algebraic attacks

against block ciphers is not well understood. In 2007, Courtois and Bard said in the



3.8. Summary 59

first paper describing an algebraic attack on block cipher [48]:

“Very little is known about what approach would make an algebraic

attack efficient and why.”

Up to today, this question still remains in algebraic cryptanalysis. At the mo-

ment most of the exising Algebraic Cryptanalysis applications are just coverting

target ciphers to equation systems and then solved directly by a software solver

(i.e ElimLin or SAT solvers). Very limited research has been done in order to un-

derstand the behavior of a solver and how to make the coverted equation system

become easier to solve.

On cryptanalysis of block ciphers we introduced two well known encryption

standards: Russian GOST and NSA SIMON. We reviewed the state of art crypt-

analysis works on these encryption standards: best algebraic cryptanalysis attack

on 8 rounds GOST require time complexity of 2120 and no algebraic cryptanalysis

has been done on SIMON. The above facts motivate our research work decribed in

Part II of the thesis.

In Chapter 5 we will introduce a fundemental notion of “contradiction immu-

nity“ and describe how conradiction can be used in algebraic cryptanalysis. We will

demostrate a mixed SAT/UNSAT attack on GOST which improve the time com-

plexity of current best attack on breaking 8 rounds of GOST from 2120 to 292. In

Chapter 6 we will describe a new Algebraic Cryptanalysis approach combined with

well selected P/C paris in a Chosen Plaintext Attack scenario and benchmark our

attacks with randomly selected P/C pairs. We will apply this method in newly pro-

posed NSA cipher SIMON and provide the first Algebraic Cryptanalysis on SIMON

block cipher. Finally in Chapter 7 we will study the behavior of ElimLin method

with regards to the number of data samples availiable to an attacker. By studying the

number of linear independent equations found by ElimLin, we will show ElimLin

has a phase transition process where the number of equations found by ElimLin in-

crease much faster than linear and eventually break the cipher. We will then inspect

where the faster than linear groth come from and study how to find more equations

that ElimLin can not yet find.



Chapter 4

Introduction to Elliptic Curves

4.1 Mathematical Foundations [100]

Finite Groups

A Finite Group is a set G with a finite number of q elements, which has a binary

operation ∗ : G∗G→ G and satisfies the following properties [100]:

1. Associativity: (a∗b)∗ c = a∗ (b∗ c) for all elements a,b,c ∈ G

2. Existence of an identity: there exists an element e∈G such that a∗e= e∗a=

a for all a ∈ G. Element e is called the neutral element (or identity element)

of the group.

3. Existence of inverses: for each element a ∈ G, there exists an element b ∈ G

such that a∗b = b∗a = e. Element b is called the inverse of a.

q is called the group order. In addition, a group is called Abelian group (or com-

mutative group) if it satisfies the commutativity law which is a ∗ b = b ∗ a for all

elements a,b ∈ G.

If the binary operation is called addition (+), then the group is additive. In

this case, the neutral element is usually denoted by 0 and the additive inverse of

an element a is denoted by −a. If the binary operation is called multiplication (·),

then the finite group is multiplicative. In this case, the identity element is usually

denoted by 1 and the multiplicative inverse of an element a is denoted by a−1.



4.1. Mathematical Foundations 61

Finite Fields

Abstractly, a finite field consists of a finite set of objects called field elements to-

gether with the description of two operations, addition and multiplication, that can

be performed on pairs of field elements. These operations must have certain prop-

erties: [100]

1. (F,+) is an Abelian group with (additive) neutral element denoted by 0.

2. (F, ·) is an Abelian group with (multiplicative) neutral element denoted by 1.

3. The distributive law holds: (a+b) · c = a · c+b · c for all a,b,c ∈ F.

Prime Fields

Let p be a prime number. The residues modulo p, consisting of the integers

{0,1,2, . . . , p−1} with addition and multiplication performed modulo p, is a finite

field of order p.

Binary Fields

Finite fields of order 2m are called binary fields or characteristic-two finite fields.

One way to construct F2m is to use a polynomial basis representation. The elements

of F2m are the binary polynomials (polynomials whose coefficients are in the field

F2 = {0,1}) of degree at most m−1:

F2m =
{

am−1zm−1 + · · ·+a2z2 +a1z1 +a0 : ai ∈ F2;+, ·
}
.

An irreducible binary polynomial f (z) of degree m is chosen. Irreducibility of

f (z) means that f (z) cannot be factored as a product of binary polynomials each of

degree less than m. Addition of field elements is the usual addition of polynomials,

with coefficient reduced modulo 2. Multiplication of field elements is performed as

multiplication of polynomials modulo the polynomial f (z).

Cyclic Groups

Let G be a finite group of order q with multiplication (·) as binary operation, g be a

group element of G, then the order of g is the smallest positive integer r for which



4.2. Elliptic Curves 62

gr = 1. G is called cyclic if there exist a g such that 〈g〉=
{

gi : 0≤ i≤ r−1
}

is the

subgroup of G generated by g. If r = q then G is a cyclic group with generator g if

G = 〈g〉. The set 〈g〉 is also a group itself under the same binary operation and is

called the cyclic subgroup of G generated by g.

4.2 Elliptic Curves

An elliptic curve over a field K is defined by a set of points which satisfy the fol-

lowing equation (also known as standard Weierstrass form) and a group operation

which will be defined later.

y3 +a1xy+a3y = x3 +a2x2 +a4x+a6 (4.1)

Here: a1,a2,a3,a4,a6 ∈ K, and the discriminant is defined as

∆ =−d2
2d8−8d3

4−27d2
6 +9d2d4d6 6= 0

where

d2 = a2
1 +4a2

d4 = 2a4 +a1a3

d6 = a2
3 +4a6

d8 = a2
1a6 +4a2a6−a1a3a4 +a2a2

3−a2
4

The condition ∆ 6= 0 guarantees that there does not exist more than one tangent line

for a given point on the curve.

For an elliptic curve over a field K of characteristic 6= 2 or 3, without loss

of generality, one can assume that a1 = a2 = a3 = 0, we have d2 = 0, d4 = 2a4,

d6 = 4a6 and d8 =−a2
4 [100]. Accordingly, the condition ∆ =−16(4a3

4+27a2
6) 6= 0

can be simplified to 4a3
4+27a2

6 6= 0. Consequently in practical application of elliptic

curves, the curve equation is written in the following form:



4.2. Elliptic Curves 63

y3 = x3 +ax+b (4.2)

where a = a4 and b = a6, cf. Equation 4.1.

For an elliptic curve over binary fields Fm
2 , without loss of generality, one can

assume that a1 = 1, a3 = a4 = 0 [100]. Then we have d2 = 1, d4 = 0, d6 = 0 and

d8 = a6
1, and ∆ = −a6 6= 0. The short form of curve equation is normally written

as follows:

y2 + xy = x3 +ax2 +b (4.3)

where a = a2 and b = a6 and a,b ∈ Fm
2 .

4.2.1 Elliptic Curves Over Fp

The finite field Fp uses the numbers from 0 to p− 1, and computations are done

modulo p. An Elliptic Curve over finite field Fp where p is a large prime, can be

formed by choosing the constants a and b within the field Fp. The elliptic curve

includes all points (x,y) which satisfy the elliptic curve equation modulo p (where

x and y are numbers in Fp). It is typically defined in the short Weierstrass form:

y2 mod p = x3 +ax+b mod p

where a,b∈Fp satisfy 4a3+27b2 mod p is not 0, which guarantees x3+ax+b

contains no repeated factors and then the elliptic curve is a group. The elliptic curve

contains all points P = (x,y) for x,y∈ Fp that satisfy the elliptic curve equation with

addition of (for Weierstrass curves) a special point O called the point at infinity 2.

To give an example, consider an elliptic curve over the field F19, where a = 1

and b = 6, the curve equation is: y2 = x3 + x+6, an example used in [8]. There are

18 points:

(0,5), (4,6), (2,4), (3,6), (14,3), (12,13),

(18,2), (10,3), (6,0), (10,16), (18,17), (12,16),

1In binary fields anything multiplied by 2 equals to 0.
2In code implementation, O is normally be represented as point (0,0), but not always, as (0,0)

might satisfy the curve equation.



4.2. Elliptic Curves 64

(14,16), (3,13), (2,15), (4,13), (0,14), O

The point P = (4,6) satisfies this equation since:

62 mod 19 = 43 +4+6 mod 19

17 = 17

Remark: In mod p Weierstrass curves −(x,y) = (x,−y)

4.2.2 Binary Elliptic Curves

Elements of the field F2m are m-bit strings. The rules for arithmetic in binary field

can be defined by either polynomial basis or by so-called (more efficient) [optimal]

normal basis[2]. An elliptic curve E with the underlying field F2m is given through

the following equation:

y2 + xy = x3 +ax2 +b

where x,y,a,b ∈ F2m and b 6= 0. The elliptic curve E includes all points (x,y) which

satisfy the curve equation over F2m , together with a point at infinity O .

To given an example, assume the finite field F24 has irreducible polynomial

f (x) = x4 + x+ 1 (or 0x13 in hex). The element g = (0010) is a generator for the

field. The powers of g are:

g0 = (0001),g1 = (0010),g2 = (0100),g3 = (1000),g4 = (0011),g5 = (0110)

g6 = (1100),g7 = (1011),g8 = (0101),g9 = (1010),g10 = (0111),g11 = (1110)

g12 = (1111),g13 = (1101),g14 = (1001),g15 = (0001)

Consider the elliptic curve y2+xy = x3+g4x2+1. The points on E are the follow-

ing and shown in Figure 4.1.

(1,g13),(g3,g13),(g5,g11),(g6,g14),(g9,g13),(g10,g8),(g12,g12),

(1,g6),(g3,g8),(g5,g3),(g6,g8),(g9,g10),(g10,g),(g12,0),(0,1),O



4.3. Point Arithmetic 65

Figure 4.1: Example of elliptic curve over F24 [32]

4.3 Point Arithmetic

Point Addition for Prime Curves

Let P and Q be two distinct points on an elliptic curve, and P not equals to −Q.

To add the points P and Q, a line 3 is drawn through the two points. This line will

have exactly one additional intersection point with the elliptic curve, which we call

−R. The point −R is “reflected” in the x-axis to obtain point R. The law for point

addition in an elliptic curve group is P+Q = R. An example of geometrical graph

is given in Figure 4.2.

For point addition of P and −P, the line through P and −P is a vertical line

which does not intersect the elliptic curve at a third point. Thus the point P and −P

cannot be added using the above method. In this case we define P+(−P) = O .

3line is a set of points which satisfy the equation Ax+By+C = 0 where A,B,C ∈ Fp



4.3. Point Arithmetic 66

Figure 4.2: Elliptic curve point addition [136]

Point Doubling for Prime Curves

Adding a point P(x,y) to itself, a so-called tangent line to the curve is drawn at point

P. If y is not zero, then the tangent line has exact one intersection with the curve at

point−Q. −Q is reflected in the x-axis to point Q. This operation is called doubling

the point P, and the law for doubling is the following (also shown in Figure 4.3):

P+P = 2P = Q

Doubling the point P(x,y) while y = 0 then the tangent line to the curve is ver-

tical and does not intersect the curve on any other point. For such a P, by definition,

2P = O , and 3P in this case, is 2P+P = O +P = P.

Explicit Formulas for Prime Curves

For elliptic curves over Fp, consider two points P = (x1,y1) and Q = (x2,y2), P 6=

±Q, the point P+Q = (x3,y3) is given by:

λ =
y2− y1

x2− x1

x3 = λ
2− x1− x2



4.3. Point Arithmetic 67

Figure 4.3: Elliptic curve point doubling [136]

y3 = λ (x1− x3)− y1

When P = −Q, P+Q equals point at infinity O . When P = Q, we apply the

doubling formula:

λ =
3x2

1 +a
2y1

x3 = λ
2−2x1

y3 = λ (x1− x3)− y1

Scalar Multiplication

Given an elliptic curve E defined over a finite field Fp, if P ∈ E is a point of order r,

the cyclic subgroup of E generated by P is O,P,2P, . . . ,(r−1)P. Then if we define

the scalar k as an integer within the range [1,r− 1], we can multiply a point by

the scalar k and we obtain: Q = kP, where Q is also a point which belongs to the

subgroup generated by P.



4.4. ECDLP 68

4.4 ECDLP
The hardness of cryptosystem using elliptic curve point multiplication is based on

the Elliptic Curve Discrete Logarithm Problem, which is an adaptation of traditional

discrete logarithm problem to elliptic curves.

Definition 10. Elliptic Curve Discrete Logarithm Problem (ECDLP): Given an el-

liptic curve E defined over a finite field and two points P,Q ∈ E, find an integer k

such that Q = kP if such k exists.

The ECDLP is believed to be harder to solve than other recognized problems

such as integer factorization and the discrete logarithm problem in the multiplicative

group of a finite field, which are the foundations of RSA [139] and the ElGamal

[84] cryptosystems. “Harder to solve” implies shorter keys are needed to provide

the same level of security as recommended by [13]. Table 4.1 shows the key size

comparison for elliptic curves and RSA.

Table 4.1: NIST’s recommendation for practical applications revision 4 [130]

Security level in bits Block cipher Fp Fm
2 RSA

80 SKIPJACK 192 163 1024
112 Triple-DES 224 233 2048
128 AES Small 256 283 3072
192 AES Medium 384 409 7680
256 AES Large 521 571 15360

REMARK: In Jan 2016, NSA has updated this table. Key changes are [130]:

security level less than 112 (shaded in red) are no longer approved for applying

cryptographic protection on Federal government information. Algorithms (shaded

in yellow) are not included in the NIST standards for interoperability and efficiency

reasons. At the same time NSA announced changes from Suite B cryptography to

the Commercial National Security Algorithm Suite which no longer recommends

algorithms shaded in orange for national security systems [129].

Common methods for solving ECDLP are Pollards rho algorithm and index-

calculus method. We refer reader to [100, 132] for more details.



4.5. An Interesting Research Question - Semaev Cipher 69

4.5 An Interesting Research Question - Semaev Ci-

pher
When we cryptanalyse a block cipher, we write algebraic equations. Is it possible to

also describe ECDLP and other EC cryptography problems by simple polynomial

equations mod p?

4.5.1 Summation Polynomials

Let E be a general elliptic curve over field F in Weierstrass form given by the Equa-

tion 4.1 we define

S2 (X1,X2) = X1−X2 ∈ F [X1,X2]

The third summation polynomial to be the polynomial S3 (X1,X2,X3)∈F [X1,X2,X3]

of degree 4 by [118]:

S3 (X1,X2,X3) =
(
X2

1 X2
2 +X2

1 X2
3 +X2

2 X2
3
)
−2
(
X2

1 X2X3 +X1X2
2 X3 +X1X2X2

3
)

−d2 (X1X2X3)−d4 (X1X2 +X1X3 +X2X3)−d6 (X1 +X2 +X3)−d8 (4.4)

then for m≥ 4 in any case:

Sm(X1, . . . ,Xm) = ResX (Sm−r (X1, . . . ,Xm−r−1,X) ,Sr+2(Xm−r (Xm−r, . . . ,Xm,X))

where 1≤ r ≤ m−3.

Summation Polynomials were first introduced by Semaev in 2004 [145]. Se-

maev’s summation polynomials have the property that if Sm(a1, . . . ,am) = 0 for

some field elements a1, . . . ,am ∈ F if and only if there are elliptic curve points

(a1,b1) , . . . ,(am,bm) on E such that (a1,b1)+ · · ·+(am,bm) = 0. The idea is to rep-

resent point addition in elliptic curves using a multivariate equation system and try

to solve the equation system. This topic has been studied by a lot of researchers try-

ing to solve the ECDLP problem [81, 95, 89, 90, 133, 104]. In 2015 a new method

was introduced by Semaev [147] and the idea is trying to solve the equation sys-

tem by introducing new variables that lower the degree of the system of equations.

In this section we will look at Semaev’s summation polynomials S3 (X1,X2,X3) for



4.5. An Interesting Research Question - Semaev Cipher 70

curves over Fp and Fm
2 , then introduce some open research questions.

Elliptic Curves Over Fp

For an elliptic curve over a field K of characteristic > 3 we recall the curve equation

4.2 y3 = x3 +a4x+a6 and S3 (X1,X2,X3) equation can be simplified to: [118]

S3(X1,X2,X3) = (X2
1 X2

2 +X2
1 X2

3 +X2
2 X2

3 )−2(X2
1 X2X3 +X1X2

2 X3 +X1X2X2
3 )

−2a4(X1X2 +X1X3 +X2X3)−4a6(X1 +X2 +X3)+a2
4

= (X1−X2)
2X2

3 −2((X1X2 +a4)(X1 +X2)+2a6)X3 +(X1X2−a4)
2

−4a6(X1 +X2)

(4.5)

and it is also easy to get for point doubling when X1 = X2 we have

−2
(
X3

1 +2a4X1 +2a6
)

X3 +
(
X2

1 −a4
)2−8a6X1 = 0 (4.6)

Special Curve secp256k1

For curve secp256k1 4 where a4 = 0 and a6 = 7, equation 4.5 and equation 4.6 can

be written as the following:

S3(X1,X2,X3) = (X1−X2)
2X2

3 −2((X1X2)(X1 +X2)+14)X3 +X2
1 X2

2

−28(X1 +X2)
(4.7)

and for point doubling when X1 = X2

−2
(
X3

1 +14
)

X3 +X4
1 −56X1 = 0

X3 =
X4

1 −56X1

2X3
1 +28

Elliptic Curves Over F2m

For an elliptic curve over a Fm
2 , we have curve equation y2+xy = x3+a2x2+a6 We

4Elliptic curve used in bitcoin; we will give more details in Section 4.8



4.5. An Interesting Research Question - Semaev Cipher 71

have d2 = 1, d4 = 0, d6 = 0 and d8 = a6 (see Section 4.2). In binary field anything

multiply by 2 equal to 0, A−B = A+B, thus equation 4.4 can be simplified to:

S3(X1,X2,X3) = (X2
1 X2

2 +X2
1 X2

3 +X2
2 X2

3 )−X1X2X3−a6

= (X1X2 +X1X3 +X2X3)
2 +X1X2X3 +a6

and when X1 = X2 we have:

X4
1 +X2

1 X3 +a6 = 0

X3 = X2
1 +

a6

X2
1

Research question: What is the hardness of solving summation polynomials?

4.5.2 Solving Semaev Equations with Extra Variables

In Section 4.5.1 we explained the Semaev polynomials which have equations in

very large degree. An interesting idea which is also used in algebraic cryptanalysis

is to reduce the degree by adding new variables. In Semaev’s recent paper [147] he

introduced a new algorithm trying to solving ECDLP using summation polynomials

for curves over F2m . By recursively computing summation polynomials, instead of

trying to write R = P1+ · · ·+Pm for point Pi, we can write Q1 = P1+P2,Q2 = Q1+

P3, . . . ,R = Qm−2 +Pm, where the Qi are completely arbitrary points (see equation

4.8). Then solve the multivariate equation system under some assumptions.



S3(Q1,P1,P2) = 0

S3(Q1,Q2,P3) = 0

S3(Q2,Q3,P4) = 0

...

S3(Qi,Qi+1,Pi+2) = 0

...

S3(Qm−2,Pm,R) = 0.

(4.8)



4.6. Elliptic Curve in Cryptography 72

From this one can hope to do point splitting and index-calculus. We refer reader

to [64, 132] to see how ECDLP might be solved if one can solve such equation

efficiently.

However the final result of Semaev’s new work is still uncertain. Some re-

searchers believes the complexity analysis in Semaev’s paper are not quite correct,

cf. later work by Kosters and Yeo [118] and blog posts [94, 45]. This leads to some

open research questions.

Semaev Cipher

The new equation system introduced in Semaev’s new paper has clear block cipher

topology (see Figure 3.2 in Section 3.5) [75]. It is very similar to the block cipher

equations we have tried to solve for GOST and SIMON [69, 55]. It is potentially

able to be solved by methods used in algebraic cryptanalysis [75]. We call Semaev’s

new summation polynomial equations Semaev cipher.

4.6 Elliptic Curve in Cryptography

Elliptic curve cryptography (ECC) was independently proposed by Neal

Koblitz[117] and Victor Miller [125] in 1985. It is a public-key cryptography

protocol where each of the participant has a pair of keys. One private key which

is kept as a secret by the owner and one public key which is public potentially for

everyone. In the past 10+ years ECC has been increasingly used in practice since

its inclusion in standards by organisations such as ISO, IEEE, NIST,etc. Elliptic

curves are more efficient [17] and offer smaller key sizes [119] at the same security

as other widely adopted public key cryptography schemes such as RSA [139].

There are many widely used elliptic curve cryptographic schemes such as El-

liptic Curve DiffieHellman (ECDH) key agreement scheme based on the DiffieHell-

man scheme, Elliptic Curve Integrated Encryption Scheme (ECIES), and Elliptic

Curve Digital Signature Algorithm (ECDSA) etc. In this thesis we only focus on

ECDSA [107] (key generation part in particular) which is used in Bitcoin and we

refer the readers to [100] for details of other schemes.



4.6. Elliptic Curve in Cryptography 73

4.6.1 Domain Parameters
Elliptic curve cryptographic schemes need to agree on a fixed elliptic curve and a

finite field. The fixed elliptic curves are normally chosen from curves which are

suggested by standard organisations, such as ISO, IEEE etc. Domain parameters

for an elliptic curve scheme describe an elliptic curve E defined over a finite field

Fp, a base point G ∈ E (Fp), and its order n. The parameters should be chosen so

that the ECDLP is resistant to all known attacks. Domain parameters are defined as

the following D = (p,FR,S,a,b,G,n,h) where

1. p is the field order

2. FR (field representation) is an indication of the representation used for the elements

of Fp

3. If the curve is deterministically generated, S is the seed used to generated the curve

4. a,b ∈ Fp that define the curve equation over field Fp

5. G is the base point where G = (Gx,Gy) ∈ E(Fp)

6. The order n of G

7. The cofactor h =
#E(Fp)

n

An example can be found in Section 4.8.

4.6.2 Key Pair Generation

An elliptic curve key pair is defined for a particular set of valid domain parame-

ters (cf. [100] page 180 for generating and verify EC domain parameters). The

public key is a random generated point Q in the group 〈G〉 generated by G. The

corresponding private key is d = logG Q. The key pair generation algorithm is the

following:

Algorithm 2 Key pair generation [100] page 180
Input: Domain parameters D = (p,FR,S,a,b,G,n,h)
Output: Public key Q, private key d

1: Select d ∈R [1,n−1].
2: Compute Q = dG.
3: Return (Q,d).



4.6. Elliptic Curve in Cryptography 74

Note that the process of computing a private key d given public key Q is exactly

the elliptic curve discrete logarithm problem. Hence it is very import to chose a set

of domain parameters so that the ECDLP is hard to solve. In addition the number

d should be random in the sense that the probability of any particular value being

selected must be sufficiently small to prevent an adversary from gaining advantage

through optimizing a search strategy based on such a probability.

Not all the key pairs are valid keys. A public key Q = (Qx,Qy) is valid if it

satisfies all the following requirements:

1. Q 6= O ( O is the point at infinity).

2. Qx and Qy are properly represented elements of Fp (i.e., integers in [0, p−1]

for prime field and bit strings of length m for binary field Fm
2 ).

3. Q satisfies the elliptic curve equation defined by a and b.

4. we can also verify that nQ = O .

4.6.3 Elliptic Curve Digital Signature Algorithm

Elliptic Curve Digital Signature Algorithm (ECDSA) is a cryptographic scheme

based on elliptic curve cryptography that authenticates a message (and a signer),

and checks that the content of the message is authentic and comes from the signer.

ECDSA is the most widely standardised elliptic curve based signature scheme, ap-

pearing in the FIPS 186-2[92], IEEE 1363-2000 [98], ANSI X9.62 [6] etc. Typi-

cally, ECDSA consists of three parts: key generation, signing and verification. We

have discussed the key generation part in the previous section, see Algorithm 2.

Now we look at signature and verification algorithms.

Let m be the message that the sender want to send, the message sender obtained

his EC key pair d and Q using the key generation algorithm using an elliptic curve

defined by a set of domain parameters D = (p,FR,S,a,b,G,n,h). The process for

signature generation is described in Algorithm 3. In the following algorithms, H

denotes a cryptographic hash function whose outputs size is at least n (if longer

than n, H can be truncated).



4.7. Bitcoin and Brain Wallet Attacks 75

Algorithm 3 ECDSA signature generation [100] page 184
Input: Domain parameters D = (p,FR,S,a,b,G,n,h), private key d, message m
Output: Signature (r,s)

1: Select k ∈R [1,n−1].
2: Compute kG = (x1,y1) and convert x1 to an integer x̄1.
3: Compute r = x̄1 mod n. If r = 0 then go to step 1.
4: Compute e = H(m).
5: Compute s = k−1(e+dr) mod n. If s = 0 then go to step 1.
6: Return (r,s).

Anyone can verify the sender signature by using the sender’s public key and

the verification process is described as follows:

Algorithm 4 ECDSA signature verification [100] page 184
Input: Domain parameters D = (p,FR,S,a,b,G,n,h), public key Q, message m,
signature (r,s)
Output: Acceptance or rejection of the signature

1: Verify that r and s are integers in the interval [1,n−1]. If any verification fails,
reject the signature

2: Compute e = H(m).
3: Compute w = s−1 mod n.
4: Compute u1 = ew mod n and u2 = rw mod n.
5: Compute X = u1G+u2Q.
6: If X is point at infinity O then reject the signature
7: Convert the x-coordinate x1 of X to an integer x̄1; compute v = x̄1 mod n.
8: If v = r then accept the signature otherwise reject the signature.

4.7 Bitcoin and Brain Wallet Attacks
Bitcoin is a cryptocurrency, an electronic payment system based on cryptography.

It was created by Satoshi Nakomoto5 in 2008 [128]. In 2009, Bitcoin was launched

as open-source software. Bitcoin is designed to be a fully decentralised peer-to-

peer network — self-governing without support from trusted entities such as banks

or governments. Bitcoin transactions are like cheques but signed cryptographically

instead of using ink. Transactions are broadcast to the peer-to-peer network and

verified by each node. A public ledger called a ”blockchain” records transactions

pseudonymously.
5It is not known whether Satoshi Nakomoto is a real or pseudonym name or if it represents one

person or a group



4.8. Bitcoin Elliptic Curve 76

Creation of new bitcoins6 is through a process called mining and participants

are called miners. Miners offer their computation power to solve a hard mathemat-

ics problem, and winners will be rewarded the newly created bitcoin. The chance

of winning a reward is directly proportional to the miner’s computing power. Dur-

ing the process of mining, transactions have been processed and recorded into the

blockchain.

Ownership of bitcoins implies that a user can spend bitcoins associated with a

specific address (equivalent to a bank account). In order to spend the coins, a payer

must digitally sign a transaction using their private key. The signed transaction is

then broadcast to the peer-to-peer network. Everyone on the network can verify

the signature that has been sent out. Anyone can spend all the bitcoin in a bitcoin

address as long as they hold the corresponding private key. Once the private key is

lost, the Bitcoin network will not recognize any other evidence of ownership.

Bitcoin uses digital signature to protect the ownership. Thus it is very impor-

tant to look at the technical details of the digital signature scheme used in Bitcoin.

The popularity of Bitcoin, especially with large populations who had not previously

used cryptographic software, has meant that lots of users have attempted to manage

private keys for the first time in the context of Bitcoin. In the next section, we study

the Bitcoin brain wallet, our main attack target in this part of my research work.

We will discuss the technical details of how Bitcoin addresses are generated, using

which elliptic curve, and how the curve is defined.

4.8 Bitcoin Elliptic Curve
Bitcoin uses Elliptic Curve Digital Signature Algorithm (ECDSA, see Section
4.6.3). The elliptic curve used in Bitcoin is called secp256k1. In the FIPS 186-
2 standard [92] NIST recommends five elliptic curves for use in ECDSA, targeting
five different security levels (192,224,256,384,521). In this standard, these curves
are named as P-192, P-224, P-256, P-384, and P-521 7. The Bitcoin elliptic curve is
proposed in Certicom [33] in addition to NIST curve for 256 bits prime. Secp256k1

6Following convention, lowercase “bitcoin” refers to a unit of currency within the uppercase
Bitcoin system.

7In practice these also appear as nistp192, nistp224 etc; in Certicom recommended curves they
are named as secp***r1, and in OpenSSL they are called prime***v1



4.9. Brain Wallets 77

is defined over prime field Fp where the domain parameters (p,a,b,G,n,h) are de-
fined as following:

p=FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFFFFFFFFFF FFFFFFFF FFFFFFFE FFFFFC2F

= 2256−232−29−28−27−26−24−1

The curve equation E is y2 = x3 + ax+ b where a = 0 and b = 7. The base point
G : (Gx,Gy) is defined as:

Gx = 79BE667E F9DCBBAC 55A06295 CE870B07 029BFCDB 2DCE28D9 59F2815B 16F81798

Gy = 483ADA77 26A3C465 5DA4FBFC 0E1108A8 FD17B448 A6855419 9C47D08F FB10D4B8

the cofactor h = 1, the order n of G are:

n=FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFE BAAEDCE6 AF48A03B BFD25E8C D0364141

4.9 Brain Wallets

A Bitcoin wallet is a collection of Bitcoin addresses and stores the corresponding

keys for those addresses. Bitcoin wallets come in different forms, including desktop

software, mobile apps, online services, hardware, smart card and paper.

As we discussed earlier in Section 4.6.2, the private key is a number which we

presume to be totally random. Normally the private key will be a long hex string

which is very hard for a person to remember and store safely. No matter what form

of wallet we are using, there always exists a chance that someone might lose his

wallet in a cybersecurity breach.

Brain wallets are another solution, which do not need the users to keep any-

thing in a safe and still be able to recover their private key. Instead of storing a

private key and protecting it, one can store it in a human mind. A brain wallet cre-

ates a private key from a (typically) human chosen password or a passphrase, and

using the SHA-256 hash algorithm to turn it into a 256-bit number. As SHA-256

is a deterministic method, users can always use the same password to recreate their

private key. Note that since brain wallets use the hash directly as the private key,



4.9. Brain Wallets 78

the security of storing private keys now depends only on how unpredictable the

passwords are.

Here we give an example show how Bitcoin brain wallet can be generated by
using password “password”:

1. Private key: SHA256(“password”)

5E884898DA28047151D0E56F8DC6292773603D0D6AABBDD62A11EF721D1542D8

2. Public key (uncompressed) : Elliptic curve secp256k1 key pair generation

04B568858A407A8721923B89DF9963D30013639AC690CCE5F555529B77B83CBFC7

6950F90BE717E38A3ECE1F5558F40179F8C9502DECA11183BB3A3AEA797736A6

3. SHA256 (Public key)

1D8ED6551EE910136EB0EA735106E137565E8F5EBF8DF73A6A877C92C049F922

4. Hash160 : RIPEMD160

3E546D0ACC0DE5AA3D66D7A920900ECBC66C2031

(used for transaction)

Figure 4.4: Brainwallet generated by password “password”

Brain wallet users are normally urged to use strong passwords or passphrases.

Websites provide a brain wallets generation service often using Figure 4.5 to tell

the users what is a strong password. However, this figure is a little bit misleading

which makes users feel it is safe to use brain wallets with a passphrase. We have

actually cracked quite a few such passphrases. In this thesis we mainly focus on

speed optimization of password guessing.

In the next section we will discuss about existing methods of Bitcoin elliptic

curve implementation, benchmarking the state-of-art attack and show an improved

method of running the attack with much faster speed on a laptop.



4.9. Brain Wallets 79

Figure 4.5: Password strength comparison between using password and passphrase, source:
xkcd.com. This cartoon gives us good advice about how hard it is to guess
one user’s passwords. But sometimes the speed of guessing can be misleading.

4.9.1 Related Work

We are not the first ones try to crack Bitcoin brain wallets; a lot of other security

researchers are doing it. Many victims have found their money stolen and posted it

in forums. The first ethical/research brain wallet cracker was announced publicly in

a recent hacking conference DEF CON 23 (Aug 2015). Ryan Castellucci, a whitehat

hacker, presented his research on cracking brain wallets, and also published his

software [31]. Ryan’s attack was done on an Intel i7 PC with 4 hyper-threaded

cores. The attack speed can reach approximately 16,250 passwords per second on

each thread and he had cracked more than 18,000 brain wallet addresses.

The software Ryan has published uses an existing open source secp256k1 Bit-

coin elliptic curve implementation mainly written by Pieter Wuille, one of Bitcoin

core developers. This implementation is widely used in Bitcoin clients and is con-

xkcd.com


4.10. Summary 80

sidered the current best in terms of code level optimization (detailed benchmarks

are given in table 8.2).

Later Vasek et al. published their cybercrime analysis results on brain wallets

addresses cracked using Ryan’s software implementation in FC 2016. Their work

was more focused on brain wallets usage measurements and did not try to improve

the speed of the attack.

4.10 Summary
In this chapter we introduced elliptic curve and elliptic curve cryptography. We

discussed Bitcoin, one of the largest application of ECC. In particular we reviewed

Bitcoin brain wallets. We explained how to generate a brain wallet from a user

selected password in detail and reviewed current attack on brain wallets. In Part III

we will provide benchmarks for each operations in Bitcoin key generation process

and propose an improved attack on brain wallets.



Part II

The Path to Better Software

Algebraic Cryptanalysis

81



Chapter 5

Contradiction Immunity and

Application to GOST

In this chapter, we will introduce a key fundamental notion of Contradiction Im-

munity of a block cipher and a related notion of SAT Immunity. These notions

lead to new computational optimization problems in cryptography. The main idea

is to look for an optimal software guess-then-determine attack. We also provide a

concrete example of how this attack can be accomplished on the Russian federation

encryption standard GOST with a SAT solver.

5.1 Contradiction Immunity and SAT Immunity

5.1.1 Software Algebraic Attack with SAT Solver

As we discussed in Section 3.6.2, due to the self similarity property inside the cipher

structure, the problem of solving full GOST can be reduced to solving an 8 rounds

GOST [44]. In Section 3.5.2 we described algebraic complexity reduction and the

notion of amplification in general. In this section we look at how the amplification

principle can be applied to GOST. Here the question is what is the best possible

software attack with tools such as the ElimLin algorithm [68, 48, 58], SAT solvers

[50, 9], Gröbner bases [88] and others [146]. In all these algorithms we observe

the phenomenon of amplification in various forms. For example, we can study and

count linearly independent linear equations and try to amplify their number by the

ElimLin algorithm [68, 48, 58]. When the ElimLin algorithm is itself the last step



5.1. Contradiction Immunity and SAT Immunity 83

of the attack, or if the SAT solver is the last step of the attack, this amplification

phenomenon becomes very important. We observe an avalanche-like phenomenon

where more and more new linear equations are generated in the ElimLin algorithm,

until the system is solved. Similarly, with a SAT solver there is a point of phase

transition where the problem becomes really easy to solve. If we want to under-

stand algebraic cryptanalysis, we need precisely to work on this phase transition

phenomenon itself. What happens after this threshold, when the problem is just

very easy to solve, is less important.

In this chapter we focus more specifically on cryptographic attacks with SAT

solvers, and on GOST, which is a nice example of a weak government standard

cipher with excessively poor diffusion. There are two main approaches in SAT

cryptanalysis or two main ways to break a cipher with a SAT solver:

1. The SAT Method: Guess X bits and run a SAT solver which, if the assump-

tion on X bits is correct, takes time T . Abort all the other computations at

time T . The total time complexity is about 2X ·T .

2. The UNSAT Method: Guess X bits and run a SAT solver which, if the as-

sumption on X bits is incorrect, finds a contradiction in time T with large

probability 1−P say 99%.

With a small probability of P > 0, we can guess more key bits and either find

additional contradictions or find the solution.

The idea is that if P is small enough, the complexity of these additional steps

can be less then the 2X ·T spent in the initial UNSAT step.

3. A Mixed UNSAT/SAT Attack: In practice maybe P is not as small as we

wish, and therefore we may have a mix of SAT and UNSAT methods: where

the final complexity will be a sum of two (or more) terms, none of which can

be neglected. We will see a very nice example of how a combined attack can

be better than any of SAT and UNSAT methods in isolation in Section 5.2.4.

Note that the UNSAT method does not belong to amplification, but it reduces

solving complexity by quickly rejecting wrong guesses. This can be seen as cutting



5.1. Contradiction Immunity and SAT Immunity 84

the branches in a binary search tree, and finally makes finding contradictions easier

by a SAT solver. The idea behind the UNSAT method also appears in Cryptanalysis

history. For example, Turing’s Bombe machine which explored the daily setting of

the Germany Enigma, used a similar idea by rejecting wrong guesses which lead to

a contradiction (to be precise, one letter is encrypted to itself).

5.1.2 Contradiction Immunity and SAT Immunity

In order to quantify the resistance of a cipher against the two attacks described

above, it is natural to define the two following numbers:

Definition 11 (Contradiction Immunity or UNSAT Immunity). We define the Con-

tradiction Immunity of a given cipher and for M = 1 plaintext/ciphertext pairs of

the cipher as being the smallest possible number of key bits which can be fixed so

that given M = 1 P/C pair we can obtain a contradiction with probability at least

50% by just examining the logical consequences of these key bits. We require this

contradiction to be found in a very short time, less than 1 second for the best SAT

solver available.

Definition 12. [SAT Immunity or Satisfaction Immunity] We define the SAT Immu-

nity of a given cipher and for M plaintext/ciphertext pairs of the cipher as being the

smallest possible number of key bits which can be fixed so that given M P/C pairs

we can compute the secret key by the best available SAT solver in a relatively short

time, say less than 1000 seconds.

These notions are as precise as they can be. Although they depend on the

software used, but it is not to excessive extent. Because we can only hope to provide

upper bounds for this quantity by concrete attacks with concrete software, it makes

sense to use the best available software and improve these bounds slightly each

time as the software improves. Importantly, we should consider that the first notion

is much more robust and more fundamental: it expected to depend only on the

connections between the components with the “optimal” subset of key bits, we do

not expect that the contradiction will be found by examining too many other bits,

but just by simple step-by-step local analysis. We also expect that the time taken



5.1. Contradiction Immunity and SAT Immunity 85

to find a contradiction will be essentially zero and will not depend too much on

the software used. Some SAT solvers are good at solving contradiction problems

(known as UNSAT problems), but in this case, we believe it is not very important

which SAT solver will be used to obtain the contradiction. In contrast, the SAT

Immunity can only be determined by somewhat “solving” the whole cipher, with

the avalanche effect. Unless we are able to determine all the bits in the whole

cipher, we do NOT know if the cipher is really solvable. Our experience shows

that the results for the second notion will depend a lot on the SAT solver software

used and where some software works well, some other does not seem to work at

all 1. This is because when solving UNSAT problems (espically in crypanalysis) a

contridiction can be easily found in early round of the encryption, thus the solving

complexity is very low and problem normally get solved within seconds. Even

different algorthims perform differently on a given problem, in most of the case, the

difference is very small in order to find a contridiction. However when solving a

SAT problem the aim is to solve the whole equeation system with and find the key,

(in Definition 12, we set solver time out as 1000 seconds). Due to the complexity

of the problem, some SAT solvers can’t find any solution within the time limit.

A small technicality is that in order to determine the key uniquely in many

ciphers where the key size is bigger than the block size, it is necessary to use some

M > 1. Because in order to find a unique solution within a multivariable equations

system, the number of equations should be larger than the number of unknowns,

otherwise there could exist multiple solutions in the equation system. However,

for the first notion, for finding contradictions, we can frequently limit ourselves to

considering the case where M = 1 because most of the case contridiction can be

found easily within early round of the encryption if key bits are wrong.

5.1.3 Applications of UNSAT/SAT Immunities

Cryptanalysis. SAT and UNSAT immunities will allow us to evaluate the security

of the cipher against cryptanalytic attacks with a SAT solver. Upper bounds we

1Performance of a SAT solver solving cryptanalysis problems is largerly depends on how the
cipher is represented using CNF format. The number of variables and constrains in a SAT problem
can dertimin the solving complexity and each solver perfroms differently on different problem.



5.2. Applying SAT/UNSAT Immunity to GOST and DES 86

obtain do translate, more or less, as we will see, into concrete attacks with a com-

plexity of about 2X . The two figures will also indicate which of the three strategies

(SAT/UNSAT/Mixed) is more likely to work.

Design of Block Ciphers. It is easy to see that the designer of a cipher can very

effectively lower-bound these quantities. This will be achieved by making sure that

each S-box in each round influences as many S-boxes as possible in the next round.

This is not all very different to designing a cipher which is provably resistant to

linear and differential cryptanalysis. In 2007, Schneier once claimed that “Against

differential and linear cryptanalysis, GOST is probably stronger than DES” [142].

Therefore we should also expect that Contradiction Immunity of DES and GOST

are comparable. Happily, similar attacks with SAT solvers have been developed for

both DES [48] and GOST [50]. In fact, it is obvious that the diffusion in DES is

much better than in GOST and so is the Contradiction Immunity in DES. However,

we need to be careful about drawing any conclusions and direct comparisons do

not mean much. If the contradiction immunity is 78 for 8 out of 32 rounds of

GOST with 3 P/C pairs and 256-bit keys, is it better or less good than contradiction

immunity being 20 for 6 rounds out of 16 of DES with 1 P/C pair and 56-bit keys?

It is very hard to say.

5.2 Applying SAT/UNSAT Immunity to GOST and

DES

5.2.1 Application to DES

In DES the key bits are spread more or less uniformly in different rounds, and they

tend to repeat many times. Therefore it is difficult to choose really good sets of

bits using our discovery method and, for now, we just report upper bounds obtained

when choosing the key bits at random, and letting the SAT solver do the job.

There are multiple ways of write DES S-boxes into algebric equations which

will leads to different solving complexity for AC solving stages. In 2007 Courtois

and Bard studied the best s-box encodings with low I/O degrees [65], and pro-

vided ready software for generating such equations and solve the SAT problem



5.2. Applying SAT/UNSAT Immunity to GOST and DES 87

using MiniSat [156]. Our experiments set up uses the same software for generating

DES equations, and the results are obtained by using a better performing SAT solver

CryptoMiniSat 2.92 [157].

For Contradiction Immunity our experiments use 8 rounds of DES with 1 P/C

pair. Using random generated key and fix a large number of the key bits x, then

reduce x until we no longer able to obtain a contradiction with probability at 50%

using SAT solver within 1 seconds. Finally, report the smallest possible number of

key bits. For SAT immunity, the experiment was using 8 rounds of DES and 1 P/C

pair, random key and random fixed key bits. We run CryptoMiniSat until we obtian

the smallest possible number of key bits that can be fixed so that we can solve the

converted SAT problem and obtain the secret key within 1000 seconds.

Our final results are:

1. The Contradiction Immunity is at most 44 for 8 rounds of DES.

2. The SAT Immunity is at most 34 for 8 rounds of DES and 1 P/C pair.

DES has key size of 56 bits, for SAT method, we have to fix 34 bits (request

234 GOST encryption) and solve within 1000 seconds by a SAT solver. Our PC

can run approximately 222 8 rounds DES encryptions per seconds. The total time

complexity of solving 8 rounds of DES using 1 P/C pair is larger than brute force.

For ultra low-data complexity attacks, 8 rounds of DES seem already secure or

secure enough.

5.2.2 Contradiction Immunity of GOST

Now we are going to provide some results on the Contradiction Immunity and SAT

Immunity of GOST. These results are constructive upper bounds.

First we started in a similar set up as DES, with random selected key bits for

guessing. The initail Contradiction Immunity we got was about 128. Previous

cryptanalysis work on GOST done by Coutrios in 2012 [61] analysed the internal

structure on GOST and how key bits and S-boxes are connected for each round of

the encryption. Courtios’ work [61] shows that GOST splits very neatly into two

nearly independent ciphers with 128-bit key each, which are only loosely connected.



5.2. Applying SAT/UNSAT Immunity to GOST and DES 88

With this idea it is easy to understand why Courtois’ original attack on 8 rounds of

GOST with complexity of 2120 [62] seems plausible and natural. Randonly guessed

key bits will not create a closely connected structure, thus the chance to find a

contridiction for wrong guesses become harder compared to closely connected key

bits. However, our research found that it is much lower than 128, and much closer

to 64.

Proposition 1. The Contradiction Immunity for 8 rounds of GOST is at most 78.

Notation, cf. Figure 5.1: We denote by S13 just 1 higher ranking bit at S-box

1 in a given round. Similarly we denote by S33 the 3 lower ranking bits of S3.

Figure 5.1: Our best set of 78 bits for UNSAT. We denote by S13 just 1 higher ranking bit
at S-box 1 in a given round. Similarly S33 the 3 lower ranking bits of S3. � is
the modulo 232 operation. Best set we found is fixing key bits 0-15,47-58,64-
70,111-114,128-130,175-182,192-202,239-255. The inner rounds output bits
that are determined by these key bits are showed in the figure

We have constructed and tried many different sets aiming at a contradiction

in the middle. Such sets can be constructed using simple heuristic method such as



5.2. Applying SAT/UNSAT Immunity to GOST and DES 89

hill-climbing method [144] with a staring point contructed by humman. Our best

set is as follows (cf. Figure 5.1): 0-15,47-58,64-70,111-114,128-130,175-182,192-

202,239-255. The contradictions can be found in time of 0.06 s with CryptoMiniSat

2.92 software [157] with a probability of about 50 %.

5.2.3 SAT Immunity of GOST

It turns out that a set which is good for UNSAT is typically NOT good at SAT. No

SAT solver software we dispose of is able to find the missing bits if the 78 bits of

Figure 5.1 are fixed. Happily we have found sets which are very good at SAT and

they are in fact smaller than 78. Our best result is as follows:

Proposition 2. The SAT Immunity for 8 rounds of GOST and 4 P/C pair is at most

68.

We use the following set of bits depicted on Fig 5.2 0-15,51-55,64-66,128-

130,179-183,192-207,224-231,244-255. All the remaining 256-68 bits can be de-

termined in time of about 400 seconds using GOST encodings described in Section

3.6.3 and with CryptoMiniSat 2.92.

From here a naive “SAT strategy” attack on GOST would be to run a SAT

solver for 400 seconds 268 times. This would be about 299 GOST encryptions.

5.2.4 Low Data Complexity Meet-In-The-Middle Attack for 8

Rounds GOST

In our attack with 4 P/C pairs we want to find a contradiction for all the 4 pairs

simultaneously. This will be easier than contradiction with 1 P/C pairs we studied

previously. This leads to the following improved attack which mixes the SAT and

UNSAT strategies.

1. We use our set of 68 bits as on Figure 5.2.

2. We run the software 268 times for all possible assignments of the 68 bits.

3. Computer simulations with the timeout of 7 seconds, a proportion of 1−2−5

of cases on 68 bits terminates with UNSAT within 2 s on average.



5.3. Conclusions 90

Figure 5.2: Our best set of 68 bits for SAT

4. Overall, we only need to run a proportion of 2−5 of all the 268 cases for as

many as 400 seconds; in other cases it simply terminates automatically within

2 s which is 223 GOST encryptions on the same CPU.

5. Assuming that all the other cases run for 400 s (some still terminate earlier)

our conservative estimate of the attack time is 268+23+268+31−5≈ 294 GOST

computations.

5.3 Conclusions
In this chapter, we discussed algebraic cryptanalysis using SAT solver as solving

stage and it’s application to break 8 round GOST. We introduced a new notion of

Contradiction Immunity and a related notion of SAT Immunity. These definitions

lead to new computational optimization problems in cryptography, which can be

seen as looking for an optimal software guess-then-solve attack. We provided our

best optimizations found which were constructed following a sort of meet-in-the



5.3. Conclusions 91

middle strategy. Our key result is that the Contradiction Immunity for the GOST

cipher is quite low, about 78, for 8 rounds.

The main contribution of this chpater is not just providing a bound on the two

Immunity figures, but to provide concrete sets of bits based on which we can build

concrete attacks on the given cipher. Theses sets are fundamental in being able to

improve the time complexity of 8 rounds of GOST attack from 2120 to 294.



Chapter 6

Algebraic Cryptanalysis of Simon

In Chapter 5 we have introduced the notion of contradiction immunity and SAT

immunity. We have shown how an optimized guess-then-solve attack can be done

on GOST. In this chapter, we are going to explore how to improve algebraic attack

with well chosen data. Our target is the new NSA block cipher Simon [14]. The

lightweight block cipher Simon was introduced by NSA in 2013 and later submitted

to ISO to become an international standard. Similar to GOST, Simon has very

low diffusion and small S-boxes, which makes it an excellent target for algebraic

cryptanalysis. Our aim is to use the very rich algebraic structure with additional

data provided ( e.g. pairs {(P,P′),(C,C′)} which follow a certain highly probable

truncated differential property) in order to solve the underlying multivariate system

of equations. We attempt to solve the system by either using a SAT solver (after

converting the system to its corresponding CNF-SAT form with the Courtois-Bard-

Jefferson method [9]) or by the ElimLin algorithm [22, 50, 53]. We are able to

break up to 10 (/44) rounds of the cipher using a SAT solver and the usual guess-

then-determine techniques. Surprisingly, in most cases we are able to obtain the

key without guessing any key bits when truncated differentials are used. This is a

very remarkable result as it gives a good hope that the attack will scale up well for

a larger number of rounds. This is possibly due to the very low non-linearity of the

cipher and suggests that it is worth studying a specific strategy for P/C pairs which

have a certain structure and decrease even more the non-linearity of the system by

introducing more linear equations (e.g. truncated differential properties) until the



6.1. How to Write Simon Equations 93

key can be obtained even for a larger number of rounds. We will discuss in details

our results in Section 6.3.

6.1 How to Write Simon Equations
In Figure 3.1 we showed a general example of modelling a block cipher into MQ

equation systems. Here we give a concrete example for writing Simon64/128 in a

single round.

Recall the Simon structure in Figure 3.5, let eki be the i-th key bit used in Nr-

th round of Simon64/128 encryption. The 32-bit key has a binary representation:

ek = (ek31,ek30...ek0). Let ZRNr
i and ZLNr

i be the i-th bit of Nr-th round right and

left side input, and similarly ZRNr+1
i , ZLNr+1

i for the i-th bit of output. Then we

have:

ek0 +ZLNr
30 +ZRNr

0 +ZLNr+1
0 +ZLNr

24 ∗ZLNr
31 = 0

ZRNr+1
0 +ZLNr

0 = 0

ek1 +ZLNr
31 +ZRNr

1 +ZLNr+1
1 +ZLNr

25 ∗ZLNr
0 = 0

ZRNr+1
1 +ZLNr

1 = 0

. . .

ek31 +ZLNr
29 +ZRNr

31 +ZLNr+1
31 +ZLNr

23 ∗ZLNr
30 = 0

ZRNr+1
31 +ZLNr

31 = 0

Similarly, one can simply write equations for the key extension function, cf.

[14]. More details can be found in our Simon implementation code (including equa-

tion generator for all versions) which is available online [154].

6.2 Differential-Algebraic Cryptanalysis of Simon
We evaluated the security of Simon against algebraic attacks under the following

three settings (cf. Fig. 6.1), where S=Similar and R=Random as explained in the

introduction.

• Setting 1: Known Plaintext Attack. Random P/C pairs are available (RP/RC).

• Setting 2: One type of Chosen Plaintext Attack. Random P/C pairs are avail-

able with plaintexts of low Hamming distance (SP/RC).



6.2. Differential-Algebraic Cryptanalysis of Simon 94

• Setting 3: Some form of Chosen Plaintext and Ciphertext Attack. Random

P/C pairs which satisfy a truncated differential property in the input and out-

put of the reduced-version of the cipher we study. (SP/SC)

Figure 6.1: Our three attack scenarios

Setting 1 is the simplest setting for understanding how many rounds of Simon

can be broken by simple techniques, assuming availability of a few P/C pairs. This

setting helps us to understand the maximum number of rounds we can break by

guessing as few key bits as possible and using as few P/C pairs as possible. It is a

non-trivial step in order to set the benchmark for attacking larger number of rounds.



6.3. Algebraic Attacks experiments and results 95

Setting 2 is a form of known-plaintext attack. Setting 2 requires the existence

of P/C pairs with plaintexts of low Hamming distance (or similar plaintexts) such

that many variables are eliminated in the first few rounds due to weak diffusion.

By eliminating some variables from the initial equations we expect that the system

will be solved faster using any solving technique. This is a form of chosen plaintext

attack.

Lastly, Setting 3 assumes the existence of P/C pairs

{(P1,C1),(P2,C2), ...,(Pn,Cn)}

such that Pi⊕Pj ∈ ∆P and Ci⊕C j ∈ ∆C, for all 1≤ i, j≤ n and some truncated

differential masks ∆P,∆C of low Hamming weight which holds with comparatively

high probability. In our attacks we always use 2 pairs which satisfy a given trun-

cated differential property and then more P/C pairs are generated by using the first 2

plaintexts and computing the encryptions of new plaintexts which have small Ham-

ming distance from the first ones.

The difference from Setting 2 is that in this case we also eliminate variables

from the last rounds of the cipher, expecting that the system is even easier to solve.

In this attack, we assume (to make it simple) that the entire codebook is available

and thus the data complexity is 264.

In all of our attacks we start with an 8-round truncated differential property

(see Section 3.4) ∆ = [0000022200000080] with 4 active bits found by heuristic

method:

Prob(∆→ ∆)' 2−20.51 (6.1)

The mask [0000022200000080] denotes the set of 24−1 possible differences,

excluding the zero difference. Our detailed results and discussion will be presented

in the following section.

6.3 Algebraic Attacks experiments and results
We run experiments using SAT solvers and ElimLin Algorithm on a machine with

the following characteristics



6.3. Algebraic Attacks experiments and results 96

• CPU: Intel i7-3520m 2.9GHz

• RAM: 4G

• OS: 64-bit Windows 8

Our open source implementation of Simon also includes an equation generator

which generates an algebraic equitation system for n round Simon encryption. Once

the equation is generated, we use Nicolas Courtois’ software [43] to either solve the

system by ElimLin or convert to CNF file and then solve by a SAT solver. For the

reader to check and verify our results, here are the command lines we used to get

our experimental results, software are available online [54, 43] :

• Equation generation: Simon.exe NumberOfRounds fixedKey

• ElimLin: xl0.exe /deg2 fileName

• SAT solver: xl0.exe /deg2 /sat /bard /timeout600 /cryptominisat64296 fileName

6.3.1 Experiments with 2 P/C pairs

The initial benchmark experiments were done with only 2 P/C pairs and solved by

a SAT solver using 8 round Truncated differential mask [0000022200000080] ⇒

[0000022200000080]. Table 6.1 presents our 2 P/C pairs experiment results. The

average time (in seconds) taken Taverage to solve the underlying problem by a SAT

solver is presented, while the time complexity CT (in terms of Simon encryptions)

is computed by the following formulae,

CT = 2k×2log2(Taverage∗N8REnc), (6.2)

where k is the number of bits we guess initially, NnREnc is the number of n

round Simon encryptions the experiment PC can run in 1 second.

We start from setting 1 using random Plaintext and random Ciphertext pair

(RP/RC), until we cannot solve the equations using SAT solver. We successfully

break 8 rounds Simon with guessing some key bits. The best result for 8 rounds

is fixing 80 key bits with a complexity of 2106.53. Fixing less than 80 key bits

will not be solved by SAT solver within 600 seconds. Then we try setting 2 and



6.3. Algebraic Attacks experiments and results 97

Table 6.1: Best results obtained by a SAT solver using 2P/C pairs for 8 rounds of Si-
mon64/128. k is the total number of randomly guessed key bits. The time com-
plexity for guessing is 2k. #(P/C) shows the number of plaintext-ciphertext pairs.
Taverage is the average solving time using a solver. CT is the total time complexity
for breaking the cipher, calculated based on equation 6.2. For settings see detail
in figure 6.1

#(Rounds) k #(P/C) Taverage(s) CT Setting
8 84 2 63.76 2110.08 RP/RC
8 80 2 87.38 2106.53 RP/RC
8 75 2 156.60 2102.37 SP/RC
8 75 2 515.60 2104.09 SP/SC

setting 3 to compare the results. Setting 2 using selected Plaintext and Random

Ciphertext (SP/RC) and setting 3 using selected Plaintext and selected ciphertext

(RP/RC) are better than RP/RC. However, the results in Table 6.1 show that SP/SC

is not performing any better than SP/RC. Both SP/RC and SP/SC are not improving

RP/RC a lot.

The experiment results show that for setting 2 and setting 3, using only 2 P/C

pairs cannot provide enough information (additional linear equations) to perform a

better attack than RP/RC. In the next subsection we try to increase the number of

P/C pairs and compare the results using different settings.

6.3.2 Experiments with more P/C pairs

We start by using more P/C pairs for 8 rounds Simon and we show our results in

Table 6.2. Here we start to record some features of the converted CNF files. In Table

6.2 and other SAT solver results table, n,s,h stand for number of variables, average

sparsity (the average number of literals in each clause) and hardness respectively

and m is the number of clauses in the converted CNF file. We define hardness as a

number h such that hn is the running time, where n is the number of variables. It is

known that h≤ 1.47 for 4-SAT problems [148]

Then we start to extended the current 8 rounds attack to 9 and 10 rounds. We

first extend our 8R truncated differential mask to 9 and 10 rounds as the following:

• 9R: [0000002200000080]→ [00022e4c00000222]

• 10R: [0000002200000080]→ [002e f f 9a00022e4c]



6.3. Algebraic Attacks experiments and results 98

Table 6.2: Best results obtained by a SAT solver for 8 rounds with 6 P/C pairs. n,s,h stand
for number of variables, average sparsity (the average number of literals in each
clause) and hardness respectively and m is the number of clauses in the converted
CNF file. We define hardness as a number h such that hn is the running time,
where n is the number of variables.

#(Rounds) k #(P/C) Taverage(s) CT Setting n x = m
n s h

8 45 6 207.31 227.78 RP/RC 8576 6.5118 4.2761 1.0032
8 0 6 12.21 223.76 SP/RC 8576 6.5065 4.2787 1.0029
8 0 6 11.84 223.57 SP/SC 8576 6.5513 4.2631 1.0028

We manage to break 9 rounds without guessing any key bits and break 10

rounds with some key bits guessing. Our best results are shown in Table 6.3

Table 6.3: Best results obtained by a SAT solver. Table set up is the same as table 6.2.
The upper part results are using SP/RC P/C pairs, and the time compliexity for
breaking 10 rounds Simon64/128 is 2118.5 while using SP/SC with truncated
differencial properities gives 298.79. The results show the power of using well
selected data samples in algerbic cryptanlysis.

#(Rounds) k #(P/C) Taverage(s) CT Setting n x = m
n s h

9 0 6 222.50 227.9 SP/RC 9536 6.70 4.31 1.0029
9 0 7 94.7 226.6 SP/RC 11104 6.70 4.31 1.0024

10 90 8 346.0 2118.5 SP/RC 13952 6.90 4.32 1.0020
9 0 6 24.24 224.7 SP/SC 9536 6.69 4.31 1.0026
9 0 7 18.56 224.3 SP/SC 11104 6.70 4.31 1.0022

10 70 10 417.73 298.79 SP/SC 17408 6.88 4.31 1.0022

Moreover, assuming Setting 3 we can break 10 rounds by guessing 70 bits of

the key initially with a time complexity of 298.79 encryptions. Note that in SP/SC

setting we always generate two P/C pairs which satisfy the truncated differential

property, and the rest pairs are generated at random.

The other two settings have failed to produce good results for 10 rounds in rea-

sonable time and this reflects the power of using pairs which follow strong truncated

differential properties. We conjecture that for a cipher of low non-linearity, there

exists a certain amount of pairs which depends on the linear relations in the cipher

which can be used to break any round.



6.4. Conclusions 99

6.3.3 ElimLin Results

Table 6.4 presents the results using the ElimLin algorithm for solving the underlying

system of equations.

Table 6.4: Best results obtained by a ElimLin Algorithm

#(Rounds) k #(P/C) Taverage(s) CT Setting
8 0 6 824.4 229.8 SP/RC
8 0 6 583.2 229.3 SP/SC

ElimLin exploits the existence of linear equations in order to solve the system.

We have been able to break up to 8 rounds in Setting 3 without guessing any key

bits initially. Setting 1 fails, while Setting 2 is much weaker than Setting 3. The best

attack we have obtained is of time complexity 229.3 encryptions against 8 rounds of

Simon and requires pairs which satisfy the truncated differential property presented

in the previous section extended for 8 rounds.

Adding pairs which follow a strong truncated differential property is equiva-

lent to adding linear equations in the system and this is exploited by the ElimLin

algorithm. An immediate improvement is to use additional intermediate truncated

differences. This will also eliminate variables in intermediate rounds and introduce

more linear equations in the intermediate rounds. We conjecture that ElimLin is

more powerful in cases where a strong characteristic is found.

6.4 Conclusions
In this Chapter, we studied the security of Simon 64/128 cipher against algebraic

attacks and algebraic-differential attacks. We have combined two powerful cryptan-

alytic techniques: truncated differential cryptanalysis and software algebraic crypt-

analysis. To the best of our knowledge we are the first to show that such a com-

bination is powerful enough to break up to 10 rounds of a block cipher. We also

demostrated using well selected P/C pairs can significately improve software alge-

braic cryptanalysis results (compare to random selected P/C pairs). Our work was

the first algerbic cryptanalysis work on Simon. Today, it is not the best attack. But

it is important for the community to notice Simon’s low non-linearity and its low



6.4. Conclusions 100

security against algebraic cryptanalysis.



Chapter 7

Re-Designing Algebraic Attacks

Beyond ElimLin

7.1 ElimLin Overview

Our initial algebraic cryptanalysis work on Simon was published in 2014. In 2015,

Raddum [137] published another algebraic cryptanalysis on several different ver-

sions of Simon and have broken 16 out of 72 rounds on the largest existing version

Simon128/256 using Elimlin with 20 P/C pairs of chosen plaintexts. Raddum’s

work also shows that ElimLin performs better when adding more P/C pairs.

However, it’s hard to know what happens when we add even more P/C pairs.

This is due to the limited computation power we have. A major difficulty with

ElimLin is that so far it has been successful only for relatively simple lightweight

ciphers. For more complex ciphers it seems to do things which are relatively trivial,

e.g. equations generated do not penetrate deeply inside the cipher, or very slowly,

cf. slide 153 in Courtois’ lecture notes [46].

Our work aims to make some definite progress in the direction of distinguish-

ing between trivial and non-trivial behavior for ElimLin. This is about how deeply

an ElimLin attack penetrates. Previous experience shows that ElimLin only starts

to work at a certain threshold. Before this threshold, again, nothing non-trivial can

be observed even though slow penetration occurs. This is not really apparent in any

of the current works or is lost in vast quantities of data generated in the computer



7.1. ElimLin Overview 102

simulations.

In this chapter, we study ElimLin behaviours with randomly selected, increas-

ing number of data samples. By collecting data from large simulations and deeply

inspecting the different types of equations generated by ElimLin, we study

1. The growth rate of equations generated by ElimLin

2. Where the higher growth rate comes from

3. If it is possible to predict when ElimLin will break a cipher

We define a new criterion which shows that it is possible to see that there

exist two very different and easily distinguishable patterns in ElimLin. Either the

attack follows one pattern, and does nothing non-trivial, or it follows another pattern

and it is very clearly doing well. Then we look deeply inside the large number of

linear equations found by ElimLin and try to classify different type of equations and

identify where the higher growth rate come from.

7.1.1 Phase transitions

It is known that many NP-hard problems are subject to “phase transition”; with cer-

tain parameters that problem is hard, and then it will rather abruptly transition from

“hard” to “easy to solve”. This is what we observe with ElimLin. Let K be the

number of Plaintext/Ciphertext (P/C) pairs used in an ElimLin attack. We are going

to discover that at a certain threshold the number of new linear and linearly inde-

pendent equations generated at various stages of the attack can follow one curve,

and then switch to another curve with a different asymptotic growth rate.

Conjecture 7.1.1 Consider a system of multivariate equations derived from a

block cipher (see toy example in 3.5 Figure 3.1). Consider a simple known plaintext

attack with K Plaintext/Ciphertext (P/C) pairs. Consider a case such that the cipher

is eventually broken by ElimLin, cf. [42, 41, 49, 47, 137]. The number of new

and linearly independent linear equations generated by the ElimLin algorithm goes

through several distinct stages St0-St3:



7.2. Experimental Setup and Notation 103

St0 Initially it grows linearly with K, and for certain individual stages of the attack

is simply equal to 0 and does NOT grow, cf. our later si notation in Section

7.2.

St1 Then it switches to another curve where it grows faster than linearly in K.

St2 This is until it reaches a saturation stage where the cipher is completely

broken by ElimLin. Here we sometimes have a very rapid phase transition

(cf. Section 7.3.1) where the number of equations si generated at one stage

becomes 0 again simply because an earlier stage of the attack reaches a certain

threshold where combinatorial explosion in additional equations generated

makes it complete the whole attack and does not requite the next stage to be

executed.

One (old) example from 2007 which shows that the number of equations grows

faster than linear as a function of the data complexity K in ElimLin can be found in

Courtios and Debraize’s work in 2008 [49].

In this chapter we would like to see if this conjecture is verified in real life. We

will explain where the faster than linear growth (in St1-2) come from by inspecting

equations generated by ElimLin and discuss possible directions to improve ElimLin.

7.2 Experimental Setup and Notation
We recall the two main and only steps of ElimLin:

1 Find si linear equations in the linear span, i = 0,1,2,3, . . ..

2a If si > 0 eliminate some si variables, increment i and try again Step 1.

2b Algorithm terminates when si = 0 for some i.

In addition and by convention we are going to define a step i = 0 which is dif-

ferent than above, but the same as which is implemented in a common implementa-

tion of ElimLin [39]. We will assume that s0 will be the number of linear equations

which already appear in the equations, without executing any linear algebra. This is



7.2. Experimental Setup and Notation 104

a convention which allows researchers to distinguish more easily between a “mis-

leading” starting number of variables (which is sometimes artificially inflated due to

methods used for equation generation and formal coding) and the “real” or intrinsic

number of variables which is there prior to execution or ElimLin.

Definition 13. [ElimLin progress indicators]

Let Vstart , or simply V if there is no confusion, be the initial number of variables.

We define by si the number of linear/affine equations over GF(2) generated at each

stage of the algorithm where by convention s0 is the number of linear/affine equa-

tions over GF(2) already present. We define

V i
broken =

i

∑
j=0

s j Vbroken =
∞

∑
i=0

si (7.1)

where by convention si = 0 if algorithm has reached V i
broken = V at an earlier

stage. We define also

V i
broken =V −

i

∑
j=0

s j (7.2)

and accordingly let Vunbroken = V −∑
∞
i=0 si. Overall we will say that the algo-

rithm terminates if Vbroken =V and Vunbroken = 0 and we deliberately ignore the fact

that some variables could be subject to a brute-force step, cf. FXL method introud-

ced by Courtois and Patarin [74]. Overall our goal is to achieve for a certain i

that
V i

broken
Vstart

= 1 or
V i

unbroken
Vstart

= 0 (7.3)

To give an example of how the experiments are done1: our Simon implementa-

tion is available online [47, 39]; The ElimLin algorithm is executed using one of our

implementations of ElimLin [47, 39] which has the nice ability to display on screen

the number of linear equations generated at each stage/iteration of the algorithm.

Finally we have developed a deep inspection tool in JAVA available online [39]

1The same software setup has also been used at UCL to run a hands-on student lab session on
algebraic cryptanalysis of block ciphers [47], which is part of GA18 course on cryptanalysis taught
at UCL.



7.3. Experiment Results 105

which looks deeply inside the equations generated by ElimLin, group the equations

based on different selection criteria then provide statistics and predictions for the

growth rate of each group. For detailed instructions about how to get these values

and full experiment results, see appendix A

7.3 Experiment Results

7.3.1 The Big Picture

As already explained in Conjecture 7.1.1, we expect that there are at least 3 distinct

stages in the ElimLin algorithm. We start with the big picture, by looking at how

the value of Vunbroken evolves with K. Here we use a known plaintext setting with

no guessed key bits to break 8 round Simon64/128. As we know, adding new P/C

pairs to the ElimLin should create a linear growth in the total number of variables.

In our experiment setup and Simon encodings, each P/C pair adds 192 variables to

the starting equation system. Thus if we have two ElimLin runs, assume ElimLin

solved m1 and m2 variables with k1 and k2 P/C pairs, the unsolved variables should

equal to 192k1−m1 and 192k2−m2. We study the number of unsolved variables

left at the end of ElimLin run. By looking at the gradient of the curve to study the

growth rate of solved variables as a function of K P/C pairs. Our results are shown

in Figure 7.1 with a fitting curve using polynomial regression.

ElimLin aims to find more additional linear equations until it reach to a certain

stage that the number of linear equations is enough to solve all the variables in the

equation system. In Figure 7.1, we can see a distinction between St0 and St1. In St0

the number of unbroken variables grows with K until it reached a turning point. At

the end of St0, the equations generated by ElimLin is able to solve approximately

the same amount of variables introduced by adding new P/C pairs. Then in St1,

ElimLin starts to find more equations and solved more variables than the newly in-

troduced variables. The total number of unsolved variables start to decrease. When

the curve switches to St2, the number of unbroken variables decrease much faster

than linear and eventually break the cipher. Clearly, St1-2 is the most fundamental

stages of ElimLin. It contains the phase transition from “hard” to “easy”.



7.3. Experiment Results 106

Figure 7.1: Number of variables when ElimLin terminates Vunbroken for 8 rounds of Simon
64/128 obtained with our experiments. When K ≤ 16 the unbroken variables
increase. Variables solved by ElimLin are less or equal than variables increased
due to added new P/C pairs. We consider this is St0 in Conjecture 7.1.1. When
16 < K ≤ 50 the unsolved variables start to slowly decrease, we consider this
is St1. When K > 50 unbroken variables decrease much faster than linear and
we consider this stage as St2.

7.3.2 On Growth Rate in ElimLin

In section 7.3.1 we looked at the overall unbroken variables as a function on K P/C

pairs. We know by adding more P/C pairs, ElimLin finds more linear equations and

at the end solves all the variables and breaks the cipher. Here we look at the growth

rate on the number of newly generated equations as a function of K. On Figure

7.2 we show that early stages s0,1,2,3 (see definitions in Section 7.2) of ElimLin

algorithm on 8 rounds of Simon block cipher grows linearly. This means at the

early stage, ElimLin algorithm only finds trivial equations and the results are very

easy to predict.



7.3. Experiment Results 107

Moreover a linear progress curve would not be sufficient to break the cipher,

because the number of variables also increases linearly. In addition, initially the

attack starts with a handicap: below a certain threshold no equation exist at all,

or many types of equations (equations with similar size and characteristics, topic

which we will study later) seen in larger simulations do not yet exist at all (0 equa-

tion found).

Figure 7.2: Number of linearly independent equations generated at step 1,2,3 of the Elim-
Lin algorithm for 8 rounds of Simon 64/128. The results show in step 1,2,3 of
ElimLin, number of equations increase linearly and does not create the faster
than linear growth we oberseved in Figure 7.1.

In Figure 7.3, we show the number of linear equations generated at step 4 of

the ElimLin algorithm for 8 rounds of Simon block cipher. We have then produced

a polynomial interpolation for this data series. It grows faster than linear which is

the first stage of the attack with a positive and non-trivial outcome.

Note that we start to have s4 > 0 when K > 16. This also aligns with Figure



7.3. Experiment Results 108

Figure 7.3: Number of linearly independent equations generated in step 4 of the ElimLin
algorithm for 8 rounds of Simon 64/128. Step 4 equations appear at K=16,
and shows faster than linear increase when K > 50, this algains with the stages
appeared in Figure 7.1 when curve switch from St0-1 and St1-2.

7.1 when we see a switch from St0 to St1. This is where ElimLin starts to create a

growing number of equations which we want to grow faster than linear.

7.3.3 Predict The Success of ElimLin

Figure 7.2 and 7.3 also show that accurate prediction for growth rate of ElimLin

is feasible. Step 1,2,3 are completely linear and for Step 4 we used polynomial

regressions. The normalized squared error value R2 is very high and close to the

theoretical maximum of 1 for step 4, and also that high degree coefficients are sub-

stantially smaller (in absolute values) than lower degree polynomial coefficients.

We observe that ElimLin eventually breaks the cipher here because the number

of newly generated linear equations grows faster than the number of variables which

grows linearly with K. Eventually we obtain a sufficient number of linear equations



7.3. Experiment Results 109

which makes ElimLin compute all the variables and obtain the 128-bit secret key

together with all the intermediate variables.

However, the releations between newly generated equaltions and unbroken

variables is not yet well studied. ElimLin’s behavior in Figure 7.1 is much harder

to perdict. For example using degree 4 polynomial regressions on Figure 7.1 we

obtain the following equation with R2 = 0.9863.

Vunbroken(K) = −1.35
104 K4 +

2.07
102 K3 − 1.12 · K2 + 22.4 · K + 308.25 (7.4)

So far we have only worked with data from simulations and all our predictions

are highly accurate just because we had quite a few data points. Our paper pub-

lished in Secrypt2016 [57] showed that insufficient amount of data will be a major

difficulty when researchers in the future are going to try to build predictive models

to extrapolate and compute the complexity of simulations which they have not done.

7.3.4 Phase Transition in Other Ciphers

We do not know any counter-example which would contradict our asymptotic super-

linear growth rule. However, Simon is a particularly simple cipher. For more com-

plex ciphers, the ElimLin algorithm could have serious problems to enter this be-

havior or start working and exhibit any sort of non-trivial behavior. When ElimLin

starts to work for some cipher and produces new equations which depend on the

plaintext or ciphertext data in a non-trivial way, steady progress is observed. Except

maybe if there isn’t enough data available.

In order to see how ElimLin works with more complex ciphers, we extend our

experiment to another two ciphers: CTC2 and DES with a similar experiment set

up. For DES we use 4 rounds of DES encryption, fixed 13 out of 56 key bits and for

CTC we use 7 S-boxes per round, 4 rounds of CTC2 encryption, no fixed key bits.

Figure 7.4 and 7.5 show that both DES and CTC2 follow the phase transition

we have oberseved in Simon. Equations generated by ElimLin grow linearly at the

beginning (cf Figure 7.4), then after K is large enough (K ≤ 16 for CTC2, K ≤ 24

for DES) we start to see faster than linear growth in generated equations (see Figure



7.3. Experiment Results 110

Figure 7.4: Number of linearly independent equations generated at step 1,2 of the ElimLin
algorithm for 4 rounds of DES and CTC2. The results show in early steps of
ElimLin, number of equations increase linearly and does not create the faster
than linear growth.

7.5). The Unbroken variables curve (Figure 7.6) also match with the growth rate

in generated equations. This justifies our earllier claim, when K is large enouth,

newly generated equations grow faster than variables, eventually we obtain a suffi-

cient number of linear equations which makes ElimLin compute all the variables.

However, when working with more complex cipher like DES in a Known Plantext

Attack, ElimLin phase transition happens much later than Simon. The results we

show here are only for 4 rounds of CTC2 and DES. For larger number of rounds

we still have a long way to go before the attack goes into St1-2 resulting in much

higher data complexity and running times. This also shows one round of Simon is

substantially weaker than one round of CTC2 and DES.



7.4. Deep Inspection 111

Figure 7.5: Number of linearly independent equations generated in step 4 of the ElimLin
algorithm for 4 rounds of DES and CTC2. Step 3 equations shows faster than
linear increase when K ≥ 16 for CTC2 and K ≥ 24 for DES.

7.4 Deep Inspection
We start to wonder which set or type of equations in s4 grows faster than linear. Up

till now we still don’t know what kind of equations are found when ElimLin starts

to work, and we conjecture that precisely those equations with a fast growth rate are

particularly significant and could be a sort of - up to - primary reason why we can

break the cipher for some parameters, or in combination with other equations. So

we have designed and programmed an open-source inspection tool called “DeepE-

limlin” (See Appendix B) to look inside the large number of equations generated by

ElimLin and to classify these equations into many detailed types or classes and to

visualize and analyse these types in detail. We conjecture that the hardest equations

that can be found by are equations that use many different P/C paris and involes

variables in the middle of the encryption. Thus, we decide to group the equations



7.4. Deep Inspection 112

Figure 7.6: Number of variables when ElimLin terminates Vunbroken for 4 rounds of DES
and CTC2 obtained with our experiments. When K ≥ 16 for CTC2 (and K ≥ 20
for DES) the unbroken variables increase. Variables solved by ElimLin are less
or equal than variables increased due to added new P/C pairs. We consider this
is St0 in Conjecture 7.1.1. When K > 16 for CTC2 (and K > 20 for DES) the
unsolved variables start to decrease, however it’s not very clear where is the
boundary for St1 and St2.

in subcategories by

1. The number of distinct instances (P/C pairs) used: J, where J ≤ K.

2. The ElimLin execution stage: r.

3. The penetration rounds: maximal and minimal round involved in any of the

variables: Rmax and Rmin.

We postulated that in most cases the maximal round is the round which is

the most deeply embedded or close to the middle round. It is the hardest round

to penetrate for any attack, as a matter of fact. Importantly, sometimes we will



7.4. Deep Inspection 113

find equations use variables from both sides (penetrating from both plaintext and

ciphertext). In this case we just use the smallest round as minimal and largest round

as maximal. It is also important to see that the cipher cannot be broken as long as

equations which combine penetration from both sides are not yet generated. This is

because equations on the plaintext side could be computed without the knowledge

of the ciphertext and vice versa. Then we don’t expect to be able to mix these

equations very well in the solving process, and identify smaller equations having

maybe a unique solution at the end of the solving process, and we don’t expect to

increase the degree so much that the equations would really interact.

We create sub-categories based on each distinct combination of these values.

An example of one equation found in s4 is given in Figure 7.7, where key variables

are compressed as k {Keybit +Keybit + ...}; the intermediate variables (input at

each round) are named based on ZR [instance] [round] [bit]. In this example we

have J = 3, s = 4, Rmax = 4 and Rmin = 5. This equation belongs to subcategory

“s4J3R5-4”.

Then we found a few sub-categories in s4 in which the number of equations

grows much faster than linear, see Table 7.1:

Table 7.1: Example of equations growing faster than linear as a function of K. This table
shows a selected group of equations that grow faster than linear as a function
of K. These equations start to appear after K ≥ 16 in step 4 (cf. Figure 7.3).
Equation group defintaion is explain above, subcategroy s4J4R3-6 means equa-
tions contains variables using 4 P/C pairs, variables in 3 to 6 round of Simon
encryption.

# of P/C pairs 16 32 64
s4J2R3-6 2 4 31
s4J3R3-6 2 6 54
s4J4R3-6 1 6 17

We discover that faster-than-linear growth happens when the variables meet in

the middle. We have also discovered that the curve of Figure 7.3 splits into different

categories in a relatively stable way, so that the curve can be viewed as essentially

a sum of 3 curves of Table 7.1 and other smaller terms. However it appears that

this splitting process depends on ElimLin’s order of elimination. More precisely



7.4. Deep Inspection 114

Figure 7.7: Example of a non-trivial equation found by ElimLin. The example equation
contains variables from 3 different P/C pairs (ZR1,ZR2 and ZR3), variables
appears in mutiple middle rounds (4th and 5th round of encryption). Such
equations are considered as non trival equations and increasing faster than lin-
ear during ElimLin calculations

linear combinations of certain types of equations will sometimes (rare cases) not be

reported in our statistics because they are linearly dependent w.r.t other categories

we study. A fully objective classification would require costly computations of the

shortest possible basis for our linear space. This is actually not a problem we have

observed here, but we have seen such ambiguities in experiments with our later

scaling down heuristic, cf. next section. Current theory only guarantees that the full

result of ElimLin is independent on the order of variables [160].

7.4.1 Known Plaintext vs Chosen Plaintext

Scaling Down Method

One idea behind the scaling method is we can find equations generated for a smaller

K inside a larger simulation, if the order of elimination allows it (sometimes they

could be linearly combined with other equations). A second idea is that, therefore,

just one large ElimLin simulation reveals a lot of information about smaller simu-



7.4. Deep Inspection 115

lations and about the scalability of the results as K grows. We developed a scaling

down software (inside DeepElimLin) which will estimate the number of equations

which could be found in a smaller K′. However, such predictions are not always

very accurate.

Given a set of equations E generated by ElimLin with K instances, we estimate

the number of equations for K′ < K as follows:

For each equation e ∈ E, count the equation if the largest index of instance

k < K′

One example which we found scaling down method works well is the fol-

lowing: in a chosen plaintext model for 32 round of Simon64/128, where we chose

K = 64 plaintexts in a counter mode, we obtain structured plaintext data and random

ciphertext data. We call a cube any such set of plaintexts. Some of these equations

will be actually adding the ciphertexts for all the points in the cube, which will be

exactly as in the so-called cube attack well-known in the literature [83]. However,

many others just consider some of the outputs, and therefore we also discover lots

of equations which have plaintexts which form a cube, but which are a lot more

complex and may contain arbitrary sums of arbitrary single output bits. Below we

present some results extracted from a very large simulation series.

R2 is a collection of results which has the deepest round of 2. R28 works

backwards. The predicted results are averaged based on all possible subsets with

the size of K′ out of K.

We observe that Chosen Plaintext side penetrates more rounds than the Known

Plaintext side, and the equations are shorter and less complex. Predictions are less

accurate in the deeper rounds.

Here we also show the scaling down method results for 8 Rounds CTC2 and

DES. The results are shown in Table 7.3 and Table 7.4. Both experiments are done in

KPA senerio. We oberserve simliar to SIMON, scaling down method can work well

espically in the early rounds, where the equations increase almost linerly. When

the equations meet in the middle the prediction from scaling down method become

less accurarate. This is mainly because the faster than linear growth we discussed



7.4. Deep Inspection 116

Table 7.2: Example of how scaling down method works well in a Chosen Plaintext Attack
(CPA) for 32 round Simon64/128. Rn is a collection of equatrions which has the
deepest round of n. Table show the total number of equations found in collection
Rn. As running ElimLin for large number of rounds takes a lot of computational
resource, we argue that one can run one experiment (say K=64) and scale down
to predict the performance of equations generated by a smaller number of P/C
pairs (say K=32). Instead of running both experiments. Scaling down method
can save us time to run experiment and the results are relatively relaiable at least
for the earlier rounds. This table also shows that when selecting structured P/C
pairs, ElimLin can penetrates more rounds and found more linear relations in
deeper rounds compare to Known Plaintext Attack (KPA) in the ciphertext side.
The results also align with our work in Chapter 6.

Real K=32 Predicted K=32 Real K=64
R2 224 225.17 448
R3 448 419.67 848
R4 372 336.17 716
R5 104 68 279
R6 123 56.17 327
R7 118 61.83 314
R8 63 41 176
R28 1 0.83 4
R31 1024 1029.33 2048

in previous Sections. Looking at only one K value (i.e K=16) is simply not enough

to predict if equations are growing linearly or faster than linear.

Table 7.3: Example of how scaling down method works well in a Known Plaintext Attack
(KPA) for 8 round CTC. Rn is a collection of equatrions which has the deepest
round of n. Table show the total number of equations found in collection Rn.
Equations that contains data from both side are considered as meet in the middle
equations and are counted into R4.

Real K=16 Predicted K=16 Real K=32
R1 265 267.32 536
R2 161 158.46 308
R3 144 144.17 288
R4 421 472.67 996
R5 145 144.83 288
R6 165 163 326
R7 264 267.32 536



7.5. Equations In ElimLin vs. Direct Approximation 117

Table 7.4: Example of how scaling down method works well in a Known Plaintext Attack
(KPA) for 8 round DES. Rn is a collection of equatrions which has the deepest
round of n. Table show the total number of equations found in collection Rn.
Equations that contains data from both side (i.e 3 and 5) are considered as meet
in the middle equations and are counted into R4.

Real K=8 Predicted K=8 Real K=16
R1 640 640 1280
R2 640 640.33 1280
R3 640 691.7 1384
R4 1666 1472 2863
R5 640 651.33 1304
R6 640 658.83 1332
R7 658 668.24 1348

7.5 Equations In ElimLin vs. Direct Approximation
Given K random plaintexts, how many linear equations are true for every key which

combine variables from K copies of 32 variables inside round Nr of encryption?

In addition we know the K plaintexts and will study the equations which exist for

some fixed K plaintexts, which means that we will in general find more equations

than those true for every plaintext. However, such equations are allowed in ElimLin

attack where the plaintext is known. We should also note that many such equations

do not depend on the plaintext (some do), and typically the total number of such

equations does not depend a lot on the choice of K random plaintexts, though it will

be substantially bigger in a Chosen Plaintext Attack (CPA) which penetrates deeper

inside the cipher (see Chapter 6).

These equations can be computed by standard linear algebra method: we need

to compute a kernel of a certain Macaulay matrix [classical method in algebraic

cryptanalysis]. We write a matrix in which lines are examples of internal data for

different keys and columns represent various monomials, which are all linear in this

case. The number of keys should be slightly higher than the number of columns,

e.g. 100 more. The computation of the kernel of this matrix gives a basis for the

equations which are true for every key and related to our monomials. This is a

heuristic method which works with a large probability close to 1. For example,

if we have Pi/Ci being the plaintext/ciphertext variables, and R1, . . .R100 are the



7.5. Equations In ElimLin vs. Direct Approximation 118

internal variables, we might discover that for every key and for a fixed plaintext P

we have R2⊕R7 = 1. This is, of course, just an example.

7.5.1 Polynomial Approximation in Practice

We have programmed this method of recovery of the equations from the data. The

command line is:

ax64 9051777 32 128 Nr K 0 /fix80 /seed1

This recovers the equations in a totally general Known Plaintext (KP) attack

with random plaintexts. For example we obtain:

ax64 9051777 32 128 6 2 0 /fix80 /seed1-100

0.05 found on average

ax64 9051777 32 128 6 4 0 /fix80 /seed1-100

0.45 found on average

ax64 9051777 32 128 6 8 0 /fix80 /seed1-100

3.4 found on average

We have analyzed the results obtained for 6 and 7 rounds and we obtained:

F(6)≈ 0.0002K2 +32K−724

F(7)≈ 0.00003K2 +32K−12848

More generally we conjecture that the quadratic part would disappear for larger

K, and it is possible to show that:

Proposition 3 (Theoretical Upper Bound on ElimLin Attack). The number linear

equations which ElimLin can find in KPA scenario is at most:

F ≤ 32K− (T −κ)

where κ is the key size, T is the cardinal of the union of the sets of monomials in ki

which appear in the union of ANF expressions (Algebraic Normal Forms are simply



7.5. Equations In ElimLin vs. Direct Approximation 119

polynomials over F2) of all outputs of the cipher as a function of the key variables

ki and plaintext variables. of K plaintexts.

Moreover (in practice) this number T − κ does not change when we select

another set of K random plaintexts and for larger K we have:

FK→∞→ 32K− (T −κ)

and starting from a certain threshold K we typically have F = 32K− (T −κ)

exactly (experimental).

Proof (Sketch): For one plaintext Pi each output is a Boolean function which in-

volves a certain number T (Pi) of monomials in the k j. Moreover if we concatenate

sets of monomials for several plaintexts we expect to quickly reach an upper limit

T (Pi)≤ T where T is the total number of monomials in the k j in the 32 polynomials

which are functions of both Pi and the k j. For every Pi the polynomials contain a

subset of these T monomials.

For a fixed plaintext we form a Macaulay matrix in which lines are different

keys and different encryptions, and columns are 32K variables corresponding to ZLi

after round Nr (left hand side created in Nr round of Simon encryption i out of K),

plus κ key variables. Then it will have at most T linearly independent columns, as

all columns could be written as linear combinations of other columns which could

be added for all possible monomials in key variables, and the κ linear monomials in

key variables are those which we already had in equations found by our software.

It is hard to prove F = 32K− (T −κ) exactly for larger values, but this is what

we observe in practice in algebraic cryptanalysis, for example [74] and here.

Experimental Results

Here we present a more elaborate example than in our Proposition 3. Our experience

show that results of experiments can be predicted with near 100% accuracy and

there is typically more than one interval where the number of linear dependencies

follow a linear curve with different values of T and for a subset of 32 bits. Our

interpretation is that the same sort of result holds for a subset of output bits however

for some subsets the value T is smaller because they depend on less key bits. Our



7.5. Equations In ElimLin vs. Direct Approximation 120

experiment results for 8R Simon64/128 KP are given in Figure 7.8. It is clear to

see that there are three different stages before it reaches F = 32K− (T −κ). For

a smaller K we observe F = 6K− T ′ and then increase to F = 27K− T ′′, where

T ′ < T ′′ < T .

Here we also privide an example of ElimLin not finding as many equations as

in theoretical upper bound in Table 7.5.

Table 7.5: ElimLin vs Upper bound. We show the number of linear equations actual found
by ElimLin and the theoretical upperbound for K = 1,2,4...64. ElimLin can
only found a subset of equations compare to the theoretical upperbound

# of P/C pairs 1 2 4 8 16 32 64
ElimLin R4 11 28.82 46.63 86.39 167.77 336.17 716

Max Theor. R4 23 95 119 247 503 1015 2039

Application — Prediction of Attack Complexity In our research we have NOT

yet achieved our goal to be able to reliably predict the complexity of ElimLin at-

tacks which we cannot yet run; but our SECRYPT paper results covered in this and

previous sections suggest that this is feasible and here is one possible method to

achieve it.

Conjecture 7.5.1.1 (Application of Proposition 3). We can use the estimation of

type 32K−C for the number of linearly independent equations which propagate

from the plaintext side, another 32K−C which will be obtained from the ciphertext

side, and estimate that the whole cipher is broken by a meet-in-the middle attack

when 2(32K−C) ≈ 32K. Then we can estimate how many additional equations

need to be added to ElimLin to complete, and we should be able to conclude that

ElimLin+ attack (cf. next section) will break 2Nr of rounds as soon as this lower

threshold is met.

This method requires more development in terms of comparing the estimations

to actual large ElimLin runs but we are the first to ever propose a plausible method

to extrapolate the complexity of an improved form of ElimLin attack.



7.5. Equations In ElimLin vs. Direct Approximation 121

Fi
gu

re
7.

8:
E

xp
er

im
en

tr
es

ul
ts

fo
r8

R
Si

m
on

64
/1

28
fo

rt
he

or
et

ic
al

up
pe

rb
ou

nd
on

E
lim

L
in

at
ta

ck



7.6. Conclusions and Future Work 122

7.6 Conclusions and Future Work
ElimLin is a simple algorithm and works well for small number of rounds. Like

other solving tools for Algebraic Cryptanalysis, it does not scale for larger number

of rounds due to solving complexity. For a long time in Algebraic Cryptanalysis

research, ElimLin was just used as a black box solving tool. In this chapter, we

looked inside ElimLin algorithm and studied the equations generated by ElimLin at

different solving stages. Contributions in this chapter are:

• We introduced the phase transistions in ElimLin algorithm and expeimentally

showed such phase transistions exist for more than one cipher.

• By looking at the number of linear independent equations found by ElimLin

as a function of P/C pairs, We have identified the source and the nature of

cryptanalytic success of ElimLin. It comes from several phenomena: equa-

tions emerge by thresholds, they meet in the middle, they exhibit super-linear

growth in some (crucial) cases.

• We have also discovered how to efficiently generate a lot more equations

which ElimLin does not typically find and provided a possible future appli-

cation of ElimLin in Conjecture 7.5.1.1

We have all the ingredients. However, designing a really optimal algebraic attack

on a block cipher is not an easy task due to the large complexity of the equations

we have discovered. We feel that each class of equations could be computed faster

by a dedicated method, and we have already computed many substantially faster by

our Polynomial Approximation method above. Future research is needed on how

ElimLin needs to be enhanced in practice and what kind trade-offs can be observed

between the cost of computing various classes of equations we have already seen

and others we have not yet fully integrated in ElimLin algorthim. In Section 7.6.1

we will review the works we have done in Part II and discuss the plan of our future

work on Algebraic Cryptanalysis.



7.6. Conclusions and Future Work 123

7.6.1 Algebraic Attacks Beyond ElimLin

Many researchers consider algebraic cryptanalysis as an independent cryptanalysis

research area called deterministic cryptanalysis, while differential and linear crypt-

analysis methods are called probabilistic methods in cryptography [131]. However,

we argue that there are a lot of connections between algebraic cryptanalysis, linear

and differential cryptanalysis. In Figure 7.9, we describe our view of the connec-

tions between these cryptanalytic techniques.

Figure 7.9: Classification of cryptanalysis methods and their connections. Most of the ex-
isting literature considered algebraic cryptanalysis as an independent research
area compare to probablisitic cryptanalysis methods such as differencial crypt-
analysis (DC) and linear cryptanalysis (LC). We believe Algebraic Attacks has
many connections. probablisitic method are often used together with Alge-
braic methods and in some attacks presented in this thesis they improved Al-
gebraic Attacks performance by introduction new equations to the mathematic
model and reduced solving complexity at the solving stage of Algebraic At-
tacks. Boxes colored in red are normally considered as LC. Yellow boxes are
normally considered as DC methods. Green boxes are the parts included in this
thesis and blue boxes are considered as specific solving methods

A link between ElimLin and linear cryptanalysis in Figure 7.9 reflects the fact

that both of these methods are looking for linear relations inside the cipher. How-

ever, a major difference between these two approaches is ElimLin looks for equa-



7.6. Conclusions and Future Work 124

tions that work only for a particular set of P/C pairs2. Cube attack which was intro-

duced by Dinur and Shamir in 2009 [83] chooses a subset of ’public’ input bits such

that the sum of an output bit value is a linear combination of the key after a certain

summation over a cube composed of plaintexts where a subset of bits varies. Cube

attack can sometimes be linear and sometimes non-linear which can be seen as re-

lated to both ElimLin and Non-Linear Cryptanalysis (NLC) sometimes called Gen-

eralized Linear Cryptanalysis (GLC). Researchers have studied how well-selected

samples from cube attack can be used to improve the performance of ElimLin [162].

One key focus is how different cryptanalysis techniques can be used to improve soft-

ware algebraic attacks by adding more equations which makes that these attacks

themselves will find yet more equations (amplification effect).

Guess-then-solve method is a general cryptanalysis method which can be used

in many attack scenarios. In Chapter 5 we explored this type of attacks on Russian

GOST cipher and show this method can be used to improve algebraic cryptanalysis

with SAT solvers. In Chapter 6 we discussed how well-selected samples following

a truncated differential property can reduce the solving complexity of ElimLin and

SAT solvers. Both methods can be considered as adding additional linear equations

into algbraic solving stage.

In Section 7.5 we discussed the theretical upper bound of equations that can

be found by ElimLin. We conjectured that one can precompute additional linear

equations that cannot be found by ElimLin, and provid those equations at the be-

gining of solving step. We call ElimLin+ any attack which combines ElimLin with

additional equations generated by polynomial approximation as in this chapter. Our

future work directions will consider to develop an attack using ElimLin+ on a con-

crete cipher and show it can break larger number of rounds than normal ElimLin

method.

2although some equations might exist for any P/C pairs



Part III

Speed Optimisation for Bitcoin Brain

Wallet Attacks

125



Chapter 8

Improving Brain Wallet Attacks

In Chapter 4 we described the general concept of Ellipitic Curve and Bitcoin brain

walltes. Brain wallets is a deterministic method to generate Bitcoin private keys

from a password. This means once an attacker knows the password, they can recover

the pravite key and get control of the Bitcoins within the wallet. Brain wallets exist

because Bitcoin users prefer to rememeber a password instead of keeping a long

random string in a safe place. However, existing research discussed in Section 4.9.1

shows an attacker can simpely use a dictionary attack to guess the passwords. The

security of Bitcoin Brain wallets only depends on the strength of the password.

The speed of checking if a guessed password leads to a used brain wallet only

depends on the key generation process in the Bitcoin elliptic curve secp256k1. In

this chapter we will review the current implementation of Bitcoin elliptic curve

and provide detailed benchmarks on each elliptic curve opteration during the key

geneartion process. At the end we will implement a new attack in order to speed up

the key geneartion process and improve the existing attack.

8.1 Bitcoin Elliptic Curve Implementation and

Benchmarking

8.1.1 Dedicated Scalar Multiplication Method

The process of cracking Bitcoin brain wallets is to repeatedly generated public keys

using guessed passwords. The key generation method as we described in 4.6.2,



8.1. Bitcoin Elliptic Curve Implementation and Benchmarking 127

is to compute Q = dP. Here d is a SHA256 hash of the generated password, P

is a fixed point which is the base point G for secp256k1 (see Section 4.8). We

first benchmark the current best implementation secp256k1 library. All benchmark

results are running on a Intel i7-3520m 2.9GHz laptop (win8 x64).

The time cost for computing one public key given a random private key takes

47.2 us.

8.1.1.1 Fixed Point Multiplication Methods

The most basic and naive method for point multiplication Q = kP with a unknown

point P is the double-and-add method [100]. The idea is to use binary representation

for k:

k = k0 +2k1 +22k2 + · · ·+2mkm

where [k0 . . .km]∈ {0,1} and m is the length of k, in Bitcoin elliptic curve, m = 256.

Algorithm 5 Double-and-add method for point multiplication of unknown points
[100] page 96
INPUT: k = (km, ...,k1,k0)2, P ∈ E(Fq).
OUTPUT: kP.

1: Q := infinity
2: for i from 0 to m do
3: if ki = 1 then Q := Q+P (using point addition)
4: P := 2P (using point doubling)
5: end for
6: return Q

The expected number of ones in the binary representation of k is approximately
m
2 , so the double-and-add method will need m

2 A+mD computations (where A means

point addition and D means point doubling) in total. However, if the point P is

fixed and some storage is available, then the point multiplication operation Q =

kP can be accelerated by pre-computing some data that depends only on P. For

example if the points 2P,22P, . . . ,2m−1P are precomputed, then the double-and-add

method (Algorithm 5) has an expected running time of (m
2 )A, and all doublings are

eliminated.



8.1. Bitcoin Elliptic Curve Implementation and Benchmarking 128

In 1993, Brickell et al introduced a new method for fixed point multiplication

[26] . The precomputing step stores every multiple 2iP. Let (Kd−1, . . . ,K1,K0)2w

be the base-2w representation of k, where d = [m/w], and let Q j = ∑i:Ki= j 2wiP for

each j, 1≤ j ≤ 2w−1, Then

kP =
d1

∑
i=0

Ki(2wiP) =
2w−1

∑
j=1

( j ∑
i:Ki= j

2wiP =
2w−1

∑
j=1

jQ j

= Q2w−1 +(Q2w−1 +Q2w−2)+ · · ·+(Q2w−1 +Q2w−2 + · · ·+Q1) (8.1)

Algorithm 6 Fixed-base windowing method for point multiplication[100]
INPUT: Window width w, d = [m/w], k = (Kd−1, . . . ,K1,K0)2w

OUTPUT: kP
1: Precompute Pi = 2wiP,0≤ i≤ d−1
2: A← infinity, B← infinity
3: for j from 2w−1 down to 1 do
4: For each i for which Ki = j do: B← B+Pi
5: A← A+B
6: end for
7: return A

Algorithm 6 has expected running time of

(2w +d−3)A.

By reviewing the literature and checking some other existing methods in Hanker-

son’s book [100] we noticed they are all memory friendly implementations which

do not take a lot of memory for precomputation. However, we are working on a

different task and aim at repeatedly running point multiplication method for great

many times. We have implemented an extreme version of the window method which

will take much more precomputation space than methods introduced by Hankerson

[100].

In our implementation, the precomputation step will compute Pj = jP where

1 ≤ j ≤ 2w− 1 then for each Pj we compute Pi, j = 2wiPj, which will cost 2w− 1

times more memory space than algorithm 6, but expected running time for each



8.1. Bitcoin Elliptic Curve Implementation and Benchmarking 129

point multiplication will reduce to approximately (d−1)A

Algorithm 7 Our implementation of windowing method with larger precomputation
table
INPUT: Window width w, d = [m/w], k = (Kd−1, . . . ,K1,K0)2w

OUTPUT: kP
1: Precompute Pi, j = 2wi jP,0≤ i≤ d−1 and 1≤ j ≤ 2w−1
2: A← infinity
3: for i from 0 to d−1 do
4: A← A+Pi, j where j = Ki
5: end for
6: return A

We have implemented a code that can take any window width w from 1 to

241, our benchmark results are shown in Table 8.1. Note that precomputation stores

elliptic curve point P = x,y where x and y are 32 bits integer array of size 10. So

one stored point needs 80 Bytes memory space.

Table 8.1: Time cost for different window width w, point addition method secp256k1 li-
brary [167] secp256k1 gej add ge

w=4 w=8 w=12 w=16 w=20
d 64 32 22 16 13

number of additions 63 31 21 15 12
precomputation memory 81.92 KB 655.36 KB 7.21 MB 83.89 MB 1.09 GB

time cost 46.36 us 22.76 us 15.35 us 11.23 us 9.23 us

8.1.2 Point Representation

As we described in Section 4.3, representing a point in affine coordinate P(x,y) on

an elliptic curve over Fp, the field operations for calculating point addition needs 2

multiplications, 1 square and one modular inverse (for short, 2M+1S+1I). Modular

inverse is a more expensive operation compared to multiplication and square. We

list our benchmarks using different package in C to demonstrate the difference for

modular inverse computation compare to multiplication and square. The packages

we have benchmarked are: OpenSSL-1.0.2a (released in March 2015) and mpir-

2.5.2 (released in Oct 2012), and the Pieter Wuille’s implementation on github [167]

1larger than 22 will take too long for precomputation and my laptop start to have slow response



8.1. Bitcoin Elliptic Curve Implementation and Benchmarking 130

Table 8.2: Benchmarking OpenSSL and MPIR library for field multiplication, square and
modular inverse in affine coordinate

multiplication mod p square mod p mod inverse
MPIR 0.07 us 0.15 us 0.13 us 0.15 us 18.0 us

OpenSSL 0.08 us 0.43 us 0.06 us 0.43 us 1.8 us
secp256k1 0.049 us 0.039 us 1.1 us

2 .

The results are shown in Table 8.2. The benchmarking shows modular inverse

is much more expensive than multiplication and square. It is also important to

notice, for OpenSSL Big Number library, a square operation is more expensive than

multiplication, and for MPIR library, 1 square = 0.75 multiplication. As modular

inverse is more expensive than multiplication, it may be advantageous to represent

points using other coordinates.

Projective Coordinates

For elliptic curve over Fp where the curve equation is y2 = x3 + ax+ b. The stan-

dard projective coordinates represent elliptic curve points as (X : Y : Z), Z 6= 0,

correspond to the affine point (X
Z ,

Y
Z ). The projective equation of the elliptic curve

is:

Y 2Z = X3 +aXZ2 +bZ3

The point at infinity O corresponds to (0:1:0), where the negative of (X : Y : Z) is

(X :−Y : Z)

Jacobian Coordinates

Elliptic curve points in Jacobian coordinate are represented in the following format

(X : Y : Z), Z 6= 0, corresponds to the affine point ( X
Z2 ,

X
Z3 ). The projective equation

of the elliptic curve is

Y 2 = X3 +aXZ4 +bZ6

The point at infinity O corresponds to (1:1:0), while the negative of (X : Y : Z) is

(X :−Y : Z).

2with the following configuration: USE NUM GMP USE FIELD 10x26
USE FIELD INV NUM USE SCALAR 8x32 USE SCALAR INV BUILTIN



8.1. Bitcoin Elliptic Curve Implementation and Benchmarking 131

The field operations needed for point addition and point doubling are shown in

Table 8.3. We see that Jacobian coordinates yield the fastest point doubling, while

mixed Jacobian-affine coordinates yield the fastest point addition.

Table 8.3: Operation counts for point addition and doubling. A = affine, P = standard pro-
jective, J = Jacobian [100, 29]

Doubling General addition Mixed coordinates*
2A→ A 1I,2M,2S A+A→ A 1I,2M,1S J+A→ J 8M,3S
2P→ P 7M,3S P+P→ P 12M,2S
2J→ J 4M,4S J+J→ J 12M,4S

* Here mixed coordinates means Jacobian-Affine mixed coordinates, see below for
details.

We refer the reader to [100, 29] for other detailed equations in different coor-

dinates. Here we are only interested in point addition functions using mixed coor-

dinates.

Point Addition using Jacobian-Affine Mixed Coordinates

Let P=(X1 :Y1 : Z1) be a Jacobian projective point on elliptic curve y2 = x3+ax+b,

and Q=(X2 : Y2 : 1) be be another point on the curve, suppose that P 6=±Q, P+Q=

(X3 : Y3 : Z3) is computed by the following equations:

X3 =(Y2Z3
1−Y1)

2− (X2Z2
1−X1)

2(X1 +X2Z2
1)

Y3 =(Y2Z3
1−Y1)(X1(X2Z2

1−X1)
2−X3)−Y1(X2Z2

1−X1)
3

Z3 =(X2Z2
1−X1)Z1

(8.2)

By storing the intermediate elements, X3,Y3 and Z3 can be computed using

three field squarings and eight field multiplications as follows:

A← Z2
1 , B← Z1 ·A, C← X2 ·A, D← Y2 ·B, E←C−X1,

F ← D−Y1, G← E2, H← G ·E, I← X1 ·G,

X3← F2− (H +2I), Y3← F · (I−X3)−Y1 ·H, Z3← Z1 ·E.



8.1. Bitcoin Elliptic Curve Implementation and Benchmarking 132

secp256k1 point addition formulas In the latest version, secp256k1 point addi-

tion formulas are based on Brier and Joye’s work [27] which introduced a strongly

unified addition formulas for standard projective coordinate. Bitcoin developers im-

plemented mixed coordinate formula (Jacobian-Affine) version based on Brier and

Joye’s work [27].

Let P = (X1 : Y1 : Z1) be a Jacobian projective point on elliptic curve y2 =

x3 + ax+ b, and Q = (X2 : Y2 : 1) be be another point on the curve, suppose that

P 6=±Q, P+Q = (X3 : Y3 : Z3) is computed by the following equations:

X3 = 4(K2−H)

Y3 = 4(R(3H−2K2)−G2)

Z3 = 2FZ1

(8.3)

where

A = Z2
1 , B = Z1 ·A, C = X2 ·A, D = Y2 ·B, E = X1 +C

F = Y1 +D,G = F2,H = E ·G, I = E2,J = X1 ·C,K = I− J

Bernstein-Lange point addition formulas In [16], Bernstein introduced the fol-

lowing method which takes 7M+4S; the explicit formulas are given as following

[15]

X3 = r2− J−2V

Y3 = r · (V −X3)−2Y1 · J

Z3 = (Z1 +H)2−Z2
1 −H2

(8.4)

where

U2 = X2 ·Z2
1 , S2 = Y2 ·Z3

1

H =U2−X1, I = 4H2

J = H · I, r = 2(S2−Y1), V = X1 · I



8.1. Bitcoin Elliptic Curve Implementation and Benchmarking 133

Detailed Filed Operation Benchmarks

From the results of Table 8.2 we saw that Wuille’s secp256k1 library [167] has a

much faster field multiplication and square speed than OpenSSL and mpir library.

Wuille’s field implementation is optimised based on the prime used in secp256k1

curve. Secp256k1 library has 5x52 and 10x26 field implementation for 64 bits

and 32 bits integers 3. Here we use 10x26 representation and each 256 bits value

is represented as a 32 bits integer array with size of 10. We refer readers to file

field 10x26 impl.h in secp256k1 library for more details. Secp256k1 library already

implemented equation 8.3 in method secp256k1 gej add ge var, which uses 8 mul-

tiplications, 3 squares and 12 multiply integer / addition / negation. Equation 8.2 is

implemented in secp256k1 gej add ge which uses 7 multiplications, 5 squares and

21 multiply integer / addition / negation. We have implemented equation 8.4 which

take 7 multiplication, 4 squares and 21 multiply integer / addition / negation.

It is important to notice the square and multiplication difference which we

discussed in Table 8.2. In [77] Bernstein listed best operation counts based on

different assumptions: S = 0M, S = 0.2M, S= 0.67M, S=0.8M and S=1M. Cohen

discussed the ratio S/M is almost independent of the field of definition and of the

implementation, and can be reasonably taken to equal to 0.8 [34]. Our benchmark

results are very similar to S = 0.8M (see Table 8.2) . In Bernstein’s work [15], other

field operations are considered as 0M. In Table 8.4 our benchmark results show field

addition and other operations have approximately 0.1M cost.

Table 8.4: Field operation counts and benchmark results

#Mul #Square #add/neg/*int #fe cmov total time cost
1M ≈ 0.8 M ≈ 0.1 M ≈ 0.2 M

secp256k1 gej
add ge 7 5 15 6 ≈ 0.681 us

secp256k1 gej
add ge var 8 3 12 0 ≈ 0.562 us

7M + 4S code 7 4 21 0 ≈ 0.594 us

The secp256k1 gej add ge method, which is also the default method for key

generation, uses 6 secp256k1 fe cmov operations which have a cost approximately
3Depends on whether compiler support 64 bits integer



8.1. Bitcoin Elliptic Curve Implementation and Benchmarking 134

0.2 M. The main reason of writing code in such a way is stated in the code, and the

author’s comments:

”This formula has the benefit of being the same for both addition of

distinct points and doubling”[167]

The purpose of make addition and double using the same function is to prevent

side channel attacks. As point doubling is much more cheaper than point addi-

tion. Our experiments are done based on the benchmark results of S/M ratio with

specified machine setting (earlier in Section 8.1.1) and a specific library configu-

ration (footnote in Section 8.1.2). Different operating systems or library config-

urations might have different results. One should choose between our code and

secp256k1 gej add ge method. Detailed benchmark results are given in Table 8.5

Table 8.5: Time cost for different window width w for EC key generation

w=4 w=8 w=12 w=16 w=20
d 64 32 22 16 13

# of additions 63 31 21 15 12
precomputation
memory 81.92 KB 655.36 KB 7.21 MB 83.89 MB 1.09 GB

secp256k1 gej
add ge 45.85 us 22.16 us 15.35 us 11.23 us 9.23 us

secp256k1 gej
add ge var 37.37 us* 17.86 us 12.21 us 8.89 us 7.16 us

7M + 4S code 39.01 us 18.79 us 12.77 us 9.23 us 7.48 us
Jacobian to Affine ≈ 10 us

Benchmark on
my laptop

≈ 42 K guesses / sec (single thread)
on i7-3520m 2.9 GHz CPU

DEF CON Attack**
≈ 130 K guesses / sec
on i7-2600 3.2 GHz CPU

Improved
DEF CON Attack ≈ 315 K guesses / sec

* DEF CON attack [31] is equivalent to this results
** Results are reported by Ryan Castellucci running his DEF CON code and our

improved code on 8 threads with linux gcc compiler.

DEF CON attack [31] published code on github in Aug using a faster version of

secp256k1 library 4, and the results is marked as * in Table 8.5. Our best result using
4Also written by Pieter Wuille one year ago, this version is performance focused and using

8M+3S



8.2. On Cracked Brain Wallets 135

1.09 GB precomputation memory gives ≈ 2.5 times speed-up for key generation

process than the current known best attack.

Some work in this chapter has been developed into teaching materials for the

UCL M.Sc. Information Security course, including low level c/c++ programming

for field operation, ECDSA implementation and countermeasures against side chan-

nel attacks.

8.2 On Cracked Brain Wallets
Our work has focused on providing the first detailed benchmark of existing Bitcoin

elliptic curve implementations and optimizing the speed of the state-of-art Bitcoin

brain wallets attack. We did not pay attention to analysing the cracked brain wal-

lets. We refer the reader to read Vasek’s paper [164] for a detailed measurement

of cracked brain wallets results. In this section we only give a brief summary of

our results and discuss some interesting points which are not covered by Vasek’s

research.

We have collected all hash160 on blockchain data (until June 2015).

89,872,723 unique addresses have ever been used, and we have cracked 18,350

addresses in total. All of them were empty at the time we found them. It is clear

that the majority of addresses had been registered by a single entity (some sort

of bounty or honeypot). 17784 brain wallets were first used on August 31, 2013

and have the same transaction amount 0.00005460 bitcoin or precisely twice this

amount. The largest amount ever seen in one brain wallet was 500 BTC.

8.2.1 Network Stress Test

The maximum block size of Bitcoin is one megabyte per block. On 11 November

2014, when the block was around 30% full, David Hunduson wrote a blog post

[105] analyzing what will happen as the network approaches 100% full. The au-

thor did a simulation which shows that if the block is 100% full, then 10% of all

transactions would still not have received a confirmation after 22800 seconds (Bit-

coin transcations are normally confirmed after around 600 seconds). Later, on 4th

May 2015, Gavin Andersen published his first in a series of blog posts [5] aimed



8.3. Summary 136

at convincing the Bitcoin community to adopt a larger block size. This sparked a

heated debate about the Bitcoin blocksize that broke past the technical developers

of the Bitcoin protocol into the broader sphere of people that care about Bitcoin.

As a result of this debate, several network stress tests were launched. We measured

some aftermath of this contentious test, since the perpetrator / originator chose to

send large quantities of small amounts of bitcoin to selected brain wallets. Between

28th June 2015 and 28th August 2015, we observed 41 addresses used in the net-

work stress test (also known as “July flood attack”) with a total number of 1,554,187

transactions and total amount of 46.8 BTC.

8.2.2 Disclosure of Results

Although all the cracked brain wallets are currently empty, we still decided not

to publish a full list of cracked passwords or Bitcoin addresses because users can

make the same mistake again. Even statistical information about weak wallets

helps attackers to steal more bitcoins. We have given some sample passwords in

appendix C. One possible way for disclosure is to tag the cracked addresses on

blockchain.info. See Figure 8.1. Bitcoin users can see if their brain wallet address

is cracked. But the process is not automated due to captcha requirement and we do

have a lot of cracked passwords.

Figure 8.1: Example of tagged brain wallet address

8.3 Summary
In this chapter we have analysed and improved the state of the art on the imple-

mentation of the secp256k1 elliptic curve and similar curves. We provided the first



8.3. Summary 137

benchmarks on existing implementations and provided a faster implementation for

specific applications where private keys are not manipulated or there exist other pro-

tections against side channel attacks [e.g. physical and electro-magnetic isolation]

and when larger amounts of RAM are available. We are able to examine passwords

in brain wallets 2.5 times faster than the state of the art implementation presented

at DEF CON. We have released our source code. As an example application of this

research, we have been able to crack thousands of passwords including some quite

difficult ones.

The idea behind Bitcoin brain wallets is elegant: remembering a password or

passphrase is surely easier than a private key. Our work and also Vasek’s work [164]

have made a clear point that it is an extremely insecure way to store bitcoin. There

exist lots of other methods to keep bitcoin more secure. As a result of our research,

the first and widely suggested brain wallet generation website brainwallet.org has

been permanently closed.



Chapter 9

Conclusions

This thesis mainly focuses on improving algebraic cryptanalysis with software and

solvers. Algebraic cryptanalysis is powerful as it requires small quantities of data,

but in general the complexity grows quickly as the number of rounds increases.

Many mitigations to improve runtimes are studied. We explored different types of

optimization processes meant to make algebraic cryptanalysis problems transition

from “hard to solve” to “easier to solve” by a software solver. We applied these

optimizations to concrete ciphers and demonstrated the improvements. We aim to

contribute to future government standards, such as Simon and other widely used ci-

phers including new releases of GOST. We proposed several possible optimizations

for algebraic cryptanalysis and experimentally demonstrated the attacks on GOST

and Simon, which were submitted to ISO. We explore many powerful enhancements

for algebraic attacks, and in one case we show a result which upper bounds can be

obtained, and suggest a new method to predict the complexity of future attacks. We

also propose an optimized attack for Bitcoin brain wallet attack.

In Chapter 5, we introduced a new notion of contradiction immunity and SAT

immunity, which converts a first stage in cryptanalysis of GOST to an optimization

problem. Then we implemented a guess-then-solve attack with a well chosen set of

guessed bits. This attack later directly improved the current best attack on GOST.

Incidentally GOST was rejected by ISO at that time.

In Chapters 6 we studied NSA block cipher Simon which was introduced in

2013 and submitted to ISO in 2015. We introduced a new method that uses well



139

selected P/C pairs which follow a truncated differential property for algebraic crypt-

analysis, and demonstrated the improvement on basic algebraic attacks on Simon

with an extremely detailed study of what happens inside the attack and a serious im-

provement which generates more equations directly. Our work breaks 10/48 rounds

of Simon64/128 with less than 10 P/C pairs. We disagree when some researchers

believe that Simon should not be studied by academics:

“because it dignifies [the designs] and wastes the cycles the brain

cycles of intelligent people, by going to look at a thing that is produced

by a bad actor agency [(the NSA)].”

— Jacob Appelbaum, FSE 2015 invited talk

We propose an opposite view: it is important for the research community to

study Simon because it is likely to become an important industry standard in the fu-

ture. We published the first algebraic cryptanalysis work on Simon in 2014. Today,

it is not the best attack. But it is important for the community to notice Simon’s low

multipicative complexity, low non-linearity and its low security against algebraic

cryptanalysis.

In our research we spent a lot of time on contemplating what happens inside

ElimLin algorithm. It contains a rich variety of attacks, for example, various gen-

eralizations of cube attacks not previously studied. ElimLin is a powerful tool for

algebraic cryptanalysis, but with a fundamental limitation on computational com-

plexity. When trying to solve larger number of rounds, the converted problems get

much more bigger and ElimLin can not provide an answer within a short time. With

a large number of experiments using ElimLin on Simon, we show that precise pre-

diction for ElimLin is possible. We have made progress in both understanding better

and extending/enhancing the ElimLin attack. Our discovery method of Section 7.5

suggests that the same equations can yet be computed a lot more efficiently.

Finally, we also looked at the widely used cryptography application – ECDSA

in Bitcoin with the secp256k1 curve. Elliptic curve problems themselves are hard

algebraic cryptanalysis problems with complex polynomials and sometimes equa-

tions which follow the same topology as in a block cipher. Here nobody is yet able



140

to propose advanced practical attacks. Another application we studied is Bitcoin. It

was invented in 2008 and has grown rapidly since 2012, and it’s one of the largest

ECC practical applications in the world. We studied how some users manage their

private keys and the security pitfalls related to this. Bitcoin uses a special elliptic

curve secp256k1 which has not been widely used by any previous application, and

in this thesis we provide a detailed benchmark of all the major implementations

of this curve, and propose an optimized password cracking attack on Bitcoin brain

wallets with a slightly unusual ECC speed optimization. Our work together with

other researchers work had made the Bitcoin community aware that brain wallets

are extremely insecure.



Appendix A

Full Instruction for ElimLin

Experiments

Software Setup:

1. Simon.exe: http://www.nicolascourtois.com/software/simon.exe

- Source code: https://github.com/GSongHashrate/SimonSpeck

- Documentation: section Simon inside: http://www.cryptosystem.net/aes/toyciphers.html

2. ax64.exe: http://www.nicolascourtois.com/software/ax64.exe

- Documentation: http://www.cryptosystem.net/aes/tools.html

3. cryptominisat-2.9.6-win64.exe http://www.nicolascourtois.com/software/cryptominisat-

2.9.6.-win64.exe

- Sources and documentation: http://www.msoos.org/cryptominisat2/

Command Line:

Simon.exe NR /fixkF /insK /xl0, where NR = number of rounds for the cipher,

F = number of fixed/guessed bits for the key and K = number of random plain-

text/ciphertext pairs used.

Command Line output might look like:
Simon.exe 16 /fixk0 /ins8 /xl0

...

10496+ 512+ 448+ 257+ 1+ 0

Elim[ 14208] 0.529 h 2494/3712 ...



142

In this case NR = 16, F = 0, K = 8. The output is interpreted as follows:
Simon.exe 16 /fixk0 /ins8 /xl0

...

r0+ r1+ r2+ r3+ r4+ r5

Elim[ Total(= r0 +Vstart)] 0.529 h VUnbroken/Vstart ...

Table A.1: Data gathered by running ElimLin on 7 rounds of Simon 64/128

NR K Vstart Vunbroken r1 r2 r3 r4 r5 r6 r7
7 2 448 248 1472 128 64 8 0
7 3 608 268 2208 192 128 20 0
7 4 768 271 2944 256 192 49 0
7 5 928 262 3680 320 256 89 1 0
7 6 1088 244 4416 384 320 139 1 0
7 7 1248 215 5152 448 384 200 1 0
7 8 1408 188 5888 512 448 259 1 0
7 9 1568 158 6624 576 512 320 2 0
7 10 1728 126 7360 640 576 384 2 0
7 11 1888 82 8096 704 640 448 14 0
7 12 2048 0 8832 768 704 512 17 47 0

Table A.2: Data gathered by running ElimLin on 8 rounds of Simon 64/128

NR K Vstart Vunbroken r1 r2 r3 r4 r5 r6 r7
8 2 512 317 1600 128 64 3 0
8 4 896 409 3200 256 192 39 0
8 8 1664 443 6400 512 448 261 0
8 10 2048 448 8000 640 576 384 0
8 12 2432 448 9600 768 704 512 0
8 16 3200 444 12800 1024 960 768 4 0
8 20 3968 439 16000 1280 1216 1024 9 0
8 25 4928 435 20000 1600 1536 1344 13 0
8 30 5888 525 24000 1920 1856 1664 23 0
8 32 6272 417 25600 2048 1984 1792 31 0
8 40 7808 402 32000 2560 2496 2304 46 0
8 50 7808 378 40000 3200 3136 2944 70 0
8 64 12416 307 51200 4096 4032 3840 140 1 0
8 70 13568 249 56000 4480 4416 4224 189 10 0



Appendix B

Java Tool for Deep Inspection of

ElimLin

Guangyan Song and Nicolas Courtois: “Java tool for DEEP INSPECTION of

equations generated with ElimLin over GF(2) in Cryptalanalysis of Block Ci-

phers”, available at http://www.nicolascourtois.com/software/

DeepElimlin-1.4-SNAPSHOT.jar. Documentation can be found in the ap-

propriate section of this web page: http://www.cryptosystem.net/aes/

tools.html.

http://www.nicolascourtois.com/software/DeepElimlin-1.4-SNAPSHOT.jar
http://www.nicolascourtois.com/software/DeepElimlin-1.4-SNAPSHOT.jar
http://www.cryptosystem.net/aes/tools.html
http://www.cryptosystem.net/aes/tools.html


Appendix C

Examples of Cracked Brainwallet

Passwords

We have found over 18,000 cracked Brainwallet passwords. In 2016, our open

source tool was given to students for a UCL code breaking competition in module

GA18. More than 100 new passwords were found by MSc students: Iason Papa-

panagiotakis, Jeonghyuk Park, Ellery Smith, Weixiu Tan and Wei Shao. Here we

only list some interesting passwords. The full result remains confidential for secu-

rity reasons.

1. say hello to my little friend

2. to be or not to be

3. Walk Into This Room

4. party like it’s 1999

5. yohohoandabottleofrum

6. dudewheresmycar

7. dajiahao

8. hankou

9. {1summer2leo3phoebe



145

10. 0racle9i

11. andreas antonopoulos

12. Arnold Schwarzenegger

13. blablablablablablabla

14. for the longest time

15. captain spaulding



Bibliography

[1] A russian reference implementation of gost implementing russian algorithms

as an extension of tls v1.0 is available as a part of openssl library. the file

gost89.c contains eight different sets of s-boxes and is found in openssl 0.9.8

and later at. http://www.openssl.org/source/.

[2] Standard specifications for public key cryptography annex a. pages 76–172.

IEEE P1363 / D9, Feb 1999.

[3] J. Alizadeh, H. A. Alkhzaimi, M. R. Aref, N. Bagheri, P. Gauravaram, A. Ku-

mar, M. M. Lauridsen, and S. K. Sanadhya. Cryptanalysis of simon variants

with connections. In International Workshop on Radio Frequency Identifica-

tion: Security and Privacy Issues, pages 90–107. Springer, 2014.

[4] H. Alkhzaimi and M. Lauridsen. Differential and linear cryptanalysis of

reduced-round simon. In Cryptology ePrint Archive, Report 2013/543, 2013.

[5] G. Andersen. Why increasing the max block size

is urgent. http://gavinandresen.ninja/

why-increasing-the-max-block-size-is-urgent, 2015.

[6] A. ANSI. X9. 62: 2005: Public key cryptography for the financial services

industry. The elliptic curve digital signature algorithm (ECDSA), 2005.

[7] A. Aysu, E. Gulcan, and P. Schaumont. Simon says, break the area records

for symmetric key block ciphers on fpgas. In Cryptology ePrint Archive,

Report 2014/237, 2014.

http://www.openssl.org/source/
http://gavinandresen.ninja/why-increasing-the-max-block-size-is-urgent
http://gavinandresen.ninja/why-increasing-the-max-block-size-is-urgent


Bibliography 147

[8] R. Balasubramanian and N. Koblitz. The improbability that an elliptic curve

has subexponential discrete log problem under the menezesokamotovanstone

algorithm. Journal of cryptology, 11(2):141–145, 1998.

[9] G. Bard, N. Courtois, and C. Jefferson. Efficient methods for conversion and

solution of sparse systems of low-degree multivariate polynomials over gf(2)

via sat-solvers. 2007.

[10] G. V. Bard, N. T. Courtois, and C. Jefferson. Efficient methods for conversion

and solution of sparse systems of low-degree multivariate polynomials over

gf (2) via sat-solvers, 2007.

[11] G. V. Bard, N. T. Courtois, J. Nakahara Jr, P. Sepehrdad, and B. Zhang. Alge-

braic, aida/cube and side channel analysis of katan family of block ciphers. In

International Conference on Cryptology in India, pages 176–196. Springer,

2010.

[12] M. Bardet, J.-C. Faugere, and B. Salvy. On the complexity of gröbner

basis computation of semi-regular overdetermined algebraic equations. In

Proceedings of the International Conference on Polynomial System Solving,

pages 71–74, 2004.

[13] E. Barker, W. Barker, W. Burr, W. Polk, and M. Smid. Recommendation

for key management-part 1: General (revised. In NIST special publication.

Citeseer, 2006.

[14] R. Beaulieu, D. Shors, J. Smith, S. Treatman-Clark, B. Weeks, and

L. Wingers. The simon and speck families of lightweight block ciphers. In

Cryptology ePrint Archive, Report 2013/404, 2013.

[15] D. J. Bernstein and T. Lange. Explicit-formulas database, 2007.

[16] D. J. Bernstein and T. Lange. Faster addition and doubling on elliptic curves.

In Advances in cryptology–ASIACRYPT 2007, pages 29–50. Springer, 2007.



Bibliography 148

[17] D. J. Bernstein and T. Lange. ebacs: Ecrypt benchmarking of cryptographic

systems, 2009.

[18] Ē. Biham and A. Shamir. Differential cryptanalysis of the data encryption

standard. Springer-Verlag, 1993.

[19] A. Biryukov, A. A. Roy, and V. Velichkov. Differential analysis of block

ciphers simon and speck. In 21st International Workshop on Fast Software

Encryption, FSE 2014, 2014.

[20] A. Bogdanov, L. Knudsen, C. Paar, A. Poschmann, M. Robshaw, Y. Seurin,

and Y. Vikkelsoe. Present: An ultra-lightweight block cipher. In In the

proceedings of CHES 2007, 2007.

[21] C. Bouillaguet, P. Derbez, O. Dunkelman, P.-A. Fouque, N. Keller, and V. Ri-

jmen. Low-data complexity attacks on aes. IEEE Transactions on Informa-

tion Theory, 58(11):7002–7017, 2012.

[22] J. Boyar, M. Find, and R. Peralta. Four measures of nonlinearity. In In

Algorithms and Complexity, pp. 61-72. Springer Berlin Heidelberg, 2013.

[23] J. Boyar and R. Peralta. A new combinational logic minimization technique

with applications to cryptology. 2010.

[24] J. Boyar and R. Peralta. A depth-16 circuit for the aes s-box. 2011.

[25] J. Boyar, R. Peralta, and D. Pochuev. On the multiplicative complexity of

boolean functions over the basis. 2000.

[26] E. F. Brickell, D. M. Gordon, K. S. McCurley, and D. B. Wilson. Fast expo-

nentiation with precomputation. In Advances in CryptologyEUROCRYPT92,

pages 200–207. Springer, 1993.

[27] E. Brier and M. Joye. Weierstraß elliptic curves and side-channel attacks. In

Public Key Cryptography, pages 335–345. Springer, 2002.



Bibliography 149

[28] L. Brown, J. Pieprzyk, and J. Seberry. Lokia cryptographic primitive

for authentication and secrecy applications. In Advances in Cryptolo-

gyAUSCRYPT’90, pages 229–236. Springer, 1990.

[29] M. Brown, D. Hankerson, J. López, and A. Menezes. Software implementa-

tion of the NIST elliptic curves over prime fields. Springer, 2001.

[30] C. Canniere, O. Dunkelman, and M. Knezevic. Katan and ktantan a fam-

ily of small and efficient hardware-oriented block ciphers. In In Christophe

Clavier and Kris Gaj, editors,Cryptographic Hardware and Embedded Sys-

tems - CHES 2009, volume 5747 of Lecture Notes in Computer Science,

Springer Berlin Heidelberg, 2009.

[31] R. Castellucci. Cracking cryptocurrency brainwallets. https://www.

defcon.org/html/defcon-23/dc-23-index.html.

[32] Certicom.

[33] S. Certicom. Sec 2: Recommended elliptic curve domain parameters. Pro-

ceeding of Standards for Efficient Cryptography, Version, 1, 2000.

[34] H. Cohen, A. Miyaji, and T. Ono. Efficient elliptic curve exponentiation

using mixed coordinates. In Advances in Cryptology ASIACRYPT98, pages

51–65. Springer, 1998.

[35] D. Coppersmith. The data encryption standard (des) and its strength against

attacks. IBM journal of research and development, 38(3):243–250, 1994.

[36] D. Coppersmith. The development of des. Invited talk at CRYPTO, 2000.

[37] N. Courtois. 100 years of cryptanalysis: Compositions of permu-

tations. http://www.nicolascourtois.com/papers/code_

breakers_enigma_block_teach.pdf. non-commutative combina-

tions of permutations, used teaching GA18 Cryptanalysis course at Univer-

sity College London 2014-2016.

https://www.defcon.org/html/defcon-23/dc-23-index.html
https://www.defcon.org/html/defcon-23/dc-23-index.html
http://www.nicolascourtois.com/papers/code_breakers_enigma_block_teach.pdf
http://www.nicolascourtois.com/papers/code_breakers_enigma_block_teach.pdf


Bibliography 150

[38] N. Courtois. Guiding principles of effective crypto and security engi-

neering. http://www.nicolascourtois.com/papers/sc/Pr_

Crypto_eng_v12.pdf.

[39] N. Courtois. Algebraic cryptanalysis software,. http://www.

cryptosystem.net/aes/tools.html, 2000-2016.

[40] N. Courtois. Ctc2 and fast algebraic attacks on block ciphers revisited. IACR

Cryptology ePrint Archive, 2007:152, 2007.

[41] N. Courtois. Ctc2 and fast algebraic attacks on block ciphers revisited. In

eprint. eprint.iacr.org/2007/152/, 2007.

[42] N. Courtois. How fast can be algebraic attacks on block ciphers? In Dagstuhl

Seminar 07021, Symmetric Cryptography. dagstuhl.de, 2007.

[43] N. Courtois. Basic equation solving toolbox -

http://www.cryptosystem.net/aes/tools.html. 2010.

[44] N. Courtois. Algebraic complexity reduction and cryptanalysis of gost. IACR

Cryptology ePrint Archive, 2011:626, 2011.

[45] N. Courtois. Half of all elliptic curves broken??? http://blog.

bettercrypto.com/?p=1544, 2015.

[46] N. Courtois. Algebraic attacks vs. design of block and stream ci-

phers. In slides used in UCL GA18 course “Cryptanalysis”, University

College London. http://www.nicolascourtois.com/papers/

algat_all_teach_2015.pdf, 2016.

[47] N. Courtois. Software and algebraic cryptanalysis lab,. In University

College London. http://www.nicolascourtois.com/papers/

ga18/AC_Lab1_ElimLin_Simon_CTC2.pdf, 2016.

[48] N. Courtois and G. Bard. Algebraic cryptanalysis of the data encryption

standard. In In IMA Int. Conf. volume 4887, Springer, 2007.

http://www.nicolascourtois.com/papers/sc/Pr_Crypto_eng_v12.pdf
http://www.nicolascourtois.com/papers/sc/Pr_Crypto_eng_v12.pdf
http://www.cryptosystem.net/aes/tools.html
http://www.cryptosystem.net/aes/tools.html
eprint.iacr.org/2007/152/
dagstuhl.de
http://blog.bettercrypto.com/?p=1544
http://blog.bettercrypto.com/?p=1544
http://www.nicolascourtois.com/papers/algat_all_teach_2015.pdf
http://www.nicolascourtois.com/papers/algat_all_teach_2015.pdf
http://www.nicolascourtois.com/papers/ga18/AC_Lab1_ElimLin_Simon_CTC2.pdf
http://www.nicolascourtois.com/papers/ga18/AC_Lab1_ElimLin_Simon_CTC2.pdf


Bibliography 151

[49] N. Courtois and B. Debraize. Specific s-box criteria in algebraic attacks on

block ciphers with several known plaintexts. In WEWoRC 2007, pp 100-113.

Springer, 2008.

[50] N. Courtois, D. Hulme, and T. Mourouzis. Solving circuit optimisation prob-

lems in cryptography and cryptanalysis. In In electronic proceedings of 2nd

IMA Conference Mathematics in Defence 2011, 2011.

[51] N. Courtois, A. Klimov, J. Patarin, and A. Shamir. Efficient algorithms for

solving overdefined systems of multivariate polynomial equations. In Inter-

national Conference on the Theory and Applications of Cryptographic Tech-

niques, pages 392–407. Springer, 2000.

[52] N. Courtois and M. Misztal. Differential cryptanalysis of gost. IACR Cryp-

tology ePrint Archive, 2011:312, 2011.

[53] N. Courtois, T. Mourouzis, and D. Hulme. Exact logic minimization and

multiplicative complexity of concrete algebraic and cryptographic circuits.

In To Appear in IARIA Journal: IntSys13v6n34, 2013.

[54] N. Courtois, T. Mourouzis, and G. Song. Reference implemen-

tation of simon and speck and a basic generator of equations -

https://github.com/gsonghashrate/simonspeck/. 2014.

[55] N. Courtois, T. Mourouzis, G. Song, P. Sepehrdad, and P. Susil. Combined

algebraic and truncated differential cryptanalysis on reduced-round simon.

In SECRYPT, pages 399–404, 2014.

[56] N. Courtois, K. Nohl, and S. O’Neil. Algebraic attacks on the crypto-1 stream

cipher in mifare classic and oyster cards. IACR Cryptology ePrint Archive,

2008:166, 2008.

[57] N. Courtois, P. Sepehrdad, G. Song, and I. Papapanagiotakis-Bousy. Pre-

dicting outcomes of elimlin attack on lightweight block cipher simon. In

SECRYPT, 2016.



Bibliography 152

[58] N. Courtois, P. Sepehrdad, P. Susil, and S. Vaudenay. Elimlin algorithm revis-

ited. In Fast Software Encryption, pp. 306-325, Springer Berlin Heidelberg,

2012.

[59] N. T. Courtois. Feistel schemes and bi-linear cryptanalysis. In Advances in

Cryptology–CRYPTO 2004, pages 23–40. Springer, 2004.

[60] N. T. Courtois. The dark side of security by obscurity - and cloning mifare

classic rail and building passes, anywhere, anytime. In Proceedings of the In-

ternational Conference on Security and Cryptography (ICETE 2009), pages

331–338, 2009.

[61] N. T. Courtois. An improved differential attack on full gost. IACR Cryptology

ePrint Archive, 2012:138, 2012.

[62] N. T. Courtois. Security evaluation of gost 28147-89 in view of international

standardisation. Cryptologia, 36(1):2–13, 2012.

[63] N. T. Courtois. Cryptanalysis of gost in the multiple-key scenario. Tatra

Mountains Mathematical Publications, 57(1):45–63, 2013.

[64] N. T. Courtois. High saturation complete graph approach for ec point de-

composition and ecdl problem. Cryptology ePrint Archive, Report 2016/704,

2016. http://eprint.iacr.org/2016/704.

[65] N. T. Courtois and G. V. Bard. Algebraic cryptanalysis of the data encryption

standard. In Cryptography and Coding, pages 152–169. Springer, 2007.

[66] N. T. Courtois, G. V. Bard, and D. Wagner. Algebraic and slide attacks on

keeloq. In Fast Software Encryption, pages 97–115. Springer, 2008.

[67] N. T. Courtois, G. Castagnos, and L. Goubin. What do des s-boxes say to

each other? IACR Cryptology ePrint Archive, 2003:184, 2003.

[68] N. T. Courtois and B. Debraize. Algebraic description and simultaneous

linear approximations of addition in snow 2.0. In Information and Commu-

nications Security, pages 328–344. Springer, 2008.

http://eprint.iacr.org/2016/704


Bibliography 153

[69] N. T. Courtois, J. A. Gawinecki, and G. Song. Contradiction immunity and

guess-then-determine attacks on gost. Tatra Mountains Mathematical Publi-

cations, 53(1):65–79, 2012.

[70] N. T. Courtois and M. Misztal. First differential attack on full 32-round gost.

In Information and Communications Security, pages 216–227. Springer,

2011.

[71] N. T. Courtois and M. Misztal. Aggregated differentials and cryptanalysis of

pp-1 and gost. Periodica Mathematica Hungarica, 65(2):177–192, 2012.

[72] N. T. Courtois, T. Mourouzis, M. Misztal, J.-J. Quisquater, and G. Song.

Can gost be made secure against differential cryptanalysis? Cryptologia,

39(2):145–156, 2015.

[73] N. T. Courtois, S. ONeil, and J.-J. Quisquater. Practical algebraic attacks on

the hitag2 stream cipher. In Information Security, pages 167–176. Springer,

2009.

[74] N. T. Courtois and J. Patarin. About the xl algorithm over gf (2). In Cryp-

tographers Track at the RSA Conference, pages 141–157. Springer, 2003.

[75] N. T. Courtois and J. Pieprzyk. Cryptanalysis of block ciphers with overde-

fined systems of equations. In Advances in CryptologyASIACRYPT 2002,

pages 267–287. Springer, 2002.

[76] R. Cramer and V. Shoup. Design and analysis of practical public-key encryp-

tion schemes secure against adaptive chosen ciphertext attack. SIAM Journal

on Computing, 33(1):167–226, 2003.

[77] T. L. Daniel J. Bernstein. Explicit-formulas database. https://www.

hyperelliptic.org/EFD/.

[78] D. W. Davies and W. L. Price. Security for computer networks: and intro-

duction to data security in teleprocessing and electronic funds transfer. John

Wiley & Sons, Inc., 1989.

https://www.hyperelliptic.org/EFD/
https://www.hyperelliptic.org/EFD/


Bibliography 154

[79] H. Delfs, H. Knebl, and H. Knebl. Introduction to cryptography, volume 2.

Springer, 2002.

[80] H. Deukjo, J. Sung, S. Hong, J. Lim, S. Lee, B. Koo, C. Lee, D. Chang,

J. Lee, K. Jeong, H. Kim, J. Kim, and S. Chee. Hight: A new block cipher

suitable for low-resource device. In In Louis Goubin and Mitsuru Matsui, ed-

itors, Cryptographic Hardware and Embedded Systems, CHES 2006, volume

4249 of Lecture Notes in Computer Science, 2006.

[81] C. Diem. On the discrete logarithm problem in elliptic curves. Compositio

Mathematica, 147(01):75–104, 2011.

[82] I. Dinur, O. Dunkelman, and A. Shamir. Improved attacks on full gost. In

Fast Software Encryption, pages 9–28. Springer, 2012.

[83] I. Dinur and A. Shamir. Cube attacks on tweakable black box polynomi-

als. In Annual International Conference on the Theory and Applications of

Cryptographic Techniques, pages 278–299. Springer, 2009.

[84] T. ElGamal. A public key cryptosystem and a signature scheme based on

discrete logarithms. In Advances in cryptology, pages 10–18. Springer, 1985.

[85] J. Erickson, J. Ding, and C. Christensen. Algebraic cryptanalysis of sms4:

Gröbner basis attack and sat attack compared. In Information, Security and

Cryptology–ICISC 2009, pages 73–86. Springer, 2010.

[86] A. Farzaneh, E. List, S. Lucks, and J. Wenzel. Differential and linear crypt-

analysis of reduced-round simon. In Cryptology ePrint Archive, Report

2013/526, 2013.

[87] J.-C. Faugere. A new efficient algorithm for computing gröbner bases (f 4).

Journal of pure and applied algebra, 139(1):61–88, 1999.

[88] J.-C. Faugere. A new efficient algorithm for computing gröbner bases (f 4).

Journal of pure and applied algebra, 139(1):61–88, 1999.



Bibliography 155

[89] J.-C. Faugère, P. Gaudry, L. Huot, and G. Renault. Using symmetries in the

index calculus for elliptic curves discrete logarithm. Journal of cryptology,

27(4):595–635, 2014.

[90] J.-C. Faugère, L. Perret, C. Petit, and G. Renault. Improving the complexity

of index calculus algorithms in elliptic curves over binary fields. In Advances

in Cryptology–EUROCRYPT 2012, pages 27–44. Springer, 2012.

[91] H. Feistel. Cryptography and computer privacy. Scientific american, 228:15–

23, 1973.

[92] P. FIPS. 186-2. digital signature standard (dss). National Institute of Stan-

dards and Technology (NIST), 2000.

[93] A. S. Fraenkel and Y. Yesha. Complexity of solving algebraic equations.

Information Processing Letters, 10(4):178–179, 1980.

[94] S. Galbraith. Elliptic curve discrete logarithm problem in characteristic

two. https://ellipticnews.wordpress.com/2015/04/13/

elliptic-curve-discrete-logarithm-problem-in-characteristic-two,

2015.

[95] P. Gaudry. Index calculus for abelian varieties and the elliptic curve discrete

logarithm problem. IACR Cryptology ePrint Archive, 2004:73, 2004.

[96] Z. Gong, S. Nikova, and Y. Law. Klein: A new family of lightweight block

ciphers. In In Ari Juels and Christof Paar, editors, RFID. Security and Pri-

vacy, volume 7055 of Lecture Notes in Computer Science, 2012.

[97] G. S. GOST. 28147-89,. Cryptographic protection for data processing sys-

tems, Government Committee of the USSR for Standards, 1989.

[98] I. W. Group et al. Ieee 1363-2000: Standard specifications for public key

cryptography. IEEE Standard, IEEE, New York, NY, 10017, 2000.

https://ellipticnews.wordpress.com/2015/04/13/elliptic-curve-discrete-logarithm-problem-in-characteristic-two
https://ellipticnews.wordpress.com/2015/04/13/elliptic-curve-discrete-logarithm-problem-in-characteristic-two


Bibliography 156

[99] J. Guo, T. Peyrin, A. Poschmann, and M. Robshaw. The led block cipher. In

In Bart Preneel and Tsuyoshi Takagi, editors, Cryptographic Hardware and

Embedded Systems, CHES 2011, volume 6917 of Lecture Notes in Computer

Science, Springer Berlin Heidelberg, 2011.

[100] D. Hankerson, A. J. Menezes, and S. Vanstone. Guide to elliptic curve cryp-

tography. Springer Science & Business Media, 2006.

[101] T. J. Hodges, S. D. Molina, and J. Schlather. On the existence of semi-regular

sequences. arXiv preprint arXiv:1412.7865, 2014.

[102] S. Hong, D. Hong, Y. Ko, D. Chang, W. Lee, and S. Lee. Differential crypt-

analysis of tea and xtea. In International Conference on Information Security

and Cryptology, pages 402–417. Springer, 2003.

[103] J. Huang and X. Lai. What is the effective key length for a block cipher: an

attack on every practical block cipher. Science China Information Sciences,

57(7):1–11, 2014.

[104] Y.-J. Huang, C. Petit, N. Shinohara, and T. Takagi. Improvement of faugere

et al.s method to solve ecdlp. In Advances in Information and Computer

Security, pages 115–132. Springer, 2013.

[105] D. Hunduson. Bitcoin traffic bulletin. http://hashingit.com/

analysis/34-bitcoin-traffic-bulletin, 2015.

[106] T. Isobe. A single-key attack on the full gost block cipher. Journal of cryp-

tology, 26(1):172–189, 2013.

[107] D. Johnson, A. Menezes, and S. Vanstone. The elliptic curve digital signature

algorithm (ecdsa). International Journal of Information Security, 1(1):36–

63, 2001.

[108] D. Kahn. The Codebreakers: The comprehensive history of secret communi-

cation from ancient times to the internet. Simon and Schuster, 1996.

http://hashingit.com/analysis/34-bitcoin-traffic-bulletin
http://hashingit.com/analysis/34-bitcoin-traffic-bulletin


Bibliography 157

[109] B. S. Kaliski. The montgomery inverse and its applications. IEEE transac-

tions on computers, 44(8):1064–1065, 1995.

[110] B. S. Kaliski Jr and M. J. Robshaw. Linear cryptanalysis using multiple

approximations. In Advances in CryptologyCrypto94, pages 26–39. Springer,

1994.

[111] O. Kara. Reflection cryptanalysis of some ciphers. In Progress in

Cryptology-INDOCRYPT 2008, pages 294–307. Springer, 2008.

[112] J. Kilian and P. Rogaway. How to protect des against exhaustive key search.

In Advances in CryptologyCRYPTO96, pages 252–267. Springer, 1996.

[113] L. Knudsen. Truncated and higher order differentials. In B. Preneel, edi-

tor, Fast Software Encryption, volume 1008 of Lecture Notes in Computer

Science, pages 196–211. Springer Berlin Heidelberg, 1995.

[114] L. R. Knudsen. Cryptanalysis of loki. In Advances in CryptologyASI-

ACRYPT’91, pages 22–35. Springer, 1993.

[115] L. R. Knudsen. Block ciphers: analysis, design and applications. DAIMI

Report Series, 23(485), 1994.

[116] L. R. Knudsen. Block ciphersa survey. In State of the Art in Applied Cryp-

tography, pages 18–48. Springer, 1998.

[117] N. Koblitz. Elliptic curve cryptosystems. Mathematics of computation,

48(177):203–209, 1987.

[118] M. Kosters and S. L. Yeo. Notes on summation polynomials. arXiv preprint

arXiv:1503.08001, 2015.

[119] A. K. Lenstra and E. R. Verheul. Selecting cryptographic key sizes. Journal

of cryptology, 14(4):255–293, 2001.

[120] C. Lim and T. Korkishko. mcrypton - a lightweight block cipher for security

of low-cost rfid tags and sensors. In In Joo-Seok Song, Taekyoung Kwon,



Bibliography 158

and Moti Yung, editors, Information Security Applications, volume 3786 of

Lecture Notes in Computer Science, Springer Berlin Heidelberg, 2006.

[121] Y. Lindell and J. Katz. Introduction to modern cryptography. Chapman and

Hall/CRC, 2014.

[122] J. L. Massey. Safer k-64: A byte-oriented block-ciphering algorithm. In Fast

Software Encryption, pages 1–17. Springer, 1994.

[123] M. Matsui. Linear cryptanalysis method for des cipher. In Advances in

CryptologyEUROCRYPT93, pages 386–397. Springer, 1994.

[124] M. Matsui and A. Yamagishi. A new method for known plaintext attack of

feal cipher. In Advances in CryptologyEurocrypt92, pages 81–91. Springer,

1993.

[125] V. S. Miller. Use of elliptic curves in cryptography. In Conference on the The-

ory and Application of Cryptographic Techniques, pages 417–426. Springer,

1985.

[126] T. Mourouzis. Optimizations in algebraic and differential cryptanalysis. PhD

thesis, UCL (University College London), 2015.

[127] J. Nakahara Jr, P. Sepehrdad, B. Zhang, and M. Wang. Linear (hull) and alge-

braic cryptanalysis of the block cipher present. In International Conference

on Cryptology and Network Security, pages 58–75. Springer, 2009.

[128] S. Nakamoto. Bitcoin: A peer-to-peer electronic cash system. Consulted,

1(2012):28, 2008.

[129] NSA. Cnsa suite and quantum computing faq. ”https:

//www.iad.gov/iad/library/ia-guidance/

ia-solutions-for-classified/algorithm-guidance/

cnsa-suite-and-quantum-computing-faq.cfm, 2016.

https://www.iad.gov/iad/library/ia-guidance/ia-solutions-for-classified/algorithm-guidance/cnsa-suite-and-quantum-computing- faq.cfm
https://www.iad.gov/iad/library/ia-guidance/ia-solutions-for-classified/algorithm-guidance/cnsa-suite-and-quantum-computing- faq.cfm
https://www.iad.gov/iad/library/ia-guidance/ia-solutions-for-classified/algorithm-guidance/cnsa-suite-and-quantum-computing- faq.cfm
https://www.iad.gov/iad/library/ia-guidance/ia-solutions-for-classified/algorithm-guidance/cnsa-suite-and-quantum-computing- faq.cfm


Bibliography 159

[130] NSA. Recommendation for key management. ”http://nvlpubs.

nist.gov/nistpubs/SpecialPublications/NIST.SP.

800-57pt1r4.pdf, 2016.

[131] E. Pasalic. Probabilistic versus deterministic algebraic cryptanalysisa perfor-

mance comparison. IEEE Transactions on information theory, 55(11):5233–

5240, 2009.

[132] C. Petit, M. Kosters, and A. Messeng. Algebraic approaches for the elliptic

curve discrete logarithm problem over prime fields. In IACR International

Workshop on Public Key Cryptography, pages 3–18. Springer, 2016.

[133] C. Petit and J.-J. Quisquater. On polynomial systems arising from a weil

descent. In Advances in Cryptology–ASIACRYPT 2012, pages 451–466.

Springer, 2012.

[134] A. Poschmann, S. Ling, and H. Wang. 256 bit standardized crypto for

650 ge–gost revisited. In Cryptographic Hardware and Embedded Systems,

CHES 2010, pages 219–233. Springer, 2010.

[135] N. F. PUB. 46-3. data encryption standard. Federal Information Process-

ing Standards, National Bureau of Standards, US Department of Commerce,

1977.

[136] PurpleAlien. An introduction to elliptic curve cryptography -

https://www.purplealienplanet.com/node/27. 2012.

[137] H. Raddum. Algebraic analysis of the simon block cipher family. In Interna-

tional Conference on Cryptology and Information Security in Latin America,

pages 157–169. Springer, 2015.

[138] H. Raddum and I. Semaev. New technique for solving sparse equation sys-

tems. IACR Cryptology ePrint Archive, 2006:475, 2006.

http://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-57pt1r4.pdf
http://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-57pt1r4.pdf
http://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-57pt1r4.pdf


Bibliography 160

[139] R. L. Rivest, A. Shamir, and L. Adleman. A method for obtaining digi-

tal signatures and public-key cryptosystems. Communications of the ACM,

21(2):120–126, 1978.

[140] D. E. Robling Denning. Cryptography and data security. Addison-Wesley

Longman Publishing Co., Inc., 1982.

[141] B. Schneier. Applied cryptography. protocols, algorithms, and source code

in c/bruce schneier, 1996.

[142] B. Schneier. Section 14.1 GOST (2nd ed.) Applied cryptography. john wiley

& sons, 1996.

[143] B. Schneier. Beyond fear: Thinking sensibly about security in an uncertain

world. Springer Science & Business Media, 2006.

[144] B. Selman and C. P. Gomes. Hill-climbing search. Encyclopedia of Cognitive

Science, 81:82, 2006.

[145] I. Semaev. Summation polynomials and the discrete logarithm problem on

elliptic curves. IACR Cryptology ePrint Archive, 2004:31, 2004.

[146] I. Semaev. Sparse algebraic equations over finite fields. SIAM Journal on

Computing, 39(2):388–409, 2009.

[147] I. Semaev. New algorithm for the discrete logarithm problem on elliptic

curves. Cryptology ePrint Archive, Report 2015/310, 2015.

[148] I. Semaev and M. Mikus. Methods to solve algebraic equations in cryptanal-

ysis. In In Tatra Mountains Mathematic Publications, Vol. 45, pp. 107-136,

2010.

[149] P. Sepehrdad. Statistical and algebraic cryptanalysis of lightweight and

ultra-lightweight symmetric primitives. PhD thesis, ÉCOLE POLYTECH-

NIQUE FÉDÉRALE DE LAUSANNE, 2012.



Bibliography 161

[150] C. Shannon. Communication theory of secrecy systems. In Bell System

Technical Journal 28, 1949.

[151] C. E. Shannon. Communication theory of secrecy systems. Bell system tech-

nical journal, 28(4):656–715, 1949.

[152] K. Shibutani, T. Isobe, H. Hiwatari, A. Mitsuda, T. Akishita, and T. Shirai.

Piccolo: An ultra-lightweight blockcipher. In In Bart Preneel and Tsuyoshi

Takagi, editors, Cryptographic Hardware and Embedded Systems, CHES

2011, volume 6917 of Lecture Notes in Computer Science, Springer Berlin

Heidelberg, 2011.

[153] G. J. Simmons et al. Contemporary cryptology, volume 3. IEEE press New

York, 1992.

[154] G. Song. Simon and speck implementation in c. https://github.com/

gsonghashrate/SimonSpeck.

[155] M. Soos, K. Nohl, and C. Castelluccia. Extending sat solvers to crypto-

graphic problems. In Theory and Applications of Satisfiability Testing-SAT

2009, pages 244–257. Springer, 2009.

[156] N. Sorensson and N. Een. Minisat v1. 13-a sat solver with conflict-clause

minimization. SAT, 2005(53):1–2, 2005.

[157] N. Sörensson, N. Eén, and M. Soos. Cryptominisat 2.92, an open-source sat

solver package based on earlier minisat software.

[158] F. Standaert, G. Piret, G. Rouvroy, J. Quisquater, and J. Legat. Iceberg : An

involutional cipher efficient for block encryption in reconfigurable hardware.

In In Bimal Roy and Willi Meier, editors, Fast Software Encryption, volume

3017 of Lecture Notes in Computer Science, 2004.

[159] M. Sugita, K. Kobara, and H. Imai. Security of reduced version of the block

cipher camellia against truncated and impossible differential cryptanalysis.

https://github.com/gsonghashrate/SimonSpeck
https://github.com/gsonghashrate/SimonSpeck


Bibliography 162

In International Conference on the Theory and Application of Cryptology

and Information Security, pages 193–207. Springer, 2001.

[160] N. C. P. S. P. Susil and S. Vaudenay. Elimlin algorithm revisited. In FSE

2012. Springer, 2012.

[161] P. Susil, P. Sepehrdad, S. Vaudenay, and N. Courtois. On selection of samples

in algebraic attacks and a new technique to find hidden low degree equations.

International Journal of Information Security, 15(1):51–65, 2016.

[162] P. Sušil, P. Sepehrdad, S. Vaudenay, and N. Courtois. On selection of samples

in algebraic attacks and a new technique to find hidden low degree equations.

International Journal of Information Security, 15(1):51–65, 2016.

[163] A. Tardy-Corfdir and H. Gilbert. A known plaintext attack of feal-4 and feal-

6. In Annual International Cryptology Conference, pages 172–182. Springer,

1991.

[164] M. Vasek, J. Bonneau, C. K. Ryan Castellucci, and T. Moore. The bitcoin

brain drain: A short paper on the use and abuse of bitcoin brain wallets.

Financial Cryptography and Data Security, Lecture Notes in Computer Sci-

ence. Springer, 2016.

[165] N. Wang, X. Wang, K. Jia, and J. Zhao. Improved differential attacks on

reduced simon versions. IACR Cryptology ePrint Archive, 2014:448, 2014.

[166] Q. Wang, Z. Liu, K. Varıcı, Y. Sasaki, V. Rijmen, and Y. Todo. Cryptanaly-

sis of reduced-round simon32 and simon48. In International Conference in

Cryptology in India, pages 143–160. Springer, 2014.

[167] P. Wullie. bitcoin secp256k1 library, version 2015/08/11. https://

github.com/bitcoin/secp256k1.

[168] B.-Y. Yang, J.-M. Chen, and N. T. Courtois. On asymptotic security esti-

mates in xl and gröbner bases-related algebraic cryptanalysis. In Interna-

https://github.com/bitcoin/secp256k1
https://github.com/bitcoin/secp256k1


Bibliography 163

tional Conference on Information and Communications Security, pages 401–

413. Springer, 2004.


	I Background and Related Work
	Introduction
	Introduction to Cryptography
	Symmetric and Asymmetric Encryptions
	Block Ciphers
	Substitution Ciphers
	Transposition Systems
	Product Ciphers
	Courtois Toy Cipher
	DES


	Cryptanalysis of Block Ciphers
	Classification of Attacks
	Brute-force Attacks
	Linear Cryptanalysis
	Differential Cryptanalysis
	Algebraic Attacks
	Algebraic Attacks Solving Stage
	Algebraic Complexity Reduction

	Cryptanlysis of GOST Block Cipher
	GOST And ISO Standardisation.
	Cryptanalysis of GOST
	The Internal Structure of GOST

	Cryptanalysis of SIMON Block Cipher
	SIMON Structure
	Key Schedule

	Summary

	Introduction to Elliptic Curves
	Mathematical Foundations
	Elliptic Curves
	Elliptic Curves Over Fp
	Binary Elliptic Curves

	Point Arithmetic
	ECDLP
	An Interesting Research Question - Semaev Cipher
	Summation Polynomials
	Solving Semaev Equations with Extra Variables

	Elliptic Curve in Cryptography
	Domain Parameters
	Key Pair Generation
	Elliptic Curve Digital Signature Algorithm

	Bitcoin and Brain Wallet Attacks
	Bitcoin Elliptic Curve
	Brain Wallets
	Related Work

	Summary


	II The Path to Better Software Algebraic Cryptanalysis
	Contradiction Immunity and Application to GOST
	Contradiction Immunity and SAT Immunity
	Software Algebraic Attack with SAT Solver
	Contradiction Immunity and SAT Immunity
	Applications of UNSAT/SAT Immunities

	Applying SAT/UNSAT Immunity to GOST and DES
	Application to DES
	Contradiction Immunity of GOST
	SAT Immunity of GOST
	Low Data Complexity Meet-In-The-Middle Attack for 8 Rounds GOST

	Conclusions

	Algebraic Cryptanalysis of Simon
	How to Write Simon Equations
	Differential-Algebraic Cryptanalysis of Simon
	Algebraic Attacks experiments and results
	Experiments with 2 P/C pairs
	Experiments with more P/C pairs
	ElimLin Results

	Conclusions

	Re-Designing Algebraic Attacks Beyond ElimLin
	ElimLin Overview
	Phase transitions

	Experimental Setup and Notation
	Experiment Results
	The Big Picture
	On Growth Rate in ElimLin
	Predict The Success of ElimLin
	Phase Transition in Other Ciphers

	Deep Inspection
	Known Plaintext vs Chosen Plaintext

	Equations In ElimLin vs. Direct Approximation
	Polynomial Approximation in Practice

	Conclusions and Future Work
	Algebraic Attacks Beyond ElimLin



	III Speed Optimisation for Bitcoin Brain Wallet Attacks
	Improving Brain Wallet Attacks
	Bitcoin Elliptic Curve Implementation and Benchmarking
	Dedicated Scalar Multiplication Method
	Point Representation

	On Cracked Brain Wallets
	Network Stress Test
	Disclosure of Results

	Summary

	Conclusions
	Appendices
	Full Instruction for ElimLin Experiments
	Java Tool for Deep Inspection of ElimLin
	Examples of Cracked Brainwallet Passwords
	Bibliography


