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Abstract
Transport across quantum networks underlies many problems, from state 
transfer on a spin network to energy transport in photosynthetic complexes. 
However, networks can contain dark subspaces that block the transportation, 
and various methods used to enhance transfer on quantum networks can be 
viewed as equivalently avoiding, modifying, or destroying the dark subspace. 
Here, we exploit graph theoretical tools to identify the dark subspaces and 
show that asymptotically almost surely they do not exist for large networks, 
while for small ones they can be suppressed by properly perturbing the 
coupling rates between the network nodes. More specifically, we apply these 
results to describe the recently experimentally observed and robust transport 
behaviour of the electronic excitation travelling on a genetically-engineered 
light-harvesting cylinder (M13 virus) structure. We believe that these mainly 
topological tools may allow us to better infer which network structures and 
dynamics are more favourable to enhance transfer of energy and information 
towards novel quantum technologies.
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1.  Introduction

Understanding the mechanisms of optimal transport of various quantities, such as energy or 
information, across some underlying topology is fundamental to many problems in physics 
and beyond (see, for instance [1–3], and references therein). Networks can be used to model 
quantum channels: for example, states can be transferred along spin chains [4, 5]. In these 
studies, the aim is perfect state transfer and there tends to be a fixed Hamiltonian that drives 
the transfer. Controllability of networks asks what kind of possibly time-dependent interac-
tions—which then affects the connectivity structure of the network—will enable any state to 
be transferred [6]. More recently, quantum network theory has also been applied to model 
how energy is transferred through biological photosynthetic complexes [7–14] and over more 
abstract complex networks [15–17]. There are numerous factors that need to be considered in 
order to achieve optimal transport: the dynamics of the network and the approximations used, 
the initial preparation and its coherence, the location of the target node, site energies, static 
disorder, noise, dissipation, etc. In this context, optimality refers to several transport features as 
absence of losses, short required time, and robustness (regardless of sudden changes of work-
ing conditions). One hindrance to optimal transport is represented by the presence of dark or 
invariant subspaces/states [7]. Inspired by the similar use of the term ‘dark states’ in quantum 
optics [18] and condensed matter physics [19, 20], Caruso et al [7] defines them as Hamiltonian 
eigenstates that have no overlap with the ‘target’ node on the network. They, hence, act as a 
trap on the network blocking transport. Then, transport efficiency can be increased by either 
avoiding the dark subspace, or applying certain techniques to nudge states out of the dark sub-
space, or by destroying the subspace [21–24]. Here, we will discuss these different methods to 
enhance quantum transport by means of graph theoretical tools, and apply them to describe the 
energy transport behaviour that has been recently experimentally observed for a bio-engineered 
light-harvesting complex realized on a cylinder (M13 virus) structure [25].

This paper is structured as follows. In section 2, we formally introduce the network, its 
dynamics and the corresponding dark subspace. Section 3 reviews methods that are used to 
enhance (energy) transfer on quantum networks through the lens of dark states: initialisation 
outside of the dark subspace, using control fields, and coupling with the environment thus 
introducing noise and disorder. In section  4, we employ graph theoretical results in order 
to find two results on the dark subspaces on graphs: that there exist dynamics having no 
associated dark subspace, and that very large graphs asymptotically almost surely have no 
dark subspace. In section 5 we describe some applications of these studies to light-harvesting 
complexes. Finally, in section 6 we illustrate the results numerically by changing the underly-
ing topology of two specific networks, one of which is inspired by a recent experiment with 
genetically-engineered light-harvesting structures [25]. We also highlight the importance of 
dephasing noise to enhance the transfer efficiency. Some conclusions are drawn in section 7.

2.  Quantum network

A quantum network consists of an underlying graph, on which the dynamics is described via 
quantum mechanics, as opposed to the usual transition matrices or hopping dynamics of clas-
sical networks [26]. A graph, G = (V , E), consists of a set of vertices or nodes V (G) and a 
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set of edges E (G). Let N = |V (G)| be the number of nodes on the graph. The graph can be 
described by its adjacency matrix A (G), defined as

[A (G)]ij =

{
αij, if (i, j) ∈ E (G) ;
0, otherwise,� (1)

where i, j ∈ V  are nodes of the network, and αij are the weights of the edges. We consider the 
edges to be undirected and without loops, unless specified otherwise. The coherent dynamics 
is described by the Hamiltonian:

H0 =

N∑
i=1

�ωiσ
+
i σ−

i +
∑
i �=j

� [A (G)]ij

(
σ+

i σ−
j + σ+

j σ−
i

)
,� (2)

where σ+
i  and σ−

i  are the raising and lowering operators at node i respectively, �ωi is the local 
site energy, and [A (G)]ij = αij  determines the hopping rate (interaction) between joined nodes 
i and j.

In the following we will consider the single excitation approximation, as often used for 
light-harvesting complexes and for quantum states and information transfer [7, 27, 28]. Hence, 
the state |i〉 denotes the presence of one excitation in node i, i.e. σ+

i = |i〉〈0|, etc. The exit or 
target node can be thought of as the location from which a decay process transfers irrevers-
ibly excitation to a sink, labelled as N  +  1. If the target node is node N, then this decay can be 
formally described by the addition of the Lindblad superoperator

Lsk (ρ)

= ΓN+1
(
2σ+

N+1σ
−
N ρσ+

N σ−
N+1 −

{
σ+

N σ−
N+1σ

+
N+1σ

−
N , ρ

})
,

�
(3)

where ρ describes the state of the network, ΓN+1 is the decay rate to the sink, and 
{A, B} = AB + BA is the anti-commutator. The transfer efficiency is given by the probability 
of population transfer to the final node:

Definition 1.  Consider a graph G with Hamiltonian dynamics H0, network state ρ, target 
node N and sink decay ΓN+1. The transfer efficiency is

psink (t) = 2ΓN+1

∫ t

0
ρNN (s) ds.� (4)

Formally, the transfer efficiency represents the probability for the electronic excitation to 
be transferred to the sink, while 1 − psink (t) corresponds to the energy trapped in the network.

When all the sites have the same local energies and coupling energies, these networks 
resemble those studied in the field of quantum search with continuous time quantum walks 
[29, 30]. There also exists contrasting quantum networks with discrete-time evolution that 
can be written in a quantum circuit formulation [31, 32] which we are not considering here. 
However, it should be noted that continuous-time quantum walks and discrete-time quantum 
walks are connected by a limiting procedure, as it is shown in [33].

Now, we consider the following definition of dark subspace [7]:

Definition 2.  Consider a graph G with Hamiltonian dynamics H0 and target node N, corre
sponding to the state |N〉 = (0, 0, . . . , 0, 1) in the site basis. The dark subspace is the vector 
space spanned by the eigenvectors of H0 that are orthogonal to |N〉.

In order to determine the dark states, it is necessary to know the spectrum of the Hamiltonian 
and the position of the exit node. The term ‘dark state’ in this context was first used by [7], 
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who called the dark subspace as the ‘invariant subspace’, since it is invariant under the dynam-
ics described above. We can also define the corresponding light subspace as being spanned 
by all the eigenvectors of H0 that are not orthogonal to the target node |N〉. In this last set of 
eigenvectors it is possible to identify a particular subset made of quasi-dark states that are are 
quasi-orthogonal to |N〉:

Definition 3.  Consider a graph G with Hamiltonian dynamics H0 and target node N, corre
sponding to the state |N〉 = (0, 0, . . . , 0, 1) in the site basis. The quasi-dark states are eigen-
vectors {|ψ〉} of H0 where |〈N|ψ〉| � ε.

Quasi-dark states do not trap the excitation permanently as dark states, but they can cause 
transport to be slow, where the value of ε will depend on the preferred time and energy scale in 
a particular application. More generally, we can quantify the trapping capacity of an eigenvec-
tor with the darkness strength:

Definition 4.  Consider a graph G with Hamiltonian dynamics H0 and target node N, corre
sponding to the state |N〉 = (0, 0, . . . , 0, 1) in the site basis. Let |φ〉 be an eigenvector of H0. 
The darkness strength ε of |φ〉 is |〈N|φ〉| =: ε.

The darkness strength is zero for dark states and very close to zero for quasi-dark states.
In the case of noisy quantum dynamics, that is the network is coupled to some environ

ment, then there can be also dissipative and dephasing processes. They can be described by 
the following Lindblad superoperators,

Ldiss (ρ) =

N∑
j=1

Γj

(
2σ−

j ρσ+
j −

{
σ+

j σ−
j , ρ

})
,� (5)

Ldeph (ρ) =

N∑
j=1

γj

(
2σ+

j σ−
j ρσ+

j σ−
j −

{
σ+

j σ−
j , ρ

})
,� (6)

where Γj  and γj  are dissipation and dephasing rates for node j, respectively. The total evolution 
of the state of the network is then

ρ̇ (t)

= − i
�
[H0, ρ] + Lsk (ρ) + Ldiss (ρ) + Ldeph (ρ) ≡ L [ρ] ,

� (7)

where L is the Lindblad superoperator that describes the coherent and incoherent part of the 
system evolution and [A, B] = AB − BA is the commutator.

Further on in the paper for specific illustrative cases (especially sections 3.3 and 6), we will 
consider homogeneous and non-weighted graphs:

Definition 5.  A graph G is homogeneous when every node in V(G) has the same properties: 
the same local energy �ωj = �ω, the same dissipation rate Γj = Γ and the same dephasing rate 
γj = γ ∀j ∈ V(G). Furthermore, if the weights of the edges αij = a ∀(i, j) ∈ E(G) then G is 
also a non-weighted graph.

2.1.  Examples of dark subspaces

In the homogeneous case and uniform coupling rates, the Hamiltonian H0 in the single exci-
tation subspace is the adjacency matrix of the underlying network. Thus, the dark subspaces 
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of the Hamiltonian are the eigenspaces of the network that are orthogonal to (0, . . . , 0, 1). 
Non-degenerate eigenvalues with eigenvectors of form (. . . , 0) lead to one-dimensional dark 
subspaces, while eigenvalues with degeneracy k are related to dark subspaces of at least 
dimension k  −  1, depending on whether or not the eigenspace is entirely orthogonal to the 
target node—see appendix in [7] to see how to find them.

We can consider the more general question of whether a network has any potential dark 
subspaces—whether it has any eigenvectors with zero entries in the site basis. Clearly, net-
works with degenerate eigenvalues will automatically have dark subspaces relative to any 
node of the network. In terms of substructures, it has been found that 0 and  −1 eigenvalues 
are related to stars and cliques on the network [34–36], suggesting that graphs with many stars 
or cliques will have degenerate 0 or  −1 eigenvalues, respectively.

Now, we look at some examples of dark subspaces on paths, lattice graphs and complete 
graphs [7, 15]. However, by exploiting the knowledge of the eigenspectrum of numerous other 
classes of graphs [37], our statements about the corresponding dark subspaces can be general-
ized to other complex networks.

	 •	�Path and Lattice Graphs: State transfer on spin chains and spin networks have been studied 
in the literature (e.g. [1, 4]), and they are one of the fundamental models in physics. 
Underling spin chains with nearest neighbour coupling are path graphs. The eigenvalues of 
path graphs are all nondegenerate λk = 2 cos (πk/ (N + 1)) for k = 1, . . . , N . The corre
sponding unnormalised eigenvectors xk have components (xk)m = sin (πmk/ (N + 1)) 
and zeros emerge at ‘symmetry points’ that split the path graph into equal parts [37]. 
Thus, if our target node is at any one of these zeroes, then there is a dark subspace. 
However, in typical state transfer on spin chains, the target node is the end node, where 
there is never a zero: hence perfect state transfer is clearly possible because there is no 
relevant dark subspace. Larger lattice graphs also have dark nodes at symmetry points of 
the network [15, 38].

	 •	�Complete Graphs: A fully connected network (FCN), or complete graph, of N nodes, 
is defined as a network where there is a link between any pair of nodes. There is one 

eigenstate |φ〉 =
(
1/

√
N
)∑N

j=1 |j〉 with eigenvalue λ1 = N − 1, and a degenerate 
eigenspace of dimension N  −  1 with eigenvalue λ2 = . . . = λN = −1 [37], whose basis 
can be chosen as |ψj〉 = |1〉 − |j〉 for j = 2, . . . , N. The dark subspace is spanned by 
{|ψj〉 : j = 2, . . .N − 1}, which has dimension N  −  2. If the initial state is localised on a 
single node, then it is unavoidable that a component of it will lie in the dark subspace [7].

3.  How to enhance transfer

In this section, we review several tools that can be exploited in order to increase the net-
work transfer efficiency. One could either choose specific initial states, as in section 3.1, or 
use control fields to time-dependently change the effective Hamiltonian dynamics as in sec-
tion 3.2. Section 3.3 considers the case where disorder and dephasing are applied to the system 
dynamics.

3.1.  Smart initialisation

The evolution of the eigenstates in dark subspace is coherent and stationary (up to a phase), 
hence it will never lead to a state with a non-vanishing component on site N, i.e. without reach-
ing the exit node N. Indeed, the evolution of the dark subspace as a whole is also invariant. 
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If the initial state on the network has any non-zero component in the dark subspace, that 
component remains within the dark subspace and thus forever trapped on the network. Only 
the components in the corresponding light subspace will transfer to the exit. By initialising 
completely outside the dark subspace, i.e. with an initial state that is orthogonal to the dark 
subspace, full transfer of the energy will eventually occur:

lim
t→∞

psink(t) = 1.
� (8)

However, the transfer can still take a long time if there are any quasi-dark states.
This line of attack is pursued by [7, 39], who consider small networks with three nodes 

known as trimers, shown in figure 1. Trimers have one dark state that causes excitations to 
get trapped [7, 20, 40–43]. In fact, one can consider the following Hamiltonian (in the first 
excitation subspace),

H =




1 0 1
0 1 1
1 1 1


 ,� (9)

with the target node being |3〉 = (0, 0, 1). Hence, the dark state is |D〉 = (|1〉 − |2〉) /
√

2 , and 
the other two eigenstates are 1/2 (|1〉+ |2〉)±

√
2/2|3〉. If the network state is initialised as 

|1〉 or |2〉, or in an incoherent combination, then the state is inevitably partly trapped in the 
dark state. Conversely, if the initial state is the coherent superposition (|1〉+ |2〉) /

√
2 , then 

perfect transfer occurs. For the in-between initialisation 
(
|1〉+ eiφ|2〉

)
/
√

2 , there is imperfect 
transfer, with zero transfer when eiφ = −1 (i.e. initialisation as the dark state). There, dephas-
ing in conjunction with smart initialisation (see section 3.3) is required to suppress the dark 
state. This holds for more general networks—if the initial state is completely within the light 
subspace then the asymptotic transport efficiency is unity.

However, since eigenstates tend to be delocalized and a generic initial superposition 
will necessarily have a non-zero component in the dark subspace, other techniques will be 
exploited later to enhance transport.

3.2.  Control fields

Applying various control fields on the network during the transfer process could alter the 
direction of the evolution of the state of the network, and increase transport efficiency by 
modifying the nature of the dark subspace.

Given a controlled system, a state ρ′ is reachable from state ρ0 if there is a sequence of 
control fields (along with any underlying Hamiltonian evolution) that will evolve ρ0 into ρ′ 
in some finite time. A system is controllable (or fully controllable [44]) if any state in the 

Figure 1.  Trimer configuration. The source can either initialise the state as an incoherent 
mixture of |1〉 and |2〉 or as a coherent superposition of |1〉 and |2〉.
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state space is reachable from any other state [6, 45]. Formally, if H0 is the system/network 
Hamiltonian (that is time-independent), Hm are a set of Hamiltonians that can be applied onto 
the network, and fm (t) are the time-varying controls, then the total Hamiltonian under which 
the system evolves is

H (t) = H0 +
∑

m

Hmfm (t) .� (10)

A system is fully controllable if the Lie algebra rank condition is true: if the Lie algebra gener-
ated by iH and iHm is isomorphic to unitary group u (N) [44], generating all possible unitaries.

Pemberton–Ross et al [6] find that the more symmetric a network is, the larger the dark 
subspace tends to be; by adding controls, modifying the Hamiltonian etc, these symmetries 
can be broken and some dark states can be accessed. In [46], symmetry breaking is used to 
make a controlled quantum thermal switch. When the switch is ‘off’, the central qubits are all 
in the dark subspace and no energy can be transferred from one side to the other. Zimborás 
[47] breaks time-reversal symmetry to increase transport efficiency. More generally [48, 49], 
study how symmetries of the Hamiltonian relate to lack of full controllability, and [50] finds 
that lack of certain symmetries of the Hamiltonians are necessary for full controllability.

Control fields could also take the network into a higher excitation subspace. By doing so, 
[6] define two grades of dark states: weaker dark states that become non-dark by the introduc-
tion of extra excitations or energy-preserving control fields; and truly dark states that require 
permutation symmetry-breaking7 to be destroyed. As such, the weaker dark states could be 
used as storage, since they are more protected from decay (from the sink) than the non-dark 
states, and are more accessible than the truly dark states [6].

The application of control fields is often not desirable, however. A static network that has 
high transfer efficiency is generally simpler to implement. Since the breaking of symmetry can 
lead to enhanced transfer, one can indeed add randomness or dissipative dynamics to break 
symmetry and assist transport [7].

3.3.  Disorder and dephasing

In this subsection we consider the use of disorder and dephasing on the specific case of a 
homogeneous fully connected network with coupling rates αij = 1, which was studied by [7]:

Definition 6.  A graph G with adjacency matrix A(G) is said to be a fully connected  
network (FCN) if there is an edge between every pair of nodes: [A(G)]ij �= 0 for all i �= j.

In our particular case the corresponding adjacency matrix is:

[A (G)]ij =

{
1, if i �= j;
0, otherwise.� (11)

Caruso et al [7] find that the probability of transfer for a homogeneous FCN of size N is:

psink (∞) =
1

N − 1
,� (12)

i.e. for large networks the transfer is very small. In fact, such perfectly coherent networks 
are even worse than classical networks with incoherent hopping which have complete trans-
fer in the limit t → ∞. The poor transfer can be seen as being due to the large size of the 

7 Permutation symmetry-breaking would involve unequal control fields or disorder such that the interchange of 
previously indistinguishable qubits is now invalid.
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dark subspace, given the network symmetries intrinsic in the complete graph with identical 
nodes—in fact, it has the largest possible dark subspace of dimension N  −  2 for a network of 
N nodes. By introducing static disorder to D local node energies, the dark subspace reduces in 
size and the probability increases to

psink (∞) =
1

N − D − 1
.� (13)

Hence, for a FCN with D  =  N  −  2 different (disordered) node energies, psink (∞) = 1. Any 
initial state has no component in any remaining invariant subspace [7]. Static disorder can 
also make transfer more robust against dissipation/noise in the weak dissipation regime [51].

Local dephasing on the network nodes has a very similar effect. If there is local dephasing 
on all nodes then the dark subspace can vanish, and psink (∞) → 1. In the special case of FCN 
the best method to obtain a unity transfer efficiency in short times is to apply strong dephasing, 
which leads to complete lack of coherence and so to a classical dynamics; this is due to the 
large size of the dark subspace, as discussed before. Instead, other networks need an interplay 
between quantum coherence and dephasing to destroy the invariant subspace and to obtain the 
same performance of FCN in the classical regime [7, 15]. The time evolution of the transfer 
efficiency in case of static disorder and local dephasing are shown in figure 2, for a FCN with 
N  =  32 nodes. For simplicity’s sake and for illustration purposes, the sink rate is taken to be 
ΓN+1 = 1. In fact, as it has been demonstrated in [7], ΓN+1 ≈ 1 gives rise to similar behav-
iour; conversely, if ΓN+1 � 1 ∨ ΓN+1 � 1, psink (∞) → 0, independently from any other 
boundary conditions. The fact that for large ΓN+1 the transfer to the sink is very low is due to 
quantum Zeno phenomena. Furthermore we set the dissipation rates Γj = 0 for j = 1 . . .N  
as environment-induced dissipation can enhance transport if pure dephasing or static disorder 
are present [7] and we currently wish to isolate the effects of static disorder and pure dephas-
ing. Note that the transfer efficiency has been averaged over the location of the sink, since 
especially in asymmetric cases, different sink locations give rise to different dark subspaces.

Dephasing also leads to line broadening, i.e. another way to view the enhanced transport is 
due to the stronger overlap between excitation lines of the interacting nodes [7]. With the com-
bination of dephasing and static disorder, static disorder is only advantageous when dephasing 
is weak. When noise (dissipation or dephasing) is too strong, quantum Zeno phenomena occur 
and the dynamics is frozen [7, 15, 24, 51]: this may be exploited for storage.

4.  Graph theorems

For uniform site energies and coupling rates, i.e. H  =  A, we can apply two theorems from 
graph theory which ultimately give the existence of network dynamics for which there are 
no dark subspaces. The first result is based on the following theorem. Given a real symmetric 
matrix A  =  [aij] of size N, one can always associate a weighted graph G with N nodes and with 
edges {i, j} that have weights aij for i �= j.

Theorem 1 (Monfared and Shader [52]).  For a given connected graph G of N vertices, 
and given a set of distinct values λ1,λ2, . . . ,λN , there exists a real symmetric matrix A whose 
graph has the same topology as G and whose eigenvalues are λ1,λ2, . . . ,λN , such that none 
of the eigenvectors of A have a zero entry.

By the above theorem, if we have some given underlying connected topology given by 
graph G, then we can find a set of weightings for the edges—interactions between the dif-
ferent nodes—such that the corresponding adjacency matrix A(G) of the graph has distinct 
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eigenvalues, and all the corresponding eigenvectors have no zero entry. With such dynamics, 
there is no dark subspace on the network relative to any target node.

Corollary 1.  For any given underlying connected graph G, there exists Hamiltonian  
dynamics with no degenerate eigenvalues on the graph for which there is no dark subspace.

Real networks tend to have eigenvalues with higher multiplicities (degeneracy) than com-
parable randomly generated networks [53]. However, if we are able to change the interactions 
between the nodes that are joined, using, for example, a combination of a different underly-
ing Hamiltonian, control fields, and disorder and noise (see sections 3.2 and 3.3), then we 
could break unfavourable symmetries and we can eliminate the dark subspace altogether and 
achieve perfect energy transfer. In addition, our next result ultimately states that we may not 
even need to consider weighting the edges if the graph in question is sufficiently large.

Erdős–Rényi graphs G (N, p) have N nodes, in which any edge between any two nodes has 
some probability p of being there [54]. These graphs are very likely8 to be disconnected if 
p < ln (N) /N  i.e. if the probability of edges is sufficiently low [55]. Note that for p �= 0, 1, 
the set of all G (N, p) graphs is equivalent to the set of all graphs, since any graph will be an 
instance of an Erdős–Rényi graph. Given this fact, we can use the following theorem to sub-
sequently make a statement about all asymptotically large graphs:

Theorem 2 ([56]).  A graph G
(
N, 1

2

)
 is controllable with probability at least 1 − CN−α, 

for any α, where C  >  0.

This theorem was conjectured by [57] (see also [58]), and proven by [56]. The notation of 
controllability is the same as that introduced in section 3.2, i.e. the graph is controllable if the 
dynamics (determined by the adjacency matrix, which is equivalent to the Hamiltonian) can 
evolve any state into any other state on the graph. Stated in another way, theorem 2 implies 

Figure 2.  Transfer efficiency as a function of time, in the case of FCN with N  =  32 
nodes. Different noise conditions are shown: no dephasing (continuous line), classical 
dynamics (dashed) and the optimal dephasing rate between these two last regimes (dot). 
The transfer efficiency has been averaged over all possible input and output nodes. We 
have considered Γj = 0 for j = 1 . . .N  and ΓN+1 = 1.

8 A property P of a graph holds asymptotically almost surely for G (N, p) if the probability of P being true goes to 
one as N → ∞.
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that the relative number of controllable graphs to any graph tends to one as N → ∞. By pick-
ing a very large graph at random, it is almost surely controllable, and thus almost surely has 
no dark states.

Corollary 2.  A connected graph G of size N, with Hamiltonian dynamics given by the adja-
cency matrix, asymptotically almost surely has no dark subspace as N → ∞.

Hence almost surely, energy transfer on large graphs will happen perfectly if we allow for 
time t → ∞, without requiring the addition of further controls or different interaction strengths 
between the nodes. In conjunction with theorem 1, this confirms the intuition that large ran-
dom graphs are generally not symmetric and tend to have distinct eigenvalues. Furthermore, 
the eigenvectors are noisy and delocalised, therefore leaving almost surely no place for a dark 
subspace to hide.

5.  Application to light-harvesting

Real quantum networks are always subjected to noise. However, environmental interaction 
can enhance transport through a dissipative network9. Such noise can maintain and even gen-
erate quantum coherence and entanglement [60–64]. This is well demonstrated with the trans-
port of excitations in light-harvesting complexes, which have attracted much interest in the 
last decade.

Light-harvesting complexes, or antenna systems, are networks composed of chromophores 
absorbing photons and transporting the created electronic excitations to the reaction centre 
(the target node). The simplest light-harvesting complex is the Fenna–Mathews–Olson (FMO) 
complex (found in green sulphur bacteria), and recent experimental evidence strongly sug-
gests that quantum coherence features play a crucial role during the energy transport process 
[8–10].

Theoretical studies of the FMO complex show that the additional presence of dephasing 
noise is needed to describe the observed transport efficiency of almost 100% [7, 12–14, 65, 66]. 
This is further supported by the experimental study in [25], which experimentally showed that 
optimal transport in an engineered light-harvesting complex occurred when quantum coher-
ence was combined with noise. There, a light-harvesting antenna system has been realized 
with a biological material, the M13 virus, and a chromophore network has been created on 
its filaments. Two versions of this system have been genetically planned: one with a network 
made of weakly coupled chromophores, and the other one with reduced inter-chromophoric 
distance, causing clusters of strongly coupled chromophores. In this second version, involv-
ing coherent and incoherent features, they have observed a remarkable improvement of both 
transport speed and diffusion length of the electronic excitation. The average chromophoric 
distance was exploited to study and control the optimal mixing rate between coherence and 
noise. Here, the environment assists the transport by suppressing the dark subspaces or induc-
ing interaction between them and other states, causing ultimate leakage into the sink [7, 51].

6. Topology robustness

In this section, we numerically study the change of the dark subspaces under modifications 
of the quantum network. Firstly we will consider the addition of control fields across the 

9 Noise enhancement also occurs within classical mechanics, but via physically different mechanisms  
(e.g. stochastic resonance [59]).
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network. A second method to modify the interactions between the nodes (with the aim to 
decrease the subspace) is to remove certain edges or links on the network entirely. Depending 
on the experimental set-up, this could decrease the experimental load, or mimic the case of 
material defects that lead to missing connections between nodes.

Inspired by light-harvesting complexes, we examine two different models: the fully con-
nected network (FCN) (see definition 6) and a cylinder graph. The former suits better the 
antenna systems, that are typically fully connected (albeit with differing interaction energies), 
and the latter’s topology is similar to the M13 virus structure.

Definition 7.  A graph G with adjacency matrix A(G) and N nodes is said to be a  
cylinder graph if G is topologically equivalent to the Cartesian product of a path 
graph Pk and a cycle graph CN/k, Pk�CN/k. Note that the nodes of Pk�CN/k consist of 
V(Pk�CN/k) = ( p, c)|p ∈ V(Pk), c ∈ CN/k . An edge exists (( pi, ck), ( pj, cl)) ∈ E(Pk�CN/k) 
if either ( pi, pj) ∈ E(Pk) or (ck, cl) ∈ CN/k .

Figure 3 shows a diagram of a cylinder graph. For a cylinder of dimensions m × n, with m 
as the number of nodes along the direction orthogonal to the axis and n as the number of nodes 
along axis direction, the entries above the main diagonal of the (m × n)× (m × n) adjacency 
matrix, are:

[
Ã (G)

]
ij =




1, if j = i + 1, i �= kn (k = 1, . . .m − 1);
1, if j = i + kn (k = 1, m − 1);
0, otherwise.

� (14)

The complete adjacency matrix of the non-weighted graph results from the sum of the previ-
ous strictly upper triangular matrix and its transpose.

Because of its symmetries, the cylinder graph also has an invariant dark subspace, but 
of lower dimension than the fully connected network’s dark subspace; this allows a greater 
asymptotic value of transfer efficiency (see figure 4). Furthermore, a unital transfer efficiency 
in short times is obtained not in a classical regime like for the FCN (figure 2), but rather with 
an interplay between quantum coherence and dephasing, as we stated in section 3.3.

6.1.  Applied control fields

In figure 5 we apply various different control fields to modify the weight of a single edge in the 
FCN and cylinder networks. The time dependent functions used to modify the weight value 
are a linear decreasing function of the form α = − t

tmax
+ 1, and a sinusoidal function of the 

form α =
∣∣∣sin

(
kπ
2

(
− t

tmax
+ 1

))∣∣∣, with tmax as the endpoint of the time interval considered.

Figure 3.  Diagram of the cylinder network structure.
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Transport simulations have shown that to destroy the dark subspace and obtain a unital 
transfer efficiency on fully connected network we have to act on an edge involving the initial 
node—if the dark subspace exists, then the initial node lies appears in the set {|ψj〉} of vec-
tors spanning the dark subspace, and even a little perturbation of one of its coupling rates may 
cause a significant change in the spectrum of Hamiltonian H of the system (see section 3.3). 
The time it takes for complete transfer to subsequently occur depends on which edge to which 
other adjacent node is chosen to be time-varied. The initial node has a less important role on 
the cylinder graph: the dark subspace vanishes if we act on an edge involved in its symmetry. 
The asymmetric nature of the applied fields breaks some of the prior network symmetries. 

Figure 4.  Transfer efficiency as a function of time, in the case of a 4 × 8-cylinder with 
N  =  32 nodes. Different noise conditions are shown: no dephasing (continuous line), 
classical dynamics (dashed) and the optimal dephasing rate between these two last 
regimes (dot). The transfer efficiency has been averaged over all possible input and 
output nodes. We have considered Γj = 0 for j = 1 . . .N  and ΓN+1 = 1.

Figure 5.  Transfer efficiency as a function of time, in the case of FCN with N  =  32 
nodes (left) and a 4 × 8 cylinder (right). Different control systems on the value of a 
single coupling rate αi,j  are shown: no control (continuous line), linear decrease (dot), 
and sinusoidal oscillation (dashed). The varying αi,j  is the coupling α1,32 in case of 
FCN (1 is the initial node, 32 is the node connected to the sink), while it is the coupling 
α1,9 for the cylinder (1 is the initial node, 9 is one of the nodes defining the circular 
path—see figure 3).
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Furthermore, the linearly decreasing coupling field also breaks time-reversal symmetry, lead-
ing to the fast approach to complete transfer.

As previously stated in section 3.2, implementing a control system on network structure is 
not easy. A simpler way to enhanced transfer with a control field is by using a static network 
with time-dependent dephasing rates/static disorder; this topic will be analysed in a forthcom-
ing paper.

6.2.  Random removal of links

The results of randomly removing interactions between nodes is shown in figure 6. The posi-
tive effect of removing links is clear on the FCN, due to the maximally symmetric nature. 
Randomly removing links quickly breaks its symmetries. In turn, this leads to the reduction 
in the dark subspace dimension and hence reduces the amount of trapped energy. In contrast, 
the cylinder graph benefits from link deletion only up to a small percentage of removed links 
(about 5% of the total); when this percentage grows another dark subspace appears again and 
the transport gets worse. The energy trapped grows linearly with the number of dark states 
for both the FCN and cylinder networks. As the number of removed links grows, the energy 
trapped on the FCN network monotonically decreases, whilst the energy trapped on the cylin-
der network decreases initially and then increases again. The latter increase in trapped energy 
in the cylinder is due to the appearance of new symmetries and the increasing sparsity of the 
edges—while the FCN initially has 496 edges (N(N − 1)/2), the cylinder graph has only 
60 edges (4 edges within each of the 8 cycles and 4 × 7 edges connecting each of the cycles 
successively).

However, although the deletion of links is a good method to reduce the number of dark 
states, it is not sufficient in reducing the presence of quasi-dark states, since the latter are more 
persistent. In figure 7, we plot the number of dark states and quasi-dark states as a function 
of the darkness strength and of the number of deleted links. Note that it turns out to be more 
difficult to destroy quasi-dark states by means of removing links. Moreover, in agreement with 
figure 6, after removing too many links in the cylinder graph, new dark states can emerge, as 
shown in the right panel of figure 7, which is not the case for the FCN for the number of links 
removed (left panel of figure 7).

Figure 6.  Relationship between the number of removed links (black spheres), the 
number of dark states (blue squares) and the energy trapped in the dark subspace in 
case of FCN (left), and 4 × 8-cylinder (right); both have N  =  32 nodes.
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A more subtle method of changing the node interactions is to introduce dephasing into the 
dynamics. In figure 8, we plot the time evolution of transfer efficiency of a cylinder graph, 
comparing the transfer efficiency when there are no removed links, versus with an optimal 
number of removed links (corresponding to minimal trapped energy of figure 6), versus the 
introduction of dephasing dynamics (but no removed links). In this context, dephasing noise 
opens up additional pathways from the initial node to the final one and therefore suppresses 
both dark states and quasi-dark states. The presence of noise is more effective than link dele-
tion for transport improvement. As already discussed above, without link deletion we have 
a dark subspace obstructing electronic excitation from reaching the sink whilst removing 5 
links allows us to obtain psink (∞) = 1. If the aim is instead the achievement of an optimal 

Figure 7.  Number of dark states as a function of the number of removed links and the 
darkness strength, for FCN (left) and a 4 × 8-cylinder graph (right), with 32 nodes. A 
similar qualitative behaviour is observed for larger networks.

Figure 8.  Time evolution of the transfer efficiency for a 4 × 8-cylinder of N  =  32 
nodes in three different conditions: optimal dephasing noise with no removed links (dot 
line), coherent dynamics with no removed links (continuous), and coherent dynamics 
but with 5 removed links (dot-dashed). Each transfer efficiency has been averaged over 
all possible input and output states, and with ΓN+1 = 1.
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fast transport, dephasing noise plays a crucial role: in fact psink reaches unity in a much shorter 
time scale (dot line in figure 8).

Noise-assisted transport is characterized not only by a reduced time scale for the energy 
transfer, but also by the robustness against possible changes of the underlying topology, as 
discussed in [15]. By varying the geometry and adding the right amount of noise, a very good 
transport performance is guaranteed. This does not occur in the fully coherent and incoherent 
cases, where the transfer efficiency quickly decreases, as it can be seen in the inset of figure 9. 
This remarkable robustness is present in the regime of noise-assisted transport, as shown by 
the smaller dispersion around the optimal efficiency with respect to the fully coherent and 
incoherent regimes. Finally, let us point out that the minimum of the relative standard devia-
tion and the maximum of the average of the transfer efficiency in the coherent case (corre
sponding to 5% of removed links) is a further sign of dark subspace suppression.

7.  Conclusions

The dark side of quantum networks is an antagonist to optimal energy transfer. Different tools 
can be employed to deal with the dark subspaces: we can avoid them using smart initialisation, 
or suppress and destroy them by breaking the network symmetries through the use of control 
fields, noise, or disorder. Indeed, dark subspaces have a deep connection with topological 
symmetries, and can grow in size on more symmetric networks (associated to more degener-
ate adjacency matrices). The FCN network, for example, has the most symmetries possible 
on a network and hence the largest dark subspace. At the same time, the FCN network also 
responded most favourably to dark space suppression tools as opposed to the less symmetric 
cylinder graph. Whilst the dark subspace has been defined in relation to the eigenstates of the 
Hamiltonian describing the dynamics on the network, the framework of the dark subspaces 
could also be generalised to include other features, such as impurities that trap and cause 
decay of energy on the network [43], and to Lindbladian eigenstates in more generality. The 
best method to get optimal transport would depend on the function of the device we want to 

Figure 9.  Relative standard deviation of transfer efficiency as a function of the number 
of removed links for a 4 × 8-cylinder with N  =  32 nodes, with fixed input and output 
nodes (at opposite ends) and ΓN+1 = 1, and corresponding to a sample of 200 different 
geometries. The corresponding averaged transfer efficiency is shown in the inset.
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plan: if the goal is the unity of psink without time limits, then designing a proper weighted 
network could be the solution (assuming that it is within our engineering ability); if short 
times and performance robustness are crucial (as it is usually the case), then the introduction 
of noise in the dynamics is required. Given that noise is unavoidable in most realistic systems, 
this implies that we generally do not need to eradicate all noise to achieve optimal transport—
we just need to be able to control it to some degree.

Besides, we found that a network does not have any truly dark states, if the interactions can 
be tuned to achieve full controllability although this may not be quite feasible experimentally. 
If the interactions can be engineered, then this is advantageous in two ways: first, no excitation 
is truly trapped on the network, hence we can always be sure that full transfer will eventu-
ally occur; second, there will be ‘temporary’ dark states that could be used as energy storage. 
Furthermore, sufficiently large graphs almost surely have no dark states, implying that as our 
quantum networks grow in size (i.e. as the particular quantum technology grows in size), we 
are very likely to not require extensive interaction engineering to ensure full transport.

These results allow one to move further in understanding and enhancing state transfer 
on quantum networks [4, 27, 67]. These results can also be employed to understand other 
quantum processes such as electron transfer, and to designing solar energy devices (e.g. 
inspired by the energy transfer networks in photosynthetic complexes), and potential quantum 
thermal devices.
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