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Abstract

We investigate emission signatures of binary compact star gravitational wave (GW) sources consisting of strongly
magnetized neutron stars (NSs) and/or white dwarfs (WDs) in their late-time inspiral phase. Because of
electromagnetic interactions between the magnetospheres of the two compact stars, a substantial amount of energy
will be extracted, and the resultant power is expected to be ∼1038–1044 erg s−1 in the last few seconds before the
two stars merge, when the binary system contains a NS with a surface magnetic field 1012G. The induced electric
field in the process can accelerate charged particles up to the EeV energy range. Synchrotron radiation is emitted
from energetic electrons, with radiative energies reaching the GeV energy for binary NSs and the MeV energy for
NS–WD or double WD binaries. In addition, a blackbody component is also presented, and it peaks at several to
hundreds keV for binary NSs and at several keV for NS–WD or double WD binaries. The strong angular
dependence of the synchrotron radiation and the isotropic nature of the blackbody radiation lead to distinguishable
modulation patterns between the two emission components. If coherent curvature radiation is presented, fast radio
bursts could be produced. These components provide unique simultaneous electromagnetic signatures as
precursors of GW events associated with magnetized compact star mergers and short gamma-ray bursts (e.g.,
GRB 100717).
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1. Introduction

The gravitational wave (GW) event GW170817 was recently
detected by the advanced LIGO and Virgo (Abbott
et al. 2017b), and in less than 2s, an associated short γ-ray
burst (GRB 170817A) was observed (Abbott et al. 2017a;
Goldstein et al. 2017; Savchenko et al. 2017; Zhang et al. 2017;
Li et al. 2018), confirming that γ-ray bursts can indeed be
produced by neutron star (NS) mergers. Subsequently, multi-
band electromagnetic (EM) counterparts were observed in the
radio (Alexander et al. 2017; Hallinan et al. 2017), optical
(dominated by the “kilonova,” e.g., Abbott et al. 2017c;
Coulter et al. 2017), and X-ray (Margutti et al. 2017; Troja
et al. 2017) bands, respectively. A summary of the multi-
messenger and multiband follow-up observations of
GW170817 was presented in Abbott et al. (2017c). This was
the first detection of both a GW event and its EM counterparts.
These observations not only confirm the prediction that short
GRBs originate from NS mergers, but they also provide strong
support to the NS–black hole (BH) merger scenario (see
Goodman 1986; Paczynski 1986; Eichler et al. 1989; Narayan
et al. 1992).

EM counterparts of GW events from mergers are of great
importance in astrophysics and fundamental physics. They
provide a means of investigating the multi-facet, such as the
dynamical behavior of the GW sources throughout the entire
merging process. With NS mergers now established as GW
sources, pre-merger EM counterparts of GW events would
naturally be precursors of short GRBs. Currently, much
attention has been drawn to EM emission properties of the
GW sources shortly preceding merger/coalescence events (for
reviews of EM counterparts of double NS and NS–BH mergers,

see e.g., Fernández & Metzger 2016). Previous research on the
pre-merger EM counterparts has invoked the unipolar inductor
(UI) process, operating in close binary systems where one of
the compact star is strongly magnetized, extending its magnetic
filed lines to the weakly magnetized (or non-magnetic)
companion (McWilliams & Levin 2011; Lai 2012; Piro 2012;
D’Orazio et al. 2016; Wang et al. 2016, see also Vietri 1996;
Hansen & Lyutikov 2001). This UI model was analogous to the
UI model originally proposed for the the Jupiter–Io system
(Piddington & Drake 1968; Goldreich & Lynden-Bell 1969, see
also Hess et al. 2007), which was also generalized for white
dwarf (WD) binaries (Wu et al. 2002, 2008; Willes & Wu 2004;
Dall’Osso et al. 2006, 2007; Wu 2009), planet–WD systems (Li
et al. 1998; Willes & Wu 2004, 2005), the exo-planet–magnetic
stars systems (Zarka et al. 2001; Zarka 2007; Laine & Lin
2012), and the pulsar–planet system (Mottez & Heyvaerts
2011a, 2011b; Mottez & Zarka 2014; Dai et al. 2016).
Wang et al. (2016) proposed that fast radio bursts (FRBs) are

produced via a UI process, expected to occur during the late-
time inspiral of two NSs. They analyzed the required
conditions for successful FRBs, and found that the EM
energy-loss rate in the UI model is consistent with that of the
EM power of NS–BH binary and double NS binary (for a ratio
of 100 between the magnetic dipole moments of the two NSs)
during their late-time inspiral phase derived from general
relativistic magnetohydrodynamics (GRMHD) simulations (see
Palenzuela et al. 2013; Paschalidis et al. 2013; Ponce
et al. 2014; Paschalidis 2017). For the merging of two NSs
with comparable magnetic fields, GRMHD simulations showed
that the radiative power generated could be much higher than
that predicted by a simple UI process (see Palenzuela
et al. 2013; Ponce et al. 2014). Note that the interactions
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between two magnetic dipoles and the EM energy-loss rate
were also investigated by Ioka & Taniguchi (2000). However,
as will be shown below, their assumption of a rigid dipole field
is not unquestionable when the magnetic interaction deforms
the structure of the magnetic fields in the late inspiralling phase.

In this paper, we investigate the EM emission of two
compact stars during their late-time inspiral phase, due to the
interaction between their magnetospheres. The paper is
organized as follows. In the next section, we first investigate
the time-dependent properties of EM energy loss from a binary
compact star system. The rate of EM energy loss had been
studied previously in the GRMHD simulations. However, the
simulations were restricted to the last several milliseconds
before the merging occurs (Palenzuela et al. 2013; Paschalidis
et al. 2013; Ponce et al. 2014). Here, we adopt an analytic
approach, which allows us to extend the time coverage and
obtain an understanding of how the behavior of the EM
counterpart proceeds to the final merging phase. We presents
theoretical multiband signals expected from these close orbiting
compact binary systems in Section 3, and observational
signatures, in particular spectral properties, in Section 4. A
summary and discussion are given in Section 5.

2. Electromagnetic Energy-dissipation Rate

We first calculate the EM radiation from double NS binaries
during their inspiral. Then we extend the calculations to the
NS–WD binaries and double WD binaries. The UI process in
the double BH systems requires a different treatment and
deserves a more thorough separate study (e.g., Zhang 2016). The
double BH systems are therefore not considered in this work.

Consider that a double NS binary comprises of a magnetic
main star with a magnetic dipole moment, B R 3

* * *
m = , and a

companion with B Rc c c
3m = , where B* is the characteristic

surface magnetic field, and R* is the radius of the main NS.
Here and after, we use the subscript “*” to represent the main
star, and “c” to represent the companion. The binary is
separated by a distance, a, and orbits at an angular speed

GM q a1 3 1 2
*W = +[ ( ) ] , where M is the mass, and

q=Mc/M*. We consider three cases according to the
magnetic fields of two NSs: case 0 with B ac

3
*

m< - (including
the case of NS–BH binary), case 1 with c*

m m~ - , and case 2
with c*

m m~ .
In case 0, a UI model is usually adopted. The maximum EM

energy-dissipation rate is then

L M q

R a

1.7 10 1

10 km 30 km erg s , 1

UI
42

,1.4 ,30
2

c
2 7 1
* *

m» ´ +

´ - -

( )

( ) ( ) ( )

under the assumption that the resistance of the system is
dominated by the magnetosphere (Lai 2012), where M ,1.4* is
the main-star mass, in units of 1.4Me, and

10 G cm,30
30 3

* *
m m= . The energy-dissipation rate of the
NS–BH binary can be obtained by replacing the Rc with the
Schwarzschild radius of the BH. However, when Bc>μ*a

−3,
the magnetic interaction also depends on magnetic configura-
tions of both NSs. We study two typical cases as examples: one
is that the magnetic dipole moments of the NSs are anti-parallel
(case 1), and the other is that they are parallel (case 2).
Schematic pictures of these two cases are shown in Figure 1.
Based on the standard magnetic dipole structure, the magnetic
field lines from both NSs interact at a distance

r a 1i
1 3= +( ), where r a ri i

3
c

3
*

m m= -- -( ) , and
ò=μc/μ*. For the anti-parallel case (case 1), the directions
of magnetic field lines are opposite at ri, thus magnetic
reconnection can happen. The total dissipated energy can be
calculated as B r V 8i

2 p( ) , where B r ri i
3

*
m= -( ) is the magnetic

field strength at ri, and V is the volume. In an orbital period
(To=2π/Ω), the volume can be calculated as V r r T h2 i i op» ˙ ,
where h≈0.77ri (see the Appendix) is the possible highest
height of the reconnection zone in a dipole magnetosphere as
shown in Figure 1. Then, we obtain

L B r V T

a

8 1.5

10 1 30 km erg s , 2

a i,rec
2

o

43
,30

2 1 3 3 7 1

*


p

m

» »

´ + - -

( )
( ) ( ) ( )

where M*=Mc=1.4Me, and a G M q q64 13 3
*

= - +˙ ( )/
c a5 5 3 (Peters 1964).
After the magnetic reconnection, a UI can also form. The

electromotive force (EMF) in this case is El  ∣ ∣, where
E v B cc= ´ , v a*= W - W ´( ) , and l is the length where
EMF generates. In the polar coordinate system, the magnetic
field line equation is r r sinmax

2 q= , where rmax is the
maximum distance between the field line and the NS. For the
last close magnetic field line, we have rmax=RL=c/Ωc,
while for the last interacting magnetic field line, we obtain
r a rimax = - or ri for the companion or main star, respec-
tively. To calculate the angle between the magnetic field line
and the magnetic axis, we take r=Rc. Then the length
can be calculated as l R a r Rsin sinic Lq q= - -( ( ) ( )), where

r R a rsin i ic
1 2q = -( ) ( ) is the angle between magnetic axis

and the last interacting magnetic field line (see Figure 1(a)),
and R R csin L c cq = W( ) is the angle between the magnetic
axis and the last close magnetic field line. Let us assume that
Ω*, Ωc are small enough to be neglected. This is appropriate,
as the tidal torque cannot lead to spin–orbit synchronization
during the inspiral (e.g., Bildsten & Cutler 1992; Kochanek 1992;
Lai 1994; Ho & Lai 1999). The resistance is usually considered
to be dominated by the magnetosphere ( c4 4* p= , Lai 2012;

Figure 1. Schematic pictures of the cases with c*
m m=  . The dashed lines

are the interaction magnetic field lines, while the solid line is non-interacting.
We use black regions to mark hot spots, and thick black arrows to mark an
electric field.
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Piro 2012). We then obtain the energy-dissipation rate,

L R

a

2 3.8 10 10 km

1 30 km erg s . 3

a,UI
2 44

c
3

1 3 5 3
,30

2 2 1

*
 

 

m

= » ´

´ +

-

- -

( )
( ) ( ) ( )

For the parallel case (case 2 in Figure 1(b)), the magnetic
field lines beyond ri will be compacted into the area near ri,
thus the magnetic energy is stored. Considering that the
magnetic flux parallel to

*
m is conserved, we can obtain the

compacted mean magnetic field B¢ around ri in the magneto-
sphere of the main star from

B r r dr B r r r , 4
r

i i i
i

ò d= ¢
¥

( ) ( ) ( )

where rid is the thickness of the compacted region. If
we assume r ri id h= , we obtain B r ri i

1 3
* *

m h¢ = - -( ) . The energy
stored in an orbital period is then B r r h r2i i i

2
*

p h¢ -( )
B r r dr r2 0.19 0.08

r i
2 2 2 3

i *ò p h m= -
¥ -( ) ( ) . Replacing μ* and

ri with μc and a−ri, respectively, we obtain the stored
magnetic energy of the companion star. The total energy-
dissipation rate is the sum of the dissipation rates by two NSs,

L r T

a

0.19 0.08 1

1.8 10 0.19 0.08 1

1 30 km erg s , 5

ip
2 3

o

43
,30

2 1 3 3

9 2 1

*

*







h m

h m

» - +

» ´ - +

´ +

-

- -

( ) ( )

( ) ( )

( )( ) ( )

where h=0.77 ri is also used. In comparison with that in case
0, the energy-dissipation rates in case 1 and 2 are much higher.
Assuming that B*=Bc=1012 G, η=0.1, R*=Rc=
10 km, and setting t=10 s when a=Rc+R*, we obtain
the time evolution of the energy-loss rates for the three cases,
as shown in Figure 2. We find that the energy-loss rates and
their dependences on a in our analytical calculations are in
good agreement with the results from simulations (Palenzuela
et al. 2013; Ponce et al. 2014). We find that L 10a,UI

43> erg s−1,
and Lp>1040 erg s−1 for more than 10 s, which make them more
probable to be observed.

We now consider the cases for NS–WD binaries and double
WD binaries. As we mainly consider the electromagnetic energy
loss without significant mass transfers, the separation of the two

stars should be larger than the tidal radius a>rt≈q−1/3Rc; for a
typical WD, we have Mc≈Me and R R0.01c = . The main
star extends its magnetic field on the WD companion at a strength

R 2.1 10c
3 3

,30* *
m m» ´ G, while a moderately magnetized
WD could easily have a magnetic field Bc∼106 G (Norton &
Watson 1989; Wu & Wickramasinghe 1991). Therefore, the
energy dissipation should be calculated using the formulae in
cases 1 and 2 of double NS binaries,

L R R

a

1.1 10 0.01 1

3 10 km erg s . 6

a,UI
30

c
3 1 3

5 3
,30

2 4 2 1

*



 m

» ´ +

´ ´

-

- -

( ) ( )
( ) ( )

L

a

5.7 10 0.19 0.08

1 1 3 10 km erg s .
7

p
29

,30
2

1 3 3 4 9 2 1
*

 

h m» ´ -

´ + + ´ - -

( )

( ) ( )( )
( )

Note that WDs could have magnetic moments higher than
those of the NSs. It is known that WDs in close binaries, e.g.,
magnetic cataclysmic variables, have magnetic moment

10 10 G cm33 34 3m ~ – or even higher (see Wu &
Wickramasinghe 1991).

3. Spectra of the EM Counterparts

3.1. Photon Spectra in Double NS Binary Systems

To derive the photon spectrum, we must first know the
electron spectrum. Note in this paper, we do not distinguish
electrons from positrons. For all three cases, the electric fields
are generated in directions perpendicular to the magnetic fields,
as will be shown below. Therefore, the accelerated electrons
suffer from synchrotron radiation cooling. Here, we neglect the
effects of the E B´ drift for simplification. Because NSs and
WDs usually have very intense magnetic fields, we consider the
synchrotron radiation in the quantum electrodynamics (QED)
regime. The power spectrum for an electron with energy

m ce e
2 g= is given by

P
e

c
K x dx

m c m c
K y

3

8

y

e e

syn

2

1 2 2 5 3

2 2

2 4 2 2 3




òw
w
p g

w
g g w

=

+
-

¥( ) ( )

( )
( ) ( )

(Baring 1988; Akhiezer et al. 1994; Anguelov & Vankov 1999),
where

y
B

B m c

2

3
, 9

e

cri
2





w
g g w

=
-( )

( )

and B m c e 4.41 10ecri
2 3 13= = ´ G is the critical measure-

ment in the QED regime. In the regime of m ce
2w g ,

Equation (8) equals to the classical synchrotron radiation.
The maximum Lorentz factor can then be obtained by

balancing the acceleration with the synchrotron radiation
cooling,

P d P eEc. 10accò w w = »( ) ( )

Let us start with case 0, in which we have E a c2
*

m» W - .
Using the classical synchrotron radiation formula,
P e B m c2 3 esyn,tot

4 2 2 2 3g= , the maximum accelerated Lorentz
factor is obtained as a3.1 10 30 kmmax,acc

2
,30
1 2 5 4

*
g m» ´ - ( )

(Wang et al. 2016). When a<100 km, we should consider the

Figure 2. Energy-loss rates in three cases are shown, where we set t=10 s
when two NSs come into contact.
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QED modification, and the maximum accelerated Lorentz
factor will be roughly two times larger.

The high-energy photons by synchrotron radiation may be
absorbed by the magnetic field to produce electron–positron
pairs in the magnetosphere. The mean free path of a photon
with energy w in a magnetic field B is

B B2.3 10 exp 8 3 cm 118
cril c= ´ - ( ) ( )

(Erber 1966), where B m c Be
2

cric w= . If we take λ∼Rc for
case 0, we obtain a m c1.3 10 30 km emax

2
,30
1 3 2

*
w m~ ´ - ( ) . It

should be noticed that m c 2emax
2w > is required to produce

an electron–positron pair. Therefore, the photons emitted by the
electrons with maximum accelerated Lorentz factor γmax,acc

could be absorbed. Taking this into consideration, we set

max,syn max,accg g as the maximum Lorentz factor for synchro-
tron radiation to make sure that the synchrotron photons will
not exceed the absorption limit.

We here define three partition parameters, ηsyn, ηcur, and ηBB,
to represent fractions of the total energy dissipated by
synchrotron, curvature, and blackbody radiation, respectively.
Next, we consider curvature radiation. Its spectrum is
analogous to classical synchrotron radiation with the Larmor
radius being replaced by the curvature radius of the field line.
The cooling time due to curvature radiation is

t m c P r1.78 10 s, 12ecur
2

cur
8

cur,6
2

2
3g g= = ´ - ( )

where rcur,6 is the curvature radius in units of 106 cm,
and γ2=γ/102. Thus, if the curvature radiation is non-
coherent, the electron will only lose a very small fraction
of its energy to cross the magnetosphere within a time
t a c a10 30 kmcro

4~ ~ - ( ) s, namely 1curh  . But if the
curvature radiation is coherent, a FRB would be produced as
studied in Wang et al. (2016); in this case, ηcur can be much
larger. However, we should note that only photons with a
frequency larger than the plasma cutoff frequency can escape
from the magnetosphere (Lyubarskii & Petrova 1998), i.e.,

n e m4p e e
1 2 2 1 2w g w p g> =- ( ) . If we assume that the

plasma density is of order of the density to screen the electric
field, which is analogous to the Goldreich–Julian density
n B ec2e a p~ W (Goldreich & Julian 1969), the cutoff
frequency is B2 1.8p p a,11

1 2
2

1 2n w p g= ~ - a 30 km 3 4-( )
GHz, where B B10a a

11
,11= G is the magnetic field of the

acceleration region. This is consistent with the observation of
FRBs, as FRBs are generally observed with frequencies larger
than GHz. The rest energy of the electrons will be dissipated
through blackbody radiation after these electrons hit and heat
the main NSʼs surface. Because the thermal conductivity in the
direction paralleling to the magnetic field is much larger than
that in the perpendicular direction (Greenstein & Hartke 1983;
Page 1995; Geppert et al. 2004, 2006), the heat conduction
happens only in the direction along the magnetic field lines.
Therefore, we assume the blackbody radiation will be
dominated by two confined spots with an area
S R a R a2 sin 2,BB

2 2 3
* * *

p q p= =( ) (see Figure 1(a)),

L L S T L , 13BB ,BB SB ,BB
4

BB UI* *s h= » = ( )

where σSB=5.67×10−5 erg cm−2 s−1 K−4 is the Stefan–
Boltzmann constant. The temperature of the hot spots is then

T B a3.4 10 30 km,BB
8

BB
1 4

,12
1 2 3 2

* *
h= ´ -( ) K. This is larger

than the temperature induced by tidal heating, which can heat
the NS up to 108 K before the final merge (Lai 1994).
Therefore, we will neglect the tidal heating in this paper.
Using the same method, we can also calculate the electric

field, E, the maximum accelerated Lorentz factor, γmax,acc, the
maximum escaping photon energy, maxw , the temperature,
T ,BB* , and the area of the hot spots, S ,BB* , in cases 1 or 2. We
summarize them in Table 1. The electric field generated in case
2 is

E

r

B r B r

c t
, 14

i

i i

d d
»

¢ -( ) ( ) ( )

which is different from those in cases 0 and 1. If we assume
r t ri id d ~ W, then E r a c1i

3 1
*

m h~ - W- -( ) . Interestingly,
there are not only two hot spots on the main-star surface, but
also two on the companion-star surface with temperatures
T R R Tc,BB

1 4
c

3 4
,BB* *= -( ) . The total blackbody radiation

luminosity is then L L LBB ,BB c,BB*= + . We show the typical
spectra of different cases at 1 s before the NSs come into
contact in Figure 3, with an assumption of B*=1012 G, and
Figure 4 with an assumption of B*=1010 G. The electron
spectrum for calculating the synchrotron radiation is assumed
to be dN d 2g gµ - with a minimum Lorentz factor 3 for a
relativistic electron. This is the typical electron spectrum
induced by the synchrotron-pair cascades without injections
from other sources (Wang et al. 2018). The synchrotron
spectrum is calculated using Equation (8). We should note that
the observed spectra might differ a bit from these theoretical
ones. A detailed discussion about this is in Section 4.
We now calculate the possible screening effect due to the

generation of pairs, which happens in the polar caps of pulsars
(e.g., Harding & Muslimov 1998). Considering that the product
of the size and the magnetic field of the acceleration region is
∼1017 cmG, the maximum escape photon energy will be
around χ∼0.1 (Wang et al. 2018; see also Equation (11)).
These photons are produced by electrons with energy
B B 1a crig ~ (based on Equation (8)), namely,

B4.4 10 a
2

,11g ~ ´ . This is almost the maximum accelerated
Lorentz factor. Despite the screening, the results that we have
obtained above still hold.

3.2. Photon Spectra in the NS–WD or
Double WD Binary System

In NS(WD)–WD binary systems, the classical synchrotron
radiation formula is appropriate. In case 1, an electron is
accelerated on the WD surface with a maximum Lorentz
factor a B7.9 10 3 10 kmmax,acc

3 4 1 4
c,6

1 2g = ´ ´ - -( ) . Two
hot spots form on the main compact star with a typical
the temperature T 1.7 10,BB

6
BB
1 4

,30
1 2 5 12

* *
h m= ´ a 3 ´(

10 km4 1 4-) R R R0.01 10 kmc
3 4 3 4

*
- -

( ) ( ) K. In case 2,
the maximum Lorentz factor is 1.7 10max,acc

6g = ´
11 1 2h -- -( ) 1 1 3 2+ -( ) a 3 10 km4 5 4

,30
1 2

*
m´ -( ) . The

temperature of the hot spots on the main star is T ,BB* =
a R1.5 10 1 3 10 km6

BB
1 4

,30
1 2 1 3 1 2 4 7 8

* *h m´ + ´ -( ) ( ) (
10 km 0.19 0.083 4 1 4h --) ( ) K, and the temperature of the hot
spots on the companion is T R R Tc,BB

1 4
c

3 4
,BB* *= -( ) . We

show the typical spectra in a NS–WD binary and a double
WD binary in Figures 5 and 6, respectively. It should be noted
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Table 1
Summary of the Basic Spectral Properties

Cases E 10 for electron,max,acc
2g ( 3.37 10 for proton8´ ) m cemax

2w ( )a T 10,BB
8

* ( K) S ,BB*
Case 0 a c2 1

*
mW - - a6.2 30 km,30

1 2 5 4

*
m- ( ) 1.3 102

,30
1

*
m´ - a 30 km 3( ) B3.4 BB

1 4
,12

1 2

*
h a 30 km 3 2-( ) R a2 3 1

*
p -

Case 1 a B cc
1W - B a2.0 30 kmc,12

1 2 1 4- -( ) B4.3 c,12
1- Bln 0.981

c,12
- ( ) B13 BB

1 4
,12

1 2

*
h a 30 km5 12 1 4 -( ) R a2 3 1

*
p - 1 1 3+( )

Case 2b r ci
2 1

*
m W- -

11h --( )
B a6.2 1 1 30 km1 1 2

,12
1 2 1 3 2 5 4
*

h - +- - - -( ) ( ) ( ) B a8.1 30 km,12
1 3
*
- ( )

1 1 3 3+ -( )
a4.4 30 km 17 8

BB
1 4 1 12 1 3 1 4 h +-( ) ( ) B 0.19 0.08,12

1 2 1 4
*

h -( ) R a2 3 1
*

p -

1 1 3 2+( ) 1 3-

Notes.
a The minimum value required to produce an electron–positron pair is m c2 ;emax

2w = and the corresponding electron’s Lorentz factor is m c eB0.44emax,syn max
1 2g w» ( ) .

b In case 2, γmax,acc is roughly two times larger when a<200 km. The maximum escaped photon energy is calculated by λ∼ηri. The area of the hot spots is calculated with an assumption R Rc* = .
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that there are four hot spots for the parallel cases, and the
temperature on the WD is quite different with the temperature
on the NS. Thus, there are two blackbody components in
Figure 5.

3.3. Acceleration of Protons

In these binary systems, protons in the magnetosphere are
also accelerated by the electric field. Replacing the electron
mass, me, with proton mass, mp, in the expression for
synchrotron radiation, gives a maximum Lorentz factor for
the proton m m 3.37 10p e

2 6= ´( ) times larger than the
γmax,acc of the electrons. It is therefore worthy to assess how
close this maximum accelerated Lorentz factor would be
achieved. The maximum energy that an electric field
accelerator can produce is eElmax,E = . This is practically

what we would expect if simply taking the Hillas (1984)
criterion, eBlmax,acc  , which is a sensible approximation, as
the electric field is always smaller than the magnetic field,
E Ba c B~ W < in the model configuration of the system
adopted in this study. We calculate this maximum energy for
each case: a4.1 10 30 kmmax,E

18
,30

7 2
*

 m= ´ -( ) eV for case
0, B a6.4 10 30 km 1max,E

19
c,12

1 3 1 2 = ´ + -( ) ( ) eV for
case 1, and 1.2 10 1 1max,E

19
,30

1 3 1
*

 m h h= ´ + --( ) ( ) eV
for case 2. As shown in column 3 of Table 1, the maximum
accelerated proton energy in all three cases is around

m c3.37 10 6.4 10pmax
6

max,acc
2 17 g= ´ ~ ´ eV, which does

not exceed max,E . Thus, the maximum proton Lorentz factor
can be safely calculated by multiplying the maximum
accelerated electron Lorentz factor by m mp e

2( ) . The partition
parameter of charged particles, ηCP, is expected to be very
small, as the acceleration efficiency of electrons is much

Figure 3. νLν vs. hν plots of three cases at 1 s before the NSs come into contact
are shown with different shapes of lines. The red lines are the blackbody
component, while the blue lines represent the synchrotron component. The
parameters of the binary systems are chosen as B 1,12* = , ò=1, ηsyn=0.5,
ηBB=0.5, and η=0.1.

Figure 4. νLν vs. hν plots of three cases at 1 s before the NSs come into contact
are shown with different shapes of lines. The red lines are the blackbody
component, while the blue lines represent the synchrotron component. The
parameters of the binary systems are B 0.01,12* = , ò=1, ηsyn=0.5,
ηBB=0.5, and η=0.1.

Figure 5. νLν vs. hν plots of two cases in NS–WD binaries at a=3×104 km
are shown with different shapes of lines. The red lines are the blackbody
component, while the blue lines represent the synchrotron component. The
subscripts “∗” and “c “represent the contribution of the main star (NS) and the
companion (WD), respectively. The parameters of the binary systems are

1,30*
m = , ò=1000, ηsyn=0.5, ηBB=0.5, and η=0.1.

Figure 6. νLν vs. hν plots of two cases in double WD binary at a=3×104 km
are shown with different shapes of lines. The red lines are the blackbody
component, while the blue lines represent the synchrotron component. The
parameters of the binary systems are 1000,30*

m = , ò=1, ηsyn=0.5,
ηBB=0.5, and η=0.1.
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higher, and the fraction of protons should be far smaller than
the fraction of electrons and positrons.

4. Observational Properties

The partition parameters can affect the observed spectrum
significantly. In the acceleration region, the energy is deposited
into both the electrons and their synchrotron photons. For an
electron accelerated to the energy E m c eEcte e

2
accg= = in a

time tacc, the energy going into synchrotron radiation is
E P dt e B m c E2 9

t
esyn 0 syn,tot

3 2 3 2acc

ò g= = . Therefore, the ratio
of the kinetic energy of electrons to the total energy is

E E Ee e e synh = +( ). For all three cases, we find 0.5<ηe<1.
If the velocity direction of these electrons is isotropic, around
two-thirds of their energy will be emitted via the synchrotron
radiation, based on the equipartition theorem. As a result, we
have 1 2 3 1 3e e esynh h h h= - + = - , and ηcur+ηBB+
ηCP=ηe/3. Therefore, the dominant component is the
synchrotron radiation. This synchrotron radiation happens
around the acceleration region in an opening angle, depending
on the electron velocity distribution, while the blackbody
radiation is confined in the hot spots around the magnetic pole.
The curvature radiation is beamed almost parallel to the
magnetic field line. Because these three components (the
blackbody, the synchrotron, and the curvature) may point to
different directions, it is unlikely to observe all of them from
the same source. Due to the orbital motion of the binary, these
three components may behave periodically, but with a very
short period (of the order ms in the late inspiral).

The EM signals from the inspiral of NS–NS(BH) binaries in
the last few seconds can be responsible for the precursors of
short GRBs. Troja et al. (2010) searched in 38 Swift short
GRBs and found four precursor candidates, but with sig-
nificance <5.5σ. Minaev & Pozanenko (2017) found only three
candidates in 519 short GRBs detected by the SPI-ACS/
INTEGRAL experiment, but with much higher significance. A
precursor candidate is assumed to be weaker than the main
burst, and to antedate the main burst for more than 2 s in
Minaev & Pozanenko (2017). They also analyzed the spectrum
of the precursor for the individual bursts: GRB090510
(discovered by Troja et al. 2010), and GRB100717 (see Table
3 in Minaev & Pozanenko 2017). The time lag between the
precursor and the main burst is 0.45 s in GRB090510, and
3.3 s in GRB100717. The time lag between GW170817 and
GRB170817A is 1.7 s; therefore, we will only consider
GRB100717 in this paper. We note that this GRB is regarded
as a long GRB in the Fermi catalog with T90=5.95±1.51 s
(see, for example, in Narayana Bhat et al. 2016), but in the SPI-
ACS/INTEGRAL experiment, it is recognized as a short GRB,
which is also supported by the behavior that there is no
statistically significant spectral lag between the light curves in
different energy ranges (see more detailed discussions in
Minaev & Pozanenko 2017). Therefore, we treat it as a short
gamma-ray burst with a precursor. Also the optimal spectral
models for the precursor and main burst are found to be
different between the precursor and the main burst (Minaev &
Pozanenko 2017).

We analyze the precursor data of GRB100717 in the energy
range (8 keV, 40MeV) detected by Fermi GBM. Figure 7 is an
example of light curve of GRB100717, and the shaded region
in the light curve is regarded as the precursor. Figure 8 is the
spectrum of the precursor. We use four models in the official
RMFIT software package to fit the spectrum: a simple power

law, a power law with an exponential cutoff, a power law with
an additional thermal component, and a power law with a break
(referring to as the Band function in Band et al. 1993). The
power-law model with/without an exponential cutoff in the
energy range (8 keV, 40MeV) corresponds to the synchrotron
component in our model (see Figures 3 and 4), and the thermal
component corresponds to the radiation from the hot spots. The
Band function is a typical spectral type for the prompt emission
of GRBs (Band et al. 1993). The optimal spectral energy
distribution (SED) model is a power law with a cutoff with a
index 1.68±0.34 and Epeak=984.8±420 keV, as shown in
Figure 8, which hints that this precursor can be explained with
the synchrotron radiation in our model. The spectral cutoff
starts at ∼1MeV and means that the magnetic fields of the NSs
are roughly >1012 G for different cases (see column 4 of
Table 1). In this case, we roughly have 30max,syng < ~ ,

Figure 7. Light curve of GRB 100717 detected by NaI08. The shaded region is
treated as the precursor.

Figure 8. Energy spectrum Fn n of the precursor of GRB 100717 detected by
NaI08, NaI11, and BGO01 detectors. The cyan curve is the optimal model.
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therefore it can be treated as monoenergetic electrons, and the
low energy part of the synchrotron SED will behave as
F 4 3n nµ , which is consistent with the best-fitted SED power-
law index 1.68±0.34.

5. Summary and Discussion

We have studied the EM energy-dissipation rate and the
spectrum due to an interaction between the magnetospheres of
double compact stars, based on the model similar to a UI. This
process takes place once the magnetospheres of two compact
stars come into contact. Even if the separation is larger than the
light cylinder of the NS, this UI is likely to be established
(Mottez & Heyvaerts 2011a, 2011b; Mottez & Zarka 2014),
through the azimuthal magnetic fields in the pulsar winds from
aligned pulsars (Kirk et al. 2009). In the late inspiral, the tidal
deformation can become important. In the NS–WD binary, the
WD can be disrupted and form a debris disk (for example, see
Margalit & Metzger 2017; Fernandez & Metzger 2013;
Bobrick et al. 2017; Zenati et al. 2018). In this disruption
stage, our model becomes invalid. In the eccentric or
hyperbolic NS–NS(BH) systems, fairly isotropic flares can be
produced by the crust shattering (Tsang et al. 2012;
Tsang 2013). If the constraint on the NS equation of state by
GW170817 is given (Abbott et al. 2017b), this crust shattering
is likely to happen around <1 s before the merger (Tsang
et al. 2012). Our calculations may also be invalid in this case,
as the magnetic fields of the magnetospheres will be
significantly disrupted in the crust shattering. However, such
eccentric or hyperbolic systems are very rare systems with an
optimal occurrence rate 0.2–60 Gpc−3 yr−1 (Tsang 2013),
while the occurrence rate of the double NS merger is 1540 1220

3200
-
+

Gpc−3 yr−1 (Abbott et al. 2017b). Therefore, our model holds
for most double NS systems.

For double NS binaries, three cases are studied as examples:
case 0 with c*

m m , case 1 with c*
m m~ - , and case 2 with

c*
m m~ . The EM energy-loss rates in cases 1 and 2 are much
higher, and the dependence on separation a are much weaker
than that in case 0. The high-energy photon spectra of these
three cases consist of a characteristic blackbody radiation
component and a synchrotron radiation component. At ∼1 s
before the merger, the blackbody temperature peaks at around

B11 BB
1 4

,12
1 2

*
h keV B78 BB

1 4
,12

1 2

*
h~ keV. It should be noted that for

case 2, there are two blackbody components from both stars.
The synchrotron radiation components extend to MeV ∼GeV,
depending on the absorption limits of the magnetic fields. An
FRB can be induced if the curvature radiation is coherent.
Meanwhile, charged particles could also be accelerated in these
systems with maximum energies around EeV. About 1 hr
before the merger, the temperature is around

B3 BB
1 4

,12
1 2

*
h keV B45 BB

1 4
,12

1 2

*
h~ keV, while the synchrotron

radiation reaches from a few tens to a few hundreds MeV.
Similar calculations are performed to study the EM signals in
NS–WD and double WD binaries. In these binaries at a
separation a=3×104 km, the blackbody components peaks
at around 0.1 keV∼10 keV, while the synchrotron radiation
component can reach to only a few MeV.

The partition parameters for different components are
ηsyn= 1− ηe/3 and 3ecur BB CPh h h h+ + = , with
0.5< ηe< 1. Therefore, the most significant component is the
synchrotron radiation. We note that the spectrum in the BH–NS
system is dominated by the curvature radiation (D’Orazio
et al. 2016). This is different from our studies, as the electrons

in the BH–NS systems are accelerated to a Lorentz factor ∼107

by the electric fields along the magnetic field line (D’Orazio
et al. 2016). It should be noted that the blackbody component,
synchrotron component, and possible FRB can point to
different directions. As the short GRB and its afterglow are
also beamed to a small angle, it will be very hard to observe all
these EM counterparts for the same GW event. Thus, there is
no surprise that no FRB is detected to be associated with
GW170817 (e.g., Hallinan et al. 2017). Such an EM signal in
the last few seconds pre-merger can be responsible for a
precursor of the short GRB. We find that the spectrum of the
precursor of GRB 100717 can be explained with the synchro-
tron component in our model, with an assumption that the
magnetic fields of the NSs are >1012 G. Based on the
sensitivity of Fermi GBM,7 the optimal detection limit is
D B100L ,12

2
*

x= Mpc, where we assume a= 20 km and
ξ= 0.02, 1.6, 0.7 for case 0, 1, and 2 respectively.
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Appendix
The Scale Height of the Interaction Zone

The magnetic field line equation for the magnetic dipole in
the polar coordinates is r r sinmax

2 q= , where we take rmax=ri
here. Therefore, in the Cartesian coordinates, we have
x r r rsin i

3 2 1 2q= = - , and y r r r rcos 1 iq= = - ,
where we only consider the two-dimensional case and assume
the magnetic dipole moment is parallel to the y-axis. Then, we
rewrite y=y(x), and find that dy/dx=0 takes place at
x y r r, 0.54 , 0.39i i0 0 =( ) ( ); therefore, we take the scale
height h y r2 0.77 i0» = .
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