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Identification of nine new susceptibility loci
for endometrial cancer
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Endometrial cancer is the most commonly diagnosed cancer of the female reproductive tract

in developed countries. Through genome-wide association studies (GWAS), we have pre-

viously identified eight risk loci for endometrial cancer. Here, we present an expanded meta-

analysis of 12,906 endometrial cancer cases and 108,979 controls (including new genotype

data for 5624 cases) and identify nine novel genome-wide significant loci, including a locus

on 12q24.12 previously identified by meta-GWAS of endometrial and colorectal cancer. At

five loci, expression quantitative trait locus (eQTL) analyses identify candidate causal genes;

risk alleles at two of these loci associate with decreased expression of genes, which encode

negative regulators of oncogenic signal transduction proteins (SH2B3 (12q24.12) and NF1

(17q11.2)). In summary, this study has doubled the number of known endometrial cancer risk

loci and revealed candidate causal genes for future study.
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Endometrial cancer accounts for ~7% of new cancer cases in
women1 and is the most common invasive gynecological
cancer in developed countries (http://gco.iarc.fr/today/

home). Risk of endometrial cancer is approximately double for
women who have a first degree relative with endometrial
cancer2,3. Rare high-risk pathogenic variants in mismatch-repair
genes, PTEN, and DNA polymerase genes4 explain a small pro-
portion of endometrial cancers, and the eight previously pub-
lished common endometrial cancer-associated single-nucleotide
polymorphisms (SNPs) identified by genome-wide association
studies (GWAS) studies5–8 together explain <5% of the familial
relative risk (FRR).

Here, we conduct a meta-GWAS including 12,906 endometrial
cancer cases and 108,979 country-matched controls of European
ancestry from 17 studies identified via the Endometrial Cancer
Association Consortium (ECAC), the Epidemiology of Endo-
metrial Cancer Consortium (E2C2) and the UK Biobank and
report a further nine genome-wide significant endometrial cancer
genetic risk regions. One of these risk regions on 12q24.12 was
previously identified by meta-GWAS of endometrial and color-
ectal cancer9. eQTL and gene network analyses reveal candidate
causal genes and pathways relevant for endometrial
carcinogenesis.

Results
GWAS meta-analysis. Details of genotyping for each study are
found in Supplementary Data 1 and individual studies described
in the Supplementary Information. Following standard quality
control (QC) for each dataset (Supplementary Methods), geno-
types were imputed using the 1000 Genomes Project v3 reference
panel (combined with the UK10K reference panel for the WHI
and UK Biobank studies). SNP-disease associations in each study
were tested using logistic regression, adjusting for principal
components, and risk estimates were combined using inverse-
variance weighted fixed-effects meta-analysis. We found little
evidence of genomic inflation in any dataset (λ1000=
0.996–1.128) or overall (λ1000= 1.004) (Supplementary Fig. 1).
Using linkage disequalibrium (LD) score regression, we estimate
that 93% of the observed test statistic inflation is due to polygenic
signal, as opposed to population stratification.

Seven of the eight published genome-wide significant endo-
metrial cancer loci were confirmed with increased significance
(Table 1, Fig. 1a), although the effect sizes for some loci were
slightly attenuated compared with our previous analysis (com-
prising 7737 cases and 37,144 controls7, all also included in the
current analysis). For example, the most significant SNP in this
meta-analysis, rs11263761 intronic in HNF1B, had an odds ratio
(OR)= 1.15 (1.12–1.19; P= 3.2 × 10−20), compared with OR=
1.20 (1.15–1.25; P= 2.8 × 10−19) in our previous analysis7. The
previously reported associations with intronic AKT1 SNPs
(rs2498796 OR= 1.17 (1.07–1.17); P= 3.6 × 10−8)6,10 did not
reach genome-wide significance (rs2498796 OR= 1.07
(1.03–1.11) P= 6.3 × 10−5, Bayes false discovery probability
(BFDP) 98%) in this meta-analysis, although the risk estimate
direction is consistent with our original finding.

Excluding the 500 kb, either side of the risk loci previously
reported at genome-wide significance for endometrial cancer
alone, we found 125 SNPs with P < 5 × 10−8. Using approximate
conditional association testing with GCTA software11, these were
resolved into nine independent risk loci; eight newly reported
regions, plus the 12q24.12 locus previously identified by a joint
endometrial-colorectal cancer analysis9 (Table 2, Fig. 1b,
Fig. 2a–i). The BFDP was ≤4% for all nine novel loci. The
analysis was repeated with the restricted set of 8758 cases with
endometrioid cancer, the most common histology (Fig. 1c); this
identified one additional variant at 7p14.3 reaching genome-wide
significance (rs9639594; Supplementary Data 2). However, given
the sparse LD at this region and the fact that this is a single,
imputed variant, further investigation of this region is required to
confirm its association with endometrial cancer risk. No SNP
reached genome-wide significance in an analysis restricted to the
1230 non-endometrioid cases (Fig. 1d) or in separate analyses of
carcinosarcomas, serous, clear cell or mucinous carcinomas, for
which statistical power is very limited (Supplementary Data 2,
Supplementary Fig. 2).

For these nine newly reported endometrial cancer loci, a
statistically significant difference in risk estimates by histolo-
gical subgroup was observed only for the 2p16.1 locus; the risk
was higher for non-endometrioid than for endometrioid cancer
(rs148261157 OR= 1.64 (1.32–2.04) and OR= 1.25
(1.14–1.38), respectively, case-only Pf= 0.003, Table 2).

Table 1 Meta-analysis results for previously identified genome-wide significant endometrial cancer risk loci

Region SNP Position
(bp)a

Nearby
gene(s)

Effect:
other
alleles

EAF Info All histologies (12,906 cases;
108,979 controls)

Endometrioid histology
(8758 cases; 46,126
controls)

Non-endometrioid histologies
(1230 cases; 35,447 controls)

Between
histologies

Allelic OR
(95% CI)

P I2 BFDP
(%)

Allelic OR
(95% CI)

P I2 Allelic OR
(95% CI)

P I2 P

6p22.3 rs1740828 21,648,854 SOX4 G:A 0.52 G 1.15 (1.11,
1.19)

4.2E
−16

25% <1% 1.16 (1.11,
1.20)

6.0E
−13

11% 1.00 (0.91,
1.10)

9.81.4E-
01E−01

7% 0.016

6q22.31 rs2747716 125,687,226 HEY2,
NCOA7

A:G 0.57 1.00 1.10 (1.07,
1.14)

2.9E
−10

55% <1% 1.12 (1.08,
1.16)

4.4E
−10

36% 0.99 (0.91,
1.08)

7.9E−01 0% 0.058

8q24.21b rs35286446 128,433,617 MYC GAT:G 0.58 0.99 1.10 (1.06,
1.13)

3.1E
−09

0% <1% 1.10 (1.06,
1.14)

1.8E
−07

0% 1.10 (1.01,
1.19)

3.6E
−02

0% 0.83

8q24.21b rs4733613 128,587,032 MYC C:G 0.12 G 1.18 (1.13,
1.24)

7.5E
−14

0% <1% 1.21 (1.15,
1.28)

1.2E
−13

0% 1.08 (0.95,
1.22)

2.3E−01 0% 0.041

8q24.21b rs139584729 128,611,656 MYC C:G 0.98 0.97 1.40 (1.25,
1.58)

2.4E
−08

0% 2% 1.48 (1.28,
1.70)

7.6E
−08

0% 1.18 (0.86,
1.63)

3.0E−01 0% 0.24

13q22.1 rs7981863 73,238,004 KLF5,
KLF12

C:T 0.72 G 1.16 (1.12,
1.20)

2.7E
−17

26% <1% 1.17 (1.13,
1.22)

4.9E
−15

0% 1.13 (1.02,
1.24)

1.4E−02 45% 0.95

14q32.33c rs2498796 104,776,883 AKT1 A:G 0.30 0.98 1.07 (1.03,
1.11)

6.3E
−05

1% 98% 1.09 (1.04,
1.13)

3.2E
−05

0% 1.07 (0.98,
1.17)

1.4E−01 11% 0.69

15q15.1 rs937213 40,029,923 EIF2AK4,
BMF

C:T 0.42 G 1.09 (1.06,
1.13)

5.1E
−09

0% 1% 1.12 (1.08,
1.16)

6.9E
−10

0% 1.15 (1.06,
1.25)

1.0E−03 12% 0.78

15q21.2 rs17601876 51,261,712 CYP19A1 G:A 0.48 1.00 1.12 (1.09,
1.16)

3.3E
−14

0% <1% 1.12 (1.08,
1.16)

2.3E
−10

0% 1.05 (0.96,
1.14)

3.0E−01 35% 0.02

17q12 rs11263761 37,737,784 HNF1B A:G 0.52 0.98 1.15 (1.12,
1.19)

3.2E
−20

25% <1% 1.15 (1.11,
1.19)

3.4E
−14

14% 1.20 (1.10,
1.31)

3.6E
−05

2% 0.70

EAF: effect allele frequency among control subjects in the UK Biobank, Info: imputation quality score for the OncoArray set, G: genotyped SNPs, I2: heterogeneity I2 statistic, BFDP: Bayes false discovery46
aPosition is with reference to build 38 of the reference genome
bResults for the 8q24 SNPs are from the conditional model containing all three SNPs. r2= 0.02 for rs35286446 and rs4733613; r2= 0.01 for rs35286446 and rs139584729; r2= 0.003 for rs4733613
and rs139584729
crs2498796 (14q32.33) was not replicated in this analysis
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There was no evidence of secondary signals at any of these nine
loci after conditioning on the most significant variant. There
was no significant between-study heterogeneity (minimum
Cochran Q-test Phet= 0.04, maximum I2= 41%, Supplemen-
tary Fig. 3), and random-effects meta-analyses produced
very similar results (Supplementary Data 2). Twenty-five
additional independent loci showed moderately significant
(P < 1 × 10−6) associations, nine with endometrial cancer over-
all, nine specifically with endometrioid histology, and seven
with non-endometrioid histology (Supplementary Data 2).

Overlap with published GWAS associations. Using a 100:1
likelihood ratio, “credible causal risk” variants (ccrSNPs) were
compiled for each of the nine new endometrial cancer risk loci
(Supplementary Data 3). These included 239 variants located in
non-coding regions, 2 missense variants (rs2278868 SKAP1
Gly161Ser and rs3184504 SH2B3 Trp262Arg), and 1 synon-
ymous variant (rs1129506 EVI2A Ser23Ser). Comparing to the
NHGRI-EBI catalog of published GWAS, 37 SNPs previously
associated with a cancer, hormonal trait, or anthropometric
trait fall within 500 kb of any one of the novel endometrial
cancer SNPs. However, the only overlap from the set of
ccrSNPs with other traits was the colorectal and endometrial
cancer susceptibility SNP rs3184504 in SH2B3 (Supplementary
Data 4).

eQTL analyses. LD score regression analyses using eQTL results
from GTEx12 showed that endometrial cancer heritability
exhibited the strongest evidence for enrichment for variants

associated with genes specifically expressed in vaginal and uterine
tissue, in line with prior assumptions, although none of the tissue-
specific enrichments were significant (weighted regression with
jackknife standard errors) after Bonferroni correction, adjusting
for the number of tissues tested (Supplementary Fig. 4). eQTL
analyses were performed using data from a variety of tissue
sources (Supplementary Methods), including endometrial tumor
and adjacent normal endometrium tissue from The Cancer
Genome Atlas (TCGA)13, normal cycling endometrium14 and, in
view of the GTEx enrichment results, vaginal and uterine tissue.
Additionally, we assessed eQTLs from whole blood15, which
provided substantially increased power over solid tissue analyses
due to increased sample size. eQTLs were detected at five of the
nine novel loci (Supplementary Data 3, Supplementary Data 5,
Supplementary Figs. 5–13, Table 2).

Gene network analysis. Network analysis was performed using
candidate causal genes identified in this study, in addition to
candidate causal genes identified in previous studies6–8 (Supple-
mentary Data 6). One major network was identified, containing
18 of the 25 candidate causal genes (Supplementary Fig. 14).
Network hubs included CCND1, CTNNB1, and P53, which are
encoded by genes that are somatically mutated in endometrial
cancer13. Analysis of the network revealed significant enrichment
(Benjamini–Hochberg adjusted P < 0.05, hypergeometric test) in
relevant pathways such as endometrial cancer signaling, adipo-
genesis, Wnt/β-catenin signaling, estrogen-mediated S-phase
entry, P53 signaling, and PI3K/AKT signaling (Supplementary
Data 7).
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Fig. 1 Manhattan plot of the results of the endometrial cancer meta-analysis of 12,906 cases and 108,979 controls. Genetic variants are plotted according
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Functional annotation of ccrSNPs. Next, ccrSNPs were mapped
to epigenomic features from endometrial cancer cell lines (Sup-
plementary Data 3, Supplementary Figs. 5–13). Chromatin
immunoprecipitation (ChIP-seq) was used to map histone
modifications indicative of promoters or enhancers (H3K4Me1,
H3K4Me3, and H3K27Ac) in two endometrial cancer cell lines
(Ishikawa and JHUEM-14). Mapping of DNaseI hypersensitivity
sites (indicative of open chromatin) and ChIP-seq data for
transcription factor binding sites from Ishikawa cells were
accessed from ENCODE16. We also included mapping of
H3K427Ac histone modifications for uterus and vagina from
ENCODE. Overall, 73% of ccrSNPs overlapped at least one epi-
genomic feature, including at least one ccrSNP per novel risk
region. This overlap was significantly greater than the overlap
observed for these epigenomic features with ccrSNPs related to,
for example, endometriosis17 (51%; Fisher’s exact P= 8.7 × 10−8)
or schizophrenia18 (40%; Fisher’s exact P < 2.2 × 10−16). These
findings indicate the relevance of the selected cell and tissue types
for informing endometrial cancer biology and a role for the
assessed epigenomic features in regulatory processes related to the
ccrSNPs. Overlaps between ccrSNPs and epigenomic features
increased significantly after stimulation with estrogen (50% ver-
sus 38% for unstimulated features; Fisher’s exact P= 5.6 × 10−3),
emphasizing the importance of estrogen in endometrial cancer
etiology.

Mendelian randomization analyses. This expanded meta-
analysis allowed us to strengthen our previous Mendelian ran-
domization findings19,20 that higher body mass index (BMI)
(P= 1.7 × 10−11, two-sample inverse-variance weighted Mende-
lian randomization (MR) test), but not waist:hip ratio (P= 0.71),
is causal for endometrial cancer (Table 3) and that the protective
effect of later menarche on endometrial cancer risk (OR= 0.82,
95% CI 0.77–0.87 per year of delayed menarche, P= 2.2 × 10−9)
is partially mediated by the known relationship between lower
BMI and later menarche, with a more modest protective effect of

later menarche after adjusting for genetically predicted BMI
(OR= 0.88, 95% CI 0.82–0.94, P= 3.8 × 10−4). The association
between genetically predicted age at natural menopause and
endometrial cancer did not reach statistical significance (OR=
1.03, 95% CI 1.00–1.06, P= 0.060). In contrast to the reported
effects for breast and prostate cancer21,22, we found no evidence
that genetically predicted adult height is associated with endo-
metrial cancer (P= 0.90).

Genetic correlation analyses. Cross-trait LD score regression of
224 non-cancer traits available via the LD Hub interface23,
identified significant genetic correlations between endometrial
cancer and 14 traits. All of these are either a measure of obesity or
are strongly and significantly (correlation-corrected jackknife P <
10−12) genetically correlated with BMI (i.e., age of menarche, type
2 diabetes, and years of schooling) (Supplementary Data 8), in
line with the established relationship between obesity and endo-
metrial cancer risk.

Discussion
In the largest GWAS meta-analysis assessing endometrial cancer
risk, we discovered nine new genetic risk regions. We also con-
firmed the association of genetic variants with endometrial cancer
risk at seven of the eight previously published genetic risk regions
for this disease5–8. Using this larger GWAS-meta dataset, we were
also able to confirm the previously published Mendelian rando-
mization studies finding that higher BMI is causal for endometrial
cancer risk20, and the protective effect of later age of menarche on
endometrial cancer risk19. Genetic correlation analyses also
indicated a relationship between endometrial cancer and obesity-
related traits.

Candidate causal genes identified through eQTLs included
CDCA8 (1p34.3), a putative ovarian cancer oncogene24, which
encodes an essential regulator of mitosis and cell division25; RCN1
(11p13), encoding a calcium-binding protein that binds onco-
proteins such as JAK226 and MYC27; WT1-AS (11p13), a long

Table 2 Meta-analysis results for newly identified genome-wide significant endometrial cancer risk loci

Region SNP Position
(bp)a

Nearby or candidate
gene(s)b

Effect:
other
alleles

EAF Info All histologies (12,906 cases;
108,979 controls)

Endometrioid histology
(8758 cases; 46,126
controls)

Non-endometrioid
histologies (1230 cases;
35,447 controls)

Between
histologies

Allelic
OR (95%
CI)

P I2 BFDP
(%)

Allelic
OR (95%
CI)

P I2 Allelic
OR (95%
CI)

P I2 P

1p34.3 rs113998067 37,607,755 GNL2, RSPO1, CDCA8 C:T 0.04 0.90 1.23 (1.14,
1.32)

3.6E
−08

20% 2% 1.27 (1.17,
1.38)

2.6E
−08

33% 1.21
(0.98,
1.50)

7.0E
−02

0% 0.99

2p16.1 rs148261157 60,670,444 BCL11A A:G 0.03 0.88 1.26 (1.16,
1.36)

3.4E
−08

16% 2% 1.25 (1.14,
1.38)

4.7E
−06

21% 1.64
(1.32,
2.04)

9.6E
−06

0% 0.0026

9p21.3 rs1679014 22,207,038 CDKN2A, CDKN2B T:C 0.07 G 1.18 (1.12,
1.25)

6.4E
−09

0% <1% 1.17 (1.09,
1.25)

4.4E
−06

0% 1.19 (1.02,
1.38)

3.0E
−02

6% 0.14

11p13 rs10835920 32,468,118 WT1, WT1-AS, RCN1,
CCDC73, EIF3M,
TCP11L1

T:C 0.38 0.99 1.09
(1.06,
1.13)

1.3E
−08

0% 1% 1.10 (1.05,
1.14)

2.1E
−06

0% 1.10 (1.01,
1.20)

3.8E
−02

15% 0.68

12p12.1 rs9668337 26,273,405 SSPN A:G 0.74 0.99 1.11 (1.08,
1.15)

1.1E
−09

0% <1% 1.10 (1.06,
1.15)

2.6E
−06

0% 1.10
(1.00,
1.22)

5.1E
−02

0% 0.88

12q24.11 rs3184504 111,446,804 SH2B3 C:T 0.52 G 1.10 (1.07,
1.14)

1.1E
−10

0% <1% 1.11 (1.07,
1.15)

5.8E
−09

0% 1.10 (1.01,
1.19)

3.2E
−02

4% 0.79

12q24.21 rs10850382 114,776,743 LOC107984437 T:C 0.31 G 1.10 (1.07,
1.14)

3.5E
−09

0% <1% 1.11 (1.07,
1.15)

1.5E
−07

0% 1.02
(0.93,
1.12)

6.7E
−01

0% 0.16

17q11.2 rs1129506 31,319,014 EVI2A, NF1, SUZ12,
RP11-848P1.5

G:A 0.38 G 1.10 (1.06,
1.13)

4.3E
−08

0% 4% 1.11 (1.07,
1.15)

1.3E
−07

36% 1.07
(0.98,
1.17)

1.3E
−01

13% 0.27

17q21.32 rs882380 48,216,874 SKAP1, SNX11 A:C 0.61 0.99 1.10 (1.06,
1.13)

4.7E
−09

41% <1% 1.11 (1.07,
1.15)

1.2E
−08

34% 1.08
(0.99,
1.18)

7.6E
−02

0% 0.62

EAF: effect allele frequency among control subjects in the UK Biobank, Info: imputation quality score for the OncoArray set, G: genotyped SNPs, I2: heterogeneity I2 statistic, BFDP: Bayes false discovery
probability46
aPosition is with reference to build 38 of the reference genome
bBolded genes are candidate genes identified from eQTL analysis
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non-coding RNA that regulates the WT1 oncogene28,29; SH2B3
(12p24.11) encoding a negative regulator of the oncogenic KIT
and JAK2 signal transduction proteins30; and tumor suppressor
gene NF1 (17q11.2) encoding a negative regulator of RAS-
mediated signal transduction31, which acquires putative driver
mutations in TCGA endometrial tumors (http://www.cbioportal.
org/study?id=ucec_tcga). Notably, the highly significant eQTL
associations between ccrSNPs and expression of SH2B3 (linear
regression P ≥ 5.62 × 10−20) and NF1 (P ≥ 1.32 × 10−56) in blood
revealed risk alleles to be associated with decreased gene expres-
sion for both loci, consistent with the role of these genes in tumor
development.

Intersections of ccrSNPs with epigenomic marks mapped in
endometrial cancer cell lines, uterine tissue, and vaginal tissue
found more endometrial cancer ccrSNPs overlapped with these
features than ccrSNPs for endometriosis17 or schizophrenia18.
These findings highlight the relevance of these tissues for func-
tional studies of endometrial cancer biology. Given the estab-
lished role of estrogen in endometrial carcinogenesis32, it is
perhaps not surprising that endometrial cancer ccrSNPs exhibited
greater overlap with epigenomic features present after estrogen
stimulation. However, this finding provides evidence that

functional studies of endometrial cancer should be performed
under these conditions.

Using LD score regression, we estimated that ~28% of the
approximately twofold FRR of endometrial cancer could be
explained by variants, which can be reliably imputed from
OncoArray genotypes. The common endometrial cancer variants
identified to date together explain up to 6.8% of the FRR,
including 2.7% contributed by the nine additional variants
reported here; this may be an overestimate, given that the ORs for
the new loci likely include some upwards bias (the so-called
winner’s curse). In summary, we have doubled the number of
endometrial cancer risk loci, explaining around one quarter
(6.9%/28%) of the portion of the FRR attributable to common,
readily-imputable SNPs. Furthermore, eQTL analyses have
identified candidate causal genes and pathways related to tumor
development for follow-up studies that will provide further
insight into endometrial cancer biology.

Methods
Study samples. Analyses were based on 13 studies of endometrial cancer, of which
four studies contributed case samples to more than one genotyping project. Data
were also included from the E2C2 consortium of 45 separate studies. All
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participants were of European ancestry. Data from the E2C2 genome-wide asso-
ciation studies (GWAS) and from the ANECS, SEARCH, NSECG GWASs and the
iCOGS project have been previously published, and are described in de Vivo et al.33

and Cheng et al.6, respectively.

The OncoArray study. The “OncoArray” genotyping chip34 contains 533,631
variants, around half of which were selected to provide a “GWAS backbone,” with
the remaining variants selected on the basis of prior evidence of association with
cancer or a cancer-related trait. The OncoArray chip was used to genotype 5061
endometrial cancer cases from ten studies in Australia, Belgium, Germany, Sweden,
UK, and USA. Genotyping was carried out at two sites: the Center for Inherited
Disease Research (CIDR; nine studies) and The University of Melbourne (one
study). Details of the genotype calling are given in Amos et al.34

SNP-wise QC was conducted using genotype data from all consortia
participating in the OncoArray experiment34. SNPs with call rate <95% in any of
the consortia, SNPs not in Hardy–Weinberg equilibrium (HWE) (P < 10−7 in
controls and P < 10−12 in cases) and SNPs with concordance <98% among 5280
duplicate pairs of samples were excluded, leaving 483,972 SNPs. Prior to
imputation, SNPs with minor allele frequency (MAF) <1% and call rate <98% in
any consortium were also excluded, as were SNPs that could not be linked to the
1000 Genomes Project reference panel or for which the MAF differed significantly
from the European reference panel frequency. A further 1128 SNPs were excluded
after review of cluster plots, hence 469,364 SNPs were used in the imputation.

The 5061 OncoArray-genotyped endometrial cancer cases were country-
matched to controls who had been genotyped in an identical process as part of the
Breast Cancer Association Consortium35,36. Samples with call rate <95%, with
excessively low or high heterozygosity or with an estimated proportion of European
ancestry <80% (based on a principal components analysis of 2318 informative
markers and with reference to the HapMap populations) were excluded, as were
suspected males and individuals who were XO or XXY.

Duplicates and close relatives were identified from estimated genomic kinship
matrices. Pairwise comparisons were made among all samples genotyped as part of
the OncoArray, iCOGS, or ANECS/SEARCH/NSECG GWAS genotyping projects.
Where pairs of duplicates or close relatives were identified between projects, the
sample with the more recent genotyping was retained, hence the numbers of cases
included here from the ANECS/SEARCH/NSECG GWASs and iCOGS projects are
lower than in the original publications. For case–control pairs from within the
same project, the case was preferentially retained, and for case–case or
control–control pairs, the sample with the higher call rate was used. Following
these exclusions, OncoArray genotypes from 4710 cases and 19,438 controls were
included in the analyses.

All OncoArray samples (along with all samples from the ANECS/SEARCH/
NSECG GWASs and the iCOGS project) were imputed using the October 2014
(version 3) release of the 1000 Genomes Project reference panel. Samples were
phased using SHAPEITv237 and genotypes were imputed using the IMPUTEv238

software for non-overlapping 5-Mb intervals. Analyses were restricted to the ~11.4
million SNPs with MAF >0.5% and r2 > 0.4.

Other studies. The 2695 cases and 2777 controls from the E2C2 consortium were
genotyped using the Illumina Human OmniExpress array (2271 cases, 2219 con-
trols from the United States) or the Illumina Human 660W array (424 cases, 558

controls from Poland)33 and both sets were separately imputed to the 1000 Gen-
omes Project v3 reference panel using “minimac2” software, following standard
quality control steps38,39.

The 288 cases from six population-based case–control studies within the
Women’s Health Initiative were genotyped using five different arrays
(Supplementary Data 1) and were each separately imputed using the combined
1000 Genome Project v3 and UK10K reference panels using “minimac2”
software39, following standard quality measures and the exclusion of SNPs with a
MAF <1%. Five controls for each case were selected randomly, matched on study.

Data were also included from the first phase of UK Biobank genotyping,
comprising 636 Cancer Registry-confirmed endometrial cancer cases (as of October
2016) and 62,853 cancer-free female controls. Samples were genotyped using
Affymetrix UK BiLEVE Axiom array and Affymetrix UK Biobank Axiom® array
and imputed to the combined 1000 Genome Project v3 and UK10K reference
panels using SHAPEIT340 and IMPUTE341.

No analyses to identify duplicates or relatives between samples from the E2C2,
WHI, or UK Biobank studies, and any other study were carried out. However,
given the sampling frame of these studies, it is very unlikely that there would have
been any meaningful sample overlap.

After QC exclusions, the analysis included 12,906 endometrial cancer cases
(3613 of which have not been included in any previous publication) and 108,979
controls. Analyses were also carried out specifically for endometrial cancer
of endometrioid histology (8758 cases) and endometrial cancer with non-
endometrioid histology (1230 cases). Exploratory analyses for specific non-
endometrioid histologies (serous carcinoma, carcinosarcoma, clear cell carcinoma,
and mucinous carcinoma) included a small number of cases of mixed histotype,
where the major component was non-endometrioid. The UK Biobank data did not
include information about histology.

All participating studies were approved by research ethics committees from
QIMR Berghofer Medical Research Institute, University-Clinic Erlangen,
Karolinska Institutet, UZ Leuven, The Mayo Clinic, The Hunter New England
Health District, The Regional Committees for Medical and Health Research Ethics
Norway, and the UK National Research Ethics Service (04/Q0803/148 and 05/
MRE05/1). All participants provided written, informed consent.

Statistical analyses. Per-allele ORs and the s.e. of the logORs were computed
using logistic regression for each of the ANECS, SEARCH, NSECG, WHI, and UK
Biobank GWASs, for the two E2C2 GWASs and, by country, for the iCOGS and
OncoArray studies, giving a total of 17 strata. Case-only analyses were used to
assess heterogeneity in SNP effects by histology (endometrioid histology versus
non-endometrioid histology). In the OncoArray analysis, potential population
stratification was adjusted for using the first nine principal components; these were
estimated using data for 33,661 uncorrelated SNPs with MAF >0.05 and pairwise
r2 < 0.1 (including 2318 SNPs specifically selected as informative for continental
ancestry) using purpose-written software (http://ccge.medschl.cam.ac.uk/software/
pccalc). Other studies were similarly adjusted for their relevant principal
components.

Analyses were carried out using SNPTEST42 for the ANECS, SEARCH, and
NSECG GWASs, using ProbABEL43 for the E2C2 GWASs, and using in house
software for the iCOGS, OncoArray, WHI, and UK Biobank studies. We assessed
residual population stratification by computing the test statistic inflation

Table 3 Effects of genetically predicted anthropometric and reproductive traits on risk of endometrial cancer

Trait Instrumental variable SNPs Endometrial cancer Endometrial cancer Endometrial cancer

All histology (OR
and 95% CI)

Endometrioid histology (OR
and 95% CI)

Non-endometrioid histology
(OR and 95% CI)

Body mass index (BMI)a 77 SNPs49 1.92 (1.63, 2.25),
P= 1.7E−11

2.04 (1.69, 2.46), P= 8.6E −11 1.65 (1.13, 2.41), P= 0.011

Waist:hip ratio 47 SNPs50 0.95 (0.72, 1.25),
P= 0.71

0.94 (0.71, 1.24), P= 0.66 1.27 (0.69, 2.33), P= 0.45

Age at menarche (years);
total effect

368 SNPs19 0.82 (0.77, 0.87),
P= 2.2E−9

0.80 (0.74, 0.86), P= 1.9E−9 0.93 (0.79, 1.08), P= 0.33

Age at menarche (years);
direct effectb

368 SNPs19, BMI weights
from Locke et al.49

0.88 (0.82, 0.94),
P= 3.8E−4

0.86 (0.79, 0.93), P= 2.7E−4 0.97 (0.82, 1.16), P= 0.76

Age at natural
menopause (years)

54 SNPs53 1.03 (1.00, 1.06),
P= 0.060

1.02 (0.99, 1.06), P= 0.19 1.07 (0.99, 1.14), P= 0.075

Adult height 814 SNPs51, 52 1.00 (0.95, 1.06),
P= 0.90

0.99 (0.93, 1.05), P= 0.63 1.00 (0.88, 1.15), P= 0.95

Odds ratios (ORs) are per year for age at menarche and for age at natural menopause, but are not in meaningful units for the other traits because the published SNP-trait associations are in terms of
inverse-rank normalized residuals
aNote, none of the endometrial cancer risk variants identified to date have been directly related to BMI-associated SNPs, or BMI monogenic disorders
bThe direct effect of age at menarche on endometrial cancer risk is adjusted for the mediating effect of genetically predicted BMI54

ARTICLE NATURE COMMUNICATIONS | DOI: 10.1038/s41467-018-05427-7

6 NATURE COMMUNICATIONS |  (2018) 9:3166 | DOI: 10.1038/s41467-018-05427-7 | www.nature.com/naturecommunications

http://ccge.medschl.cam.ac.uk/software/pccalc
http://ccge.medschl.cam.ac.uk/software/pccalc
www.nature.com/naturecommunications


adjusted to a sample size of 1000 cases and 1000 controls (λ1000’s), both overall
and with each strata, using 33,278 uncorrelated SNPs (r2 < 0.1). The overall λ1000
was 1.004, with stratum-specific λ1000’s between 0.996 and 1.128 (observed for
the smallest strata, the German iCOGS dataset; Supplementary fig. 1).

The estimated ORs from the different studies were combined in a fixed-effects
inverse-variance weighted meta-analysis using the “meta” software44. For each
variant, results from any strata for which the imputation information score was
<0.4, the MAF <0.005 or the OR >3 or <0.333 were excluded. Following the meta-
analysis, SNPs with valid results in fewer than two of the strata, or with between-
strata heterogeneity P < 5 × 10−8 were also excluded, leaving 11.7 million SNPs. A
random-effects meta-analysis was also carried out.

Using the conventional 5 × 10−8 genome-wide significance threshold, all SNPs
lying within ± 500 kb of a significant SNP were initially considered as part of that
locus. Approximate conditional analysis in the GCTA program11,45 with an LD
reference panel of 4000 OncoArray-genotyped control subjects were then used to
look for additional independently associated SNPs within each locus. Only
uncorrelated (r2 < 0.05) secondary signals were included. The only locus with
evidence of significant signals after conditioning on the most strongly associated
SNP was the previously published 8q24 locus6 (Table 1). For each locus, the set of
credible causal risk SNPs (ccrSNPs) was defined as those variants within ± 500 kb
of the most significant SNP and for which the likelihood from the association
analysis was no less than one hundredth the likelihood of the most significant SNP
(i.e., odds of <1 : 100). A BFDP for each significant SNP was estimated on the basis
of a maximum plausible OR of 1.5 and a prior probability of association of
0.000146.

The proportion of the FRR of endometrial cancer due to the identified variants
was estimated using a log-additive model, where pj, βj, and τj are the MAF, logOR,
and se(logOR), respectively for variant j, and λ= 2 is the reported FRR of
endometrial cancer. The effect estimates used were those estimated in the current
study, both for the new loci and for the loci replicated from previous studies.

Proportion FRR ¼ 1
ln λð Þ

X

j

pjð1� pjÞðβ2j � τ2j Þ:

The proportion of the endometrial cancer FRR that can be explained by all SNPs
is given by the frailty-scale heritability, hf2, divided by 2ln(λ). This was estimated
using LD score regression47, based on the full set of meta-analysis summary
estimates, restricted to those SNPs present on the HapMap v3 dataset with MAF
>1% and imputation quality R2 > 0.9 in the OncoArray imputation using the
1000 Genomes Phase 3 reference panel. The frailty-scale heritability (as opposed
to the observed-scale heritability) was obtained by replacing the total sample, N,
for each study with an effective sample size Nj for SNP j, which effectively
weights each SNP according to its frequency and the variance of the effect
estimate, i.e.,

Nj¼
1

2pj 1� pj
� �

τ2j
:

Cross-trait LD score regression via the LD Hub interface (28 September 2017,
v1.4.1) was used to estimate the genetic correlations between endometrial cancer
and 224 traits from 24 categories23.

The casual effects of five anthropometric or reproductive factors on the risks of
endometrial cancer were estimated using two-sample summary statistic inverse-
variance weighted MR analyses48. Instrumental variables for each factor consisted
of the most recent set of published GWAS-significant SNPs for that trait; 77 SNPs
for body mass index (BMI)49, 47 SNPs for waist:hip ratio50, 814 SNPs for adult
height51,52, 54 SNPs for age at natural menopause53, and 368 SNPs for age at
menarche19. A multivariable MR adjusting for the effects of the 368 menarche
SNPs on BMI (a potential mediator) was used to estimate the direct effect of
menarche on endometrial cancer, not via BMI54.

Cell culture. Ishikawa and JHUEM-14 cells were a gift from Prof PM Pollock
(Queensland University of Technology). Cell lines were authenticated using STR
profiling and confirmed to be negative for mycoplasma contamination. Ishikawa
cells were cultured in Dulbecco’s modified Eagle’s medium (DMEM; Life
Technologies #1195-065) with 10% fetal bovine serum (FBS) and antibiotics
(100 IU/ml penicillin and 100 μg/ml streptomycin). JHUEM-14 cells were cul-
tured in DMEM/F12 medium (Life Technologies #11320-033) with 10% FBS and
antibiotics.

Cell fixing and chromatin shearing. Ishikawa and JHUEM-14 cells were plated
on to 10-cm tissue culture dishes in phenol red-free DMEM (Sigma-Aldrich
#D1145) supplemented with L-glutamine, sodium pyruvate, and 10% charcoal-
dextran-stripped FBS. Three days later, media were replaced and cells incubated
with fresh medium containing either 10 nM estradiol or DMSO (vehicle control)
for 3 h. Cells were washed twice with PBS and fixed at room temperature in 1%
formaldehyde in PBS. After 10 min, cells were placed on ice and washed twice
with ice-cold PBS. The reaction was quenched with 10 mM DTT in 100 mM
Tris-HCl (pH 9.4) and cells removed from the dish with a cell scraper. Cells were
incubated at 30 °C for 15 min, then spun for 5 min at 2000×g. Cells were washed

sequentially with ice-cold PBS, buffer I (0.25% Triton X-100, 10 mM EDTA,
0.5 mM EGTA, 10 mM HEPES, pH 6.5) and buffer II (200 mM NaCl, 1 mM
EDTA, 0.5 mM EGTA, 10 mM HEPES, pH 6.5) and centrifuged for 5 min at
2000×g at 4 °C. Cells were resuspended in 300–750 μl of lysis buffer (1% SDS,
10 mM EDTA, 50 mM Tris-HCl, pH 8.1, with complete protease inhibitor
cocktail (Sigma-Aldrich #11836145001)). Ishikawa cells were sonicated for eight
cycles (10 s) and JHUEM-14 cells for 20 cycles using the highest power setting of
a Branson Digital Sonifier SLPt. After chromatin shearing was confirmed by
agarose gel electrophoresis, samples were centrifuged for 10 min at 4 °C.

Chromatin immunoprecipitation and sequencing. Samples were diluted 10-fold
in 1% Triton X-100, 2 mM EDTA, 20 mM Tris.HCl (pH 8.1), and 150 mM NaCl
with complete protease inhibitor cocktail. Magna ChIP protein A/G magnetic
beads (EMD Millipore #16-663) were added to 500 μl of diluted chromatin and
incubated with 5 μg of antibody overnight at 4 °C. Antibodies to H3K4Me1
(Abcam #ab8895), H3K4Me3 (Abcam #ab8580), and H3K27Ac (Abcam
#ab4729) were used (Supplementary Table 1). The next day supernatant was
removed and the beads washed three times with the following ice-cold buffers:
RIPA 150 (0.1% SDS, 1% Triton X-100, 1 mM EDTA, 50 mM Tris-HCl (pH 8.10,
150 mM NaC1, 0.1% sodium deoxycholate), RIPA 500 (0.1% SDS, 1% Triton X-
100, 1 mM EDTA, 50 mM Tris-HCl (pH 8.10, 500 mM NaC1, 0.1% sodium
deoxycholate), LiCl RIPA (500 mM LiCl, 1% NP-40, 1% deoxycholate, 1 mM
EDTA, 50 mM Tris-HCl (pH 8.1)), and TE buffer. Chromatin was then eluted
by incubating beads overnight at 60 °C with 100 μl of elution buffer (1% SDS,
100 mM NaHCO3) and 0.5 mg/ml proteinase K. The next day beads were
incubated at 95 °C for 10 min and supernatant removed. Chromatin was purified
using the QIAquick Spin kit (QIAGEN) and eluted from columns using 50 μl of
QIAGEN EB buffer. DNA was quantified using a Qubit dsDNA HS Assay kit
(ThermoFisher Scientific).

Samples from two biological replicates for each treatment were sent to the
Australian Genome Research Facility (Melbourne, Australia) for library
preparation and sequencing (Illumina HiSeq 2500) with 50 bp reads. Mapping and
analysis of ChIP-seq reads were performed using the ENCODE analysis pipeline,
histone ChIP-seq Unary Control (GRCh37), with DNAnexus software tools
(https://dnanexus.com). Replicated peaks across biological replicates were used for
downstream analyses.

eQTL analyses. Summary eQTL results for non-cancer tissue were obtained
using uterine (N= 70) and vaginal (N= 79) tissue-specific data generated by
the Genotype-Tissue Expression Project (GTEx)12, an endometrium eQTL dataset
(N= 123) provided by Fung et al.14, and a blood eQTL dataset (males and females;
N= 5311)15.

Data from endometrial cancer tumors and adjacent normal endometrial
tissue were accessed from The Cancer Genome Atlas13. Patient germ line SNP
genotypes (Affymetrix 6.0 arrays) and tissue expression RNA-seq data were
downloaded through the controlled access portal, while epidemiological and
tumor tissue copy-number data were downloaded through the public access
portal. RNA-seq data were aligned and expression quantified to reads per
kilobase per million (RPKM) as described in Painter et al.10 and quality control
performed on the germ line SNP genotypes as per Carvajal-Carmona et al.55

Complete genotype, RNA-seq, and copy-number data were available for 277
genetically European patients (218 with endometrioid histology, 29 with
adjacent normal tissue).

Germ line genotypes underwent further quality control before imputation to the
1000 Genomes Phase 3v5 reference panel by Eagle v2.356, using the Michigan
Imputation Server57. Briefly, subjects were removed for genotype missingness
>10% and SNPs were removed for missingness >10%, MAF <5%, and HWE P-
value <5 × 10−8. SNPs were also removed if they were indels or non-biallelic
variants, were ambiguous SNPs with a MAF >40%, were not matched to the
reference panel, had a MAF difference with the reference panel of >20%, or were
duplicates.

Genes with a median expression level of 0 RPKM across samples were removed,
and the RPKM values of each gene were log2-transformed and samples were
quantile normalized. The expression of the genes located within a 2-Mb window
surrounding the ccrSNP at each of the newly identified risk loci were extracted
from the expression dataset.

The associations between ccrSNPs and gene expression in all endometrial
cancer tumor tissues, endometrioid endometrial cancer tissues only, and
adjacent normal endometrial tissue, were evaluated using linear regression
models using the MatrixEQTL program in R58, adjusting for sequencing
platform. Tumor tissue expression was also adjusted for copy-number variation,
as previously described in Li et al.59 A false discovery rate of <20% was used to
report eQTL results from all datasets, except for the endometrium eQTL dataset
where we used a P-value <0.01.

Candidate causal gene network analysis. Candidate causal genes identified
in our previous studies and from the eQTL results in the current study (Sup-
plementary Table 6) were analyzed using Ingenuity Pathway Analysis (QIAGEN;
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accessed on 23 March 2018 and available at www.qiagen.com/ingenuity) to
define gene networks and enrichment of genes in canonical signaling pathways.

Data availability. OncoArray germ line genotype data for the ECAC studies and
E2C2 germ line genotype data have been deposited through the database of
Genotypes and Phenotypes (dbGaP; accession number phs000893.v1.p1). Meta-
GWAS summary statistics are available from the authors by request. Genotype data
for non-cancer controls were provided by the Breast Cancer Association Con-
sortium (BCAC) by application to the BCAC Data Access Coordination Com-
mittee (http://bcac.ccge.medschl.cam.ac.uk/). ChIP-seq data are available from the
Gene Expression Omnibus (GEO; http://www.ncbi.nlm.nih.gov/geo/) under
accession number GSE113818.
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