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Abstract
Voltage-gated calcium (Ca ) channels are associated with β and α δ auxiliary
subunits. This review will concentrate on the function of the α δ protein family,
which has four members. The canonical role for α δ subunits is to convey a
variety of properties on the Ca 1 and Ca 2 channels, increasing the density of
these channels in the plasma membrane and also enhancing their function.
More recently, a diverse spectrum of non-canonical interactions for α δ
proteins has been proposed, some of which involve competition with calcium
channels for α δ or increase α δ trafficking and others which mediate roles
completely unrelated to their calcium channel function. The novel roles for α δ
proteins which will be discussed here include association with low-density
lipoprotein receptor-related protein 1 (LRP1), thrombospondins, α-neurexins,
prion proteins, large conductance (big) potassium (BK) channels, and N
-methyl-d-aspartate (NMDA) receptors.
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Introduction
Voltage-gated calcium (Ca

V
) channels are ubiquitously present 

in excitable cells and are essential for their function. They 
can be divided into three classes (Ca

V
1–3). All except the 

Ca
V
3 (T type) channels are associated with several auxiliary  

subunits—termed α
2
δ and β—together with an additional γ 

subunit in skeletal muscle1,2 (Figure 1). One of these subu-
nits, α

2
δ, conveys a variety of properties on the channels but 

recently has also been reported to have distinct effects on both 
other ion channels and other biological processes. These novel 
aspects of α

2
δ function are the subject of this review. This topic 

is important, as α
2
δ-1 is the therapeutic target of the α

2
δ ligand  

(gabapentinoid) class of drugs3,4, which are widely prescribed  
for several indications, including many types of neuropathic pain.

The α
2
δ subunits have a well-established canonical role to  

influence the trafficking and function of the Ca
V
1 and Ca

V
2  

channels, increasing the density of these channels on the plasma 
membrane5. They also direct trafficking of the channels to  
specific subcellular sites, including neuronal processes5,6. In 
addition, the α

2
δ subunits increase Ca

V
 function by influencing 

the biophysical properties of the calcium currents7–10, over and  
above their effect on trafficking6.

More recently, α
2
δ-1 proteins have been proposed to have non-

classic functions of two types: (a) additional functions related 
to calcium channels, either to link the calcium channel com-
plexes to other proteins or to influence calcium channel function,  
and (b) roles not associated with calcium channel function.

For (a), I will discuss several topics, including the associa-
tion of α

2
δ proteins with α-neurexins to influence synaptic  

transmission11,12. The α
2
δ-1 protein has also been found to  

interact potentially with large conductance (big) potassium (BK) 

channels13, a process which it has been suggested influences cal-
cium channel function by sequestering the α

2
δ subunits. For (b), 

I will discuss novel roles associated with the association of α
2
δ 

with thrombospondins (TSPs), an interaction which has been 
found to influence synaptogenesis in some systems14. I will also 
discuss the proposed association of α

2
δ with N-methyl-d-aspartate 

(NMDA) receptors15 (Figure 2). It is possible that the gabapentinoid  
drugs also act by influencing these various novel targets.

Topology, domain structure, and biochemical 
properties of α2δ proteins
The α

2
δ subunit was first identified as two proteins—α

2
 and 

δ—co-purifying as integral constituents of the calcium channel 
complex present in skeletal muscle T-tubules16–18. It was found 
that α

2
δ is encoded by a single gene and is subsequently proc-

essed into α
2
 and δ17,18. Four mammalian α

2
δ genes have been  

cloned (CACNA2D1–4)16,19–21.

All the α
2
δ proteins have highly related topology22,23, with an 

N-terminal signal sequence, indicating that the N-terminus is  
extracellular (Figure 3). The hydrophobic C-terminus of α

2
δ, 

and its behavior as an integral membrane protein, led to its being  
categorized as a transmembrane protein17,18. However, it was  
subsequently identified to have a strongly predicted glycosyl-
phosphatidylinositol (GPI)-anchor ω-site24. Indeed, multiple 
pieces of experimental evidence indicate that α

2
δ-1, α

2
δ-2, and  

α
2
δ-3 (and probably α

2
δ-4 by prediction) are GPI-anchored24–26.

The α
2
δ subunit genes encode a single precursor protein, 

which is post-translationally proteolytically processed into two 
polypeptides. The folding of α

2
δ in the endoplasmic reticu-

lum involves the formation of multiple disulfide bonds both 
within and between the α

2
 and δ moieties, so that, despite their 

cleavage, the α
2
 and δ polypeptides remain disulfide-bonded  

Figure 1. The subunit structure of voltage-gated calcium channels of the CaV1 and CaV2 family. The CaV α1 subunit with 24  
transmembrane segments and the intracellular β and the extracellular α2δ subunits are shown. The γ subunit (γ1) is associated with  
CaV1.1 only and is not depicted.
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Figure 2. Summary of α2δ interactions with other proteins. The various ion channels and other proteins with which α2δ subunits have 
been found to interact are shown. BK, large conductance (big) potassium; LRP1, low-density lipoprotein receptor-related protein 1; NMDA, 
N-methyl-d-aspartate; TSP, thrombospondin.

Figure 3. The post-translational processing of α2δ subunits. The hydrophobic N-terminal signal sequence is a signal for the 
polypeptide to co-translationally pass through the membrane of the endoplasmic reticulum (ER). This signal sequence is cleaved off. The 
glycosylphosphatidylinositol (GPI) anchor is added in the ER by an endopeptidase transamidase, which cleaves the C-terminal signal peptide 
at the ω-site and adds a pre-formed GPI lipid anchor. Multiple disulfide bonds are formed as the protein folds in the ER, and N-glycosylation 
occurs at multiple sites. Mature glycosylation is then completed in the Golgi complex, and it is likely that proteolytic cleavage of α2δ also 
occurs here 27. The GPI anchor can also be modified during trafficking.
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together17,18. The role for the proteolytic cleavage between α
2
 

and δ has been shown to be key to the mature function of these 
proteins6,28, and Ca

V
2.2 associates to a greater extent with the  

mature cleaved form of α
2
δ-1 than with the uncleaved form28.

A von Willebrand factor A (VWA) domain is present in the α
2
 

moiety of all α
2
δ proteins29,30; these widespread domains are 

generally involved in extracellular protein–protein interactions. 
A key motif in VWA domains is the metal ion-dependent  
adhesion site (MIDAS), which involves coordination of the diva-
lent cation by a ring of up to five polar or charged residues29.  
α

2
δ-1 and α

2
δ-2 have a “perfect” MIDAS site30, whereas α

2
δ-3 

and α
2
δ-4 have a missing polar residue29. The α

2
δ subunits also 

contain multiple Cache domains22,31,32, which have homology  
to domains found in bacterial chemotaxis receptors.

A recent cryo-electron microscopic structural study of the skeletal 
muscle calcium channel complex provided detailed information 
on the structure of α

2
δ-1, confirmed the topology of α

2
δ subu-

nits, and identified the interaction sites between α
2
δ and Ca

V
1.132, 

reinforcing the importance of the VWA domain interaction, pre-
viously identified30, and also providing evidence for C-terminal  
GPI anchoring rather than a transmembrane segment associ-
ated with α

2
δ-1. The study also identified four sites of disulfide 

bonding between α
2
 and δ, one of which was found previously  

by mutagenesis33.

The complex biochemistry of α
2
δ proteins represents a  

challenge for their study, and it is important to be aware of their 
distinct biochemical characteristics in terms of their multiple 
glycosylation sites and disulfide bonds, proteolytic cleavage 
into α

2
 and δ, and GPI anchoring (Figure 3). All of these prop-

erties might be inadvertently disrupted by the placement of 
epitope tags or production of mutants, to the detriment of their  
function6,24,26,33. Furthermore, as elegantly shown very recently 
with respect to α

2
δ proteins12, co-immunoprecipitation experi-

ments require multiple controls to be sure of the specificity of 
any interaction, and additional experiments are needed to deter-
mine whether any association is direct. This is particularly  
true when potential binding partners are co-expressed in trans-
fected cells, where elevated concentrations may result in  
aberrant interactions being detected.

Properties of α2δ as a voltage-gated calcium channel 
subunit
For the Ca

V
1 and Ca

V
2 channels, α

2
δ universally augments 

expressed calcium current density7–9,30. The α
2
δ subunits also 

have effects on both kinetic and voltage-dependent properties of 
the channels, including activation and inactivation. In general, 
there is a negative shift in the voltage dependence of steady-state 
inactivation30,34. In some cases, there is also a hyperpolari-
zation of the voltage dependence of activation, particularly  
for Ca

V
1.2. Here, it has been shown that α

2
δ-1 mediates a  

negative shift in voltage-sensor movement in response to  
depolarization35. There is also an increase in activation and  
inactivation kinetics36,37, although these effects depend on the 
particular α1, β, and α

2
δ subunit used (for a recent review,  

see 10). Results from co-expression studies (which inevitably  

lack many components of the native environment) are rein-
forced by parallel experiments in more intact systems, including 
using tissues from α

2
δ knockout mice20,38–42 and small interfering 

RNA (siRNA) knockdown of α
2
δ-1 in skeletal muscle cells43  

or cardiac myocytes44.

Role for α2δ-1 in calcium channel trafficking
The effect of α

2
δ subunits to increase calcium current density 

can be partially explained by an increase in the trafficking of the 
channels to augment the amount on the cell surface5. The exact 
mechanism whereby α

2
δ increases the density of Ca

V
 chan-

nels in the plasma membrane is still unclear. There was no effect  
of α

2
δ-1 to reduce the internalization of Ca

V
2.25, indicating that 

the effect is likely to be on forward trafficking. Furthermore, 
the trafficking of α

2
δ itself is blocked by a dominant-negative 

rab11 construct, suggesting the involvement of the recycling  
endosomes45.

The VWA domain within the α
2
 moiety of α

2
δ is important for 

both trafficking of α
2
δ and its associated effect on Ca

V
 chan-

nel trafficking and function5,30,46,47. Furthermore, the presence 
of alternatively spliced exon 37a in the proximal C-terminus of 
Ca

V
2.2, which is a minor splice variant expressed particularly 

in certain DRG neurons48,49, increases Ca
V
2.2 currents48 and also 

increases its cell surface density via binding to adaptor proteins50.  
We found that this increase was lost in the absence of α

2
δ  

subunits, suggesting that this auxiliary subunit promotes particular 
steps in the forward trafficking process50.

Proteomic study of CaV2 calcium channels
A comprehensive study of the Ca

V
2 channel proteome was per-

formed by using antibodies against Ca
V
2.1 or Ca

V
2.2, together 

with antibodies against β subunits, and cataloguing the asso-
ciated proteins51. Many proteins were found to be part of this 
complex, although such studies do not indicate whether the 
interaction is direct or indirect. In contrast to initial purification 
studies of N-type channels52, and rather surprisingly to many  
in the field, the interaction of the channels with α

2
δ proteins was 

found to be much less than 1:1; indeed, it depended on the mild-
ness of the detergent used to solubilize the membranes, resulting 
in more or less α

2
δ associated with the complex. Since we 

found that α
2
δ subunits are present in lipid raft fractions53 and  

subsequently identified that they are GPI-anchored24, this sup-
ports the possibility that there is a rather mobile interaction 
between the α1 and α

2
δ subunits54,55 or that this interaction is 

more labile to disruption. Certainly, it also points to a pool of  
α

2
δ which is not associated with calcium channels, which has 

also been identified by studies of calcium channel membrane  
mobility54.

Importance of studies in knockout mouse models for 
elucidating potential novel roles for α2δ subunits
The genetic ablation of particular α

2
δ subunits has been found to 

affect neuronal and synaptic morphology in several systems55–57, 
pointing to roles for α

2
δ that may or may not involve cal-

cium channels22,59. Knockout mice have been generated for 
α

2
δ-138, α

2
δ-220, α

2
δ-360, and α

2
δ-441. These have led to impor-

tant findings regarding both calcium channel function in  
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specific tissues and potential roles for the α
2
δ proteins in  

neuronal and synaptic morphology and in physiological func-
tions, especially in tissues such as cochlear hair cells42, spiral  
ganglion neurons57, retinal photoreceptor cells58, and Purkinje 
neurons20,56, where one subtype of α

2
δ predominates. However, 

complementary approaches are also required to elucidate the  
mechanisms of such effects.

Importance of α2δ in disease states
Neuropathic pain. Cacna2d1, encoding α

2
δ-1, is one of many 

genes whose expression is altered in experimental animals as a 
result of damage to sensory nerves, which may lead to chronic 
neuropathic pain. There is a consistent elevation of α

2
δ-1 

mRNA and protein61–66 in every damaged DRG neuron39,62.  
Furthermore, we have shown that, in α

2
δ-1 knockout mice38, 

there is a marked reduction in baseline responses to mechanical 
and cold stimulation, and a very retarded hyperalgesic 
response to sciatic nerve injury, in comparison with wild-type  
littermate mice39.

Other diseases. CACNA2D1 mutations in humans have been 
identified to cause cardiac dysfunction, including short QT  
syndrome67 and Brugada syndrome68. Cacna2d1 knockout also 
resulted in a cardiovascular phenotype in mice involving a reduc-
tion in basal ventricular cardiac contractility and lower calcium 
current in ventricular myocytes38. CACNA2D2 mutations in 
both humans and mice result in a recessive phenotype including  
epilepsy and ataxia20,56,69–73, as well as a hearing deficit, related 
to aberrant trans-synaptic channel organization42. Furthermore, 
developmentally associated upregulation of α

2
δ-2 expression 

suppressed axon regeneration in adult spinal cord, although the 
mechanism remains unclear74. Cacna2d3 knockout mice have 
a hearing deficit57 and a central pain phenotype60,75. Finally,  
CACNA2D4 mutations in both humans and mice are associated 
with night blindness76,77 and retinal degeneration58.

Mechanism of action of gabapentinoid drugs which bind to 
α2δ-1 and α2δ-2
The α

2
δ subunits are the target for gabapentinoid drugs78, which 

bind to both α
2
δ-1 and α

2
δ-2 with similar affinity79. How-

ever, from studies of mice with mutations in the gabapentin  
binding site within either α

2
δ-1 or α

2
δ-2, it was concluded that 

their therapeutic target both in alleviation of neuropathic pain  
and in epilepsy is α

2
δ-14,80. We have found, from in vitro experi-

ments, that incubation with gabapentin lowers the amount 
of α

2
δ-1 and α

2
δ-2 on the cell surface5,45,81 by inhibiting  

their rab11-dependent recycling to the cell surface45. In vivo, 
chronic administration of pregabalin to sensory nerve-injured 
rats reduced the elevation in the dorsal horn of pre-synaptic 
α

2
δ-1, interpreted as being due to inhibition of trafficking62. 

Thus, gabapentin is likely to influence the function of the other 
proteins to which these α

2
δ proteins have now been found to  

bind.

For the relevant Ca
V
 channels, we have also extensively exam-

ined the effects of gabapentin. They were initially found to have 
only small effects on calcium currents when applied acutely82. We 
found that longer-term incubation of cultured cells with gabap-
entin produced a clear reduction of calcium currents, both in 

transfected cells, when α
2
δ-1 or α

2
δ-2 was co-expressed, and in 

DRG neurons45,81,83. We also observed a corresponding reduction  
in the expression of Ca

V
2 α1 subunits on the cell surface5,45.

Other interaction partners for α2δ proteins related to 
their function as calcium channel subunits
Several studies in recent years have provided evidence for 
novel interactions of proteins with α

2
δ subunits; such inter-

actions then impinge on the function of the calcium channel  
complex. These interactions may be involved positively in the 
trafficking of α

2
δ proteins (for example, low-density lipoprotein 

[LDL] receptor-related protein 1, LRP1)27. By contrast, in several  
studies, the binding partners have been found to sequester α

2
δ 

proteins, limiting their access to the Ca
V
 channels, thus reduc-

ing both the function and the plasma membrane localization 
of calcium channels. This mechanism has been proposed for  
α-neurexins11 and for BK channels13 as well as pathologically for a 
mutant form of prion protein (PrP)84. These will all be considered 
in turn.

Trafficking of α2δ-1 by the multifunctional transport protein 
LRP1
The LRP family represents a large group of ligand-binding and 
trafficking proteins, including the LDL receptor and LRP1–6. 
They are multifunctional, multi-domain receptors, interacting with 
many protein ligands via their ligand-binding domains, mediat-
ing both forward trafficking and endocytosis of these ligands85. 
They are also involved as co-receptors, affecting intracellular  
cell signaling processes86,87.

LRP1 is a ubiquitous membrane protein with four ligand-binding  
domains (Figure 4a) and is involved in forward traffick-
ing of proteins, including several TSPs88–92, PrP93, and NMDA  
receptors94. LRP1 is also involved in clathrin-dependent  
endocytosis85,95. It is present in synapses94 and is implicated in  
neurite outgrowth96. Whether different LRP proteins bind to  
overlapping sets of protein ligands is unclear, but LRP5/6 are  
also involved in Wnt signaling87.

We recently showed that LRP1 binds to α
2
δ-127 and the same is 

true for α
2
δ-2 and α

2
δ-3 (Ivan Kadurin and Annette Dolphin, 

preliminary results). For α
2
δ-1, we showed this interaction is 

direct, involving the VWA domain of α
2
δ-1 and LRP1 ligand-

binding domains II and IV (Figure 4a)27. The association is  
modulated by the LRP chaperone, receptor-associated pro-
tein (RAP), which is required for the correct folding of all LRP  
proteins and for their trafficking out of the endoplasmic  
reticulum97,98. We found that the LRP1/RAP combination 
increases mature glycosylation, proteolytic processing, and cell-
surface expression of α

2
δ-1 and also increases plasma mem-

brane expression and function of Ca
V
2.2 when co-expressed 

with α
2
δ-127. Since LRP1 is able to bind more than one ligand 

at different sites99, it is possible that it forms a bridge between  
α

2
δ-1 and other proteins, such as TSPs.

Sequestration of α2δ-3 by interaction with α-neurexins
There are three vertebrate neurexin genes, and each can form 
α- and β-neurexins from different promoters. The α-neurexins 
have been found to be important for coupling calcium channels 
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to synaptic transmission100. Whereas in mammalian synapses the  
neurexins are pre-synaptic and bind to post-synaptic neuroligins, 
in Caenorhabditis elegans this polarity is reversed at many syn-
apses. It has been found in the worm that post-synaptic neurexin 
1α at the neuromuscular junction binds, via its laminin-like  
globular 1 (LG1) domain, to pre-synaptic unc-36 (similar to  
α

2
δ-3), thus decreasing its availability to bind to the pre-synaptic 

unc-2 (a Ca
V
2-like channel) that mediates neurotransmitter 

release11. This was found to reduce synaptic transmission, an effect 
which required a proteolytically cleaved fragment of neurexin,  
shed from the post-synaptic plasma membrane (Figure 4b). In 
transfected cells, mouse neurexin 1α was found to bind α

2
δ-3 

and to decrease Ca
V
2.2 current, whereas there was no effect on 

Ca
V
2.2 currents in the presence of α

2
δ-1 or α

2
δ-211. An attractive 

suggestion is that this type of pre- to post-synaptic interaction 
may contribute to trans-synaptic nanoscale organization101. 
However, in view of recent results described below, it will be  
important in the future to identify the site of selective inter-
action on the α

2
δ-3 protein of the LG1 domain (and LG5 in  

the mouse)11 of neurexin 1α.

In contrast, a more recent article has identified positive effects 
of neurexin 1α in the presence of α

2
δ-1 (but not α

2
δ-3) on  

pre-synaptic Ca2+ transients in hippocampal neurons and in 
parallel on Ca

V
2.1 calcium currents12. Importantly, very care-

fully done experiments, designed to detect an interaction of neu-
rexin 1α with α

2
δ-1 or α

2
δ-3, failed to find a specific association  

between the two proteins, as every protein tested (α-neurexin, 
neuroligin, and two forms of cadherin) was pulled down with 
α

2
δ-1 (and also α

2
δ-3 co-immunoprecipitated with neurexin 

1α). The authors concluded that neurexin 1α does not form  
stable complexes with α

2
δ subunits but nevertheless influences 

their function. Their results also provide a warning that α
2
δ  

proteins may be rather prone to co-immunoprecipitation  
artefacts.

Sequestration of α2δ-1 by interaction with BK channels
A recent study has identified that BK α subunits bind to α

2
δ-1 

subunits via the BK N-terminus13, and the authors suggest that this 
interaction sequesters α

2
δ-1 from Ca

V
 channels. BK channels are 

important mediators of cell excitability, as they respond to both 

Figure 4. Protein domains involved in novel α2δ interactions. (a) Interaction of α2δ-1 (and α2δ-2/3) with the ligand-binding repeats II and 
IV of low-density lipoprotein receptor-related protein 1 (LRP1) (red). Other domains in LRP1 are epithelial growth factor (EGF)-like repeats 
(orange) and β-propeller domains (cyan)27. i/c, intracellular; TM, transmembrane. (b) Interaction of neurexin 1α with α2δ-3, via its laminin-like 
globular (LG) repeats (L, green) 1 and 5. E, EGF-like repeat (orange). Neurexin 1α is cleaved by a disintegrin and metalloprotease 10 (ADAM 
10) (arrow) to have the observed effects on synaptic transmission, but it is not clear whether this is required for the interaction with α2δ-311. (c) 
Interaction of the extracellular N-terminus of large conductance (big) potassium (BK) α subunits with α2δ-1. The three blue arrows indicate 
the three alternative N-terminal translation initiation sites, the third being the most commonly used13. S0 is the additional transmembrane 
domain (red). (d) Interaction of α2δ-1 von Willebrand factor A (VWA) domain with the EGF-like domains (black bars) of both pentameric (left) 
and trimeric (right) thrombospondins (TSPs)14. (e) Interaction of a C-terminal region of α2δ-1 beyond its GPI-anchor site (dashed orange/white 
region) with the N-methyl-d-aspartate (NMDA) receptor GluN1, GluN2A, and GluN2B subunits15.
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voltage and intracellular Ca2+ (for recent reviews, see 102,103).  
They consist of a tetrameric pore-forming α subunit, which is  
unusual compared with other voltage-gated K channels in that 
it has an additional transmembrane domain (S0), such that the  
N-terminus is extracellular. Furthermore, the N-terminus of 
BK α subunits contains an unusual sequence with three trans-
lation initiation methionines (M1, 25, and 66 in the human  
sequence below):

M1AN3GGGGGGGSSGGGGGGGGSSLRM25SSNIHANHLS 
LDASSSSSSSSSSSSSSSSSSSSSSVHEPKM66DALIIPV 
T M E V P C D S R G Q R M 8 6W WA F L A S S M V T F F G G L F I I L 
LWRTLKYLWTVCCHCGGKTK….

The third start methionine (M66DAL) has generally been thought 
to be the main translation initiation site104, and the underlined 
sequence was identified as a novel transmembrane segment S0. 
There is very good evidence that the existence of this additional 
transmembrane domain results in an extracellular N-terminus104, 
although the exact mechanism driving this is unknown, as no  
signal peptide has been identified. In native rat brain, some 
mass spectrometry–mass spectrometry (MS-MS) peptide cover-
age of BK α was also seen from both the first (M1ANG)105 and 
the second (M25SSN)106 start methionines, indicating that they 
can also be used. BK channels are modulated by transmem-
brane β subunits which differentially interact with the different  
N-terminal isoforms of the BK α subunit and strongly affect BK 
voltage-dependent properties107–109. BK channels also interact with 
γ subunits110.

In the study by Zhang et al.13, α
2
δ-1 was found to associate with 

BK α subunits via their N-terminus (Figure 4c). This association 
was found to compete with both Ca

V
1 and Ca

V
2 channels for α

2
δ-

1 and therefore reduce the Ca
V
 channel function. Interestingly, 

the region of BK channels identified by pull-down experiments 
to interact with α

2
δ-1 is within the N-terminal residues 1–86, 

which contain two unusual repetitive polyglycine and polyserine 
stretches (see above). If the sequence encoded from the first 
start methionine (residues 1–24) was truncated or if the aspar-
agine (N) at position 3 was mutated to D, no effect of the BK 
channel on Ca

V
α1/β/α

2
δ-1 currents was observed, whereas the 

in vitro binding also involved residues 66–8613. These results  
suggest that the effect of BK channels on Ca

V
 channel function 

would occur only for the full-length BK isoform, starting with  
MANG. It is also of interest that N3 in the BK channel poten-
tially undergoes rapid deamidation in vivo which would abol-
ish its interaction with α

2
δ-1 in a time-dependent manner13, 

meaning that only a small subset of BK channels might be 
involved in this interaction with α

2
δ-1. Moreover, in this study, 

no BK β or γ subunits were expressed and therefore it would be  
important to determine whether their interaction with the  
N-terminus or elsewhere would compete with α

2
δ for interac-

tion, which would represent an interesting means of reciprocal  
cross-talk between these channels.

Because the authors examine the potential role for this  
BK–α

2
δ-1 interaction for neuropathic pain, in which α

2
δ-1 is 

upregulated, it would also be of great interest to identify the 

relative expression from the different translation initiation sites 
used for the BK α protein in DRG neurons in control and neuro-
pathic states. Furthermore, it should be noted that, in contrast to  
α

2
δ-1 which is upregulated, BK channel mRNA is downregulated 

in DRGs following neuropathic nerve injury111.

Surprisingly, in proteomic studies of native rat brain BK  
channels, α

2
δ was not identified as co-purifying with these  

channels, although several Ca
V
 channel α1 subunits were well 

represented106. Ca
V
1.2, Ca

V
2.1, and Ca

V
2.2 as well as the Ca

V
β  

subunits β1b, β2, and β3 were all found in this study106. Indeed, 
Ca

V
2.1 was the most abundantly represented protein that  

co-purified with BK channels, suggesting the possibility of a 
direct interaction. This finding would seem to contradict the 
model of Zhang et al.13, in which BK competes for α

2
δ with the  

Ca
V
α1 subunit.

Sequestration of α2δ-1 by interaction with a disease-
associated mutant PrP
In an intriguing study, PrP was found to interact with α

2
δ-1 pro-

teins, and a Creutzfeldt–Jakob disease-causing mutant form of 
PrP resulted in intracellular retention of α

2
δ-1 and disrupted 

synaptic transmission84. It is of relevance in this regard that 
both PrP and α

2
δ-1 are GPI-anchored and therefore would be 

likely to be in similar membrane domains. One confounding 
issue is that in overexpression studies, α

2
δ-1 and PrP interfere  

with each other’s trafficking, at least partly because of competi-
tion for the limiting supply of GPI anchor25. In this study25, PrP 
disrupted the ability of α

2
δ-1 to increase calcium currents, but 

a C-terminally truncated GPI-anchorless PrP did not25. Thus, 
it remains unclear to what extent the α

2
δ-1 interaction with  

cellular PrP has a physiological or pathophysiological role112.

Other interaction partners for α2δ proteins, unrelated 
to calcium channel function
In several studies, new roles independent of calcium chan-
nels have been proposed for specific α

2
δ proteins (for example, 

interaction with TSPs14 and as a subunit of NMDA receptors15).  
These will now be considered here.

α2δ-1 as a mediator of synaptogenesis via binding to TSPs
TSPs are extracellular matrix proteins which bind to a very large 
number of proteins, 83 being so far identified for TSP-1113; con-
sequently, they have many functions114–116. In the brain, they 
are produced by astrocytes and promote neurite outgrowth117, 
including the formation of silent excitatory synapses, lack-
ing post-synaptic receptors118. It was then hypothesized that 
post-synaptic α

2
δ-1 could be the sought-after post-synaptic  

binding partner of TSPs to mediate synaptogenesis, independ-
ent of any effects on calcium channels. This was first tested 
using co-immunoprecipitation to determine whether TSPs 
or individual domains of TSPs interacted with C-terminally 
tagged α

2
δ-114. An interaction which involved a key synap-

togenic epithelial growth factor (EGF)-like domain was found  
(Figure 4d). As a note of caution, C-terminal tagging may inter-
fere with trafficking of α

2
δ-1 by disrupting the GPI anchor24,26. 

Nevertheless, gabapentin was found to inhibit the interac-
tion between α

2
δ-1 and the EGF-like domain of TSP-2 and 
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to disrupt synaptogenesis. Furthermore, in vivo, gabapentin  
was found to disrupt whisker barrel plasticity following  
whisker removal in some of the mice examined14.

TSP-4 is upregulated in rodent models of neuropathic pain119. 
Since α

2
δ-1 is also upregulated in DRGs following peripheral 

sensory nerve injury, several studies have investigated whether 
an interaction between these two proteins is important in neuro-
pathic pain or the effect of gabapentin. Interestingly, in a recent  
article, it was suggested that pre-synaptic, rather than post- 
synaptic, α

2
δ-1 may be a synaptogenic binding partner for  

TSP-4 in the spinal cord120.

We found (using overexpressed proteins) that TSP-4 modestly 
reduced the affinity for 3H-gabapentin binding to α

2
δ-1, although 

the effect on 3H-gabapentin binding was not reproduced with 
the TSP-4 synaptogenic EGF-like domain. Furthermore, we 
found only very weak and unreliable co-immunoprecipitation 
of the two proteins, which again could not be reproduced with  
the synaptogenic EGF-like domain of TSP-4121. We also could 
not demonstrate any interaction between α

2
δ-1 and TSP-4 on 

the cell surface of transfected cells, suggesting that the associa-
tion between these two proteins to disrupt 3H-gabapentin binding 
is occurring intracellularly following co-transfection, when the  
two proteins are juxtaposed at high concentration121.

Nevertheless, there is evidence from other studies that α
2
δ 

subunits are important for synaptic morphology in several dif-
ferent systems57,58,122,123. Whether the role for α

2
δ in calcium 

channel localization and function is responsible for these mor-
phological changes has not always been investigated. However,  
α

2
δ was shown to increase pre-synaptic localization of the 

relevant α1 subunit in Drosophila neuromuscular junction  
synapses124 as well as in retinal58 and hippocampal6 synapses.

α2δ-1 as an NMDA receptor trafficking protein
It was recently shown that overexpression of α

2
δ-1 adminis-

tered intrathecally into the spinal cord potentiates pre-synaptic 
and post-synaptic NMDA receptor activity, and it was further 
shown that α

2
δ-1 interacted with NMDA receptors, both in spinal 

cord and in overexpression studies15. The interaction was appar-
ently specific for α

2
δ-1, as it did not occur with α

2
δ-2 or α

2
δ-3. 

The authors identified the site of interaction as the C-terminus of  
α

2
δ-1, surprisingly after the C-terminal GPI-anchor cleavage 

site (Figure 4e). This was determined using chimeras assembled 
from the different isoforms, swapping isoforms either between 
α2 and δ or with the C-terminus of δ6. However, it is impor-
tant to note that such chimeras may have disrupted the primary 
sequences involved in proteolytic cleavage between α

2
 and δ, a  

process which is important for function6,28, or it might have 
affected the sequences involved in GPI anchoring24. Neverthe-
less, this result suggests either that a transmembrane version of 
α

2
δ-1 may be interacting with NMDA receptors, initially in the 

endoplasmic reticulum, or that the NMDA receptor interacts with  
the C-terminal peptide of α

2
δ-1 that is cleaved off during  

GPI-anchor attachment125.

The GluN1, GluN2A, and GluN2B subunits of NMDA  
receptors were found to interact with α

2
δ-1, presumably via the 

transmembrane or intracellular domains of these subunits, since 
the identified interaction is with the C-terminus of α

2
δ-115. The  

C-termini of these NMDA receptors are rather different in 
both sequence and function126–128, and determining the interac-
tion site will be a key next step. It is of interest that α

2
δ-1 has 

not been previously detected in proteomic studies of post-syn-
aptic densities129. In contrast, other calcium channel subunits 
(Ca

V
1.2, Ca

V
2.3, and a β) were identified. Another recent study 

also did not detect α
2
δ-1 when purifying NMDA receptors from  

mouse brain128, although α
2
δ-1 is widely expressed in most brain 

regions130,131. Therefore, it would be important to determine 
whether this interaction is for some reason observed only in the 
spinal cord. One possible reason is that it might be indirect (for 
example, via a scaffolding protein expressed in the spinal cord,  
interacting with both α

2
δ-1 and NMDA receptors).

Conclusions and future directions
The α

2
δ subunits are important auxiliary subunits of the Ca

V
1 

and Ca
V
2 voltage-gated calcium channels. They play key roles 

in trafficking of these channels, both to the plasma membrane 
and to specific subcellular domains, and they have marked 
effects on the activation and other biophysical properties of these 
channels, indicating their importance as subunits of the chan-
nel complex rather than purely as chaperones. However, recent 
evidence suggests that they may bind to other proteins, and one  
role for such additional interactions could be to sequester par-
ticular α

2
δ subunits at specific sites away from the calcium 

channels in a dynamic manner and thus reduce calcium channel 
function. Evidence also suggests that α

2
δ proteins may independ-

ently influence other channels and also affect other functions of 
neurons. All of these novel functions will need to be critically  
explored in the future to evaluate further their physiologi-
cal, pathological, and pharmacological relevance. Furthermore, 
the roles for novel α

2
δ-like protein, Cachd1, which enhances  

both T-type channels132 and N-type channels133 as well as  
competes with α

2
δ-1133, will be explored further in the future.
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