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ABSTRACT 16 

1. Conservation translocations are an important tool in wildlife management, but have 17 

traditionally suffered from a low success rate. Increasing understanding of animal behaviour 18 

is vital in improving the success of translocations, but few methods exist to efficiently monitor 19 

highly mobile and cryptic species post-release.  20 

2. We present a novel approach to using dynamic occupancy modelling in 21 

combination with data derived from autonomous acoustic recording units to monitor the post-22 

release behaviour of hihi (Notiomystis cincta), a threatened endemic bird, at a translocation 23 

site in New Zealand. The process of analysing large quantities of acoustic data was 24 

facilitated by using automated classifiers and manual validation, an approach that was both 25 

accurate and efficient. 26 

3. We find that this approach detects behavioural change consistent with the 27 

transition from exploration of a new site to territory formation. We identify that hihi territories 28 

at the study site were closely linked to watercourses, but were not related to distance from 29 

release site.  30 

4. We find that this method is able to effectively monitor post-release dispersal, and 31 

could provide a cost-efficient and less invasive alternative to radio-tracking for monitoring of 32 

vocal species. 33 

 34 

 35 

 36 

 37 

 38 

Keywords: Reintroduction, Hihi, Bioacoustics, Occupancy Modelling, Ecoacoustics, 39 
Translocation, Monitoring. 40 

  41 



INTRODUCTION 42 

  Conservation translocations have become an important tool for wildlife management 43 

(Fischer & Lindenmayer 2000). The number of species moved globally is substantial, for 44 

example 279 animal species in North America, (Brichieri-Colombi & Moehrenschlager 2016), 45 

and over 242 species in the world’s oceans (Swan et al. 2016). Publications of translocation 46 

studies continue to increase near exponentially (Seddon & Armstrong 2016). Despite this 47 

popularity, a series of reviews have shown that conservation translocations often fail to 48 

establish populations (Griffith et al. 1989; Fischer & Lindenmayer 2000; Soorae 2016). There 49 

is also often a lack of adequate monitoring to ascertain reasons for translocation success or 50 

failure (Seddon et al. 2012), and this has led to numerous calls to improve post-translocation 51 

monitoring (e.g. Scott et al. 2010; Sutherland et al. 2010; Ewen et al. 2014; Brichieri-Colombi 52 

& Moehrenschlager 2016).  53 

 54 

Post-release dispersal is a poorly monitored aspect of animal conservation 55 

translocations, despite its known importance in successfully establishing populations (Le 56 

Gouar et al 2012; Osborne & Seddon 2012). Learning about possible causes of increased 57 

mortality during post-release dispersal (a component of cost of release; Tavecchia et al. 58 

2009) could provide guidance on important translocation decisions, for example, appropriate 59 

release group sizes to compensate for early losses and selection of appropriate release sites 60 

to reduce cost of release. Furthermore, as animal settlement in to home ranges can be used 61 

as a proxy for translocation success, monitoring post-release dispersal can be useful in 62 

translocation evaluations (Flanagan et al. 2016). 63 

 64 

Monitoring post-release dispersal, however, is frequently challenging and expensive. 65 

In small passerine species this often requires expensive radio-transmitters and antenna 66 

arrays, or dedicated staff tracking individually marked birds (Dougill et al. 2000; Bain et al. 67 

2012; Fountain et al. 2016). These high-cost methods often only provide a brief window of 68 

monitoring data, and can be intrusive for the animals, even leading to injuries and increased 69 



mortality (Pierce et al. 2007; Barron et al. 2010). However, advances in statistical 70 

techniques, particularly the advent of dynamic (or multi-season) occupancy modelling 71 

(DOM), mean that it is now possible to infer changes in behaviour of populations across both 72 

spatial and temporal dimensions (Kéry & Chandler 2016) without needing to track known 73 

individual animals. 74 

  75 

Occupancy modelling estimates the probability of occupancy of a target species at a 76 

sample location based on supplied presence-absence data, while accounting for imperfect 77 

detection of the target species (MacKenzie et al. 2006). This allows inferences to be made 78 

about habitat preferences and post-release behaviour based on occupancy probability. 79 

DOMs allow estimates of occupancy to vary over time by modelling extinction and 80 

colonisation probabilities at sampling locations (Kéry & Chandler 2016). This approach can 81 

model dispersal behaviour of the target species over time by calculating changes in 82 

occupancy probability between seasons within which closure is assumed (i.e. occupancy 83 

status does not change). To control for the effect of imperfect detection on apparent 84 

occupancy, a number of repeat visits within each closed season are required. However, 85 

collecting data over enough seasons to model behaviour change, with the necessary repeat 86 

visits, can require a prohibitive amount of effort in the field using traditional survey 87 

techniques such as transects or point counts. 88 

 89 

When the target species is vocal, one method for achieving repeated presence-90 

absence records efficiently is the use of autonomous acoustic recording units (ARUs) 91 

(Shonfield & Bayne 2017). Using multiple recorders, multiple locations can be monitored 92 

simultaneously, and over time-frames that capture different daily or seasonal behaviours 93 

(Tegeler et al. 2012). ARUs can record for extended periods of time without human 94 

interaction after initial set-up (Hobson et al. 2002; Tegeler et al. 2012) which means that 95 



ARUs can be used even in terrain that would normally make repeat visits problematic 96 

(Klingbeil & Willig. 2015; Williams 2016). Furthermore ARUs reduce detection bias because 97 

data collection is independent of observer skill levels (Klingbeil & Willig. 2015), and does not 98 

require the presence of humans – a factor that can alter avian behaviour (Digby et al. 2013). 99 

 100 

DOMs have been used to model seasonal occupancy changes at large spatial and 101 

temporal scales (Brambilla et al. 2012; Gow & Stutchbury 2013; Frey et al. 2016), and 102 

several studies utilise autonomous, acoustically derived data combined with single-season 103 

occupancy modelling (Furnas & Callas 2015; Campos-Cerqueira & Aide 2016). As far as we 104 

are aware, however, no previous study has combined temporally detailed data collected by 105 

ARUs with DOMs to efficiently model post-translocation dispersal and settlement behaviour 106 

at a local scale. Here we test the utility of combining acoustic data from ARUs and DOMs 107 

using a conservation translocation of hihi (Notiomystis cincta) in New Zealand as a case 108 

study. Noting that previous successful hihi translocations have shown an initial exploratory 109 

phase with wide distribution across the site, followed by settlement in territories associated 110 

with particular environmental features (Richardson & Ewen 2016), we use this novel 111 

approach to answer the following questions: 112 

1) Is it possible to detect hihi transitioning from an initial exploratory phase to a 113 

settlement phase, characterised by an increase in extinction probability and a corresponding 114 

decrease in colonisation probability? 115 

2) Is it possible to detect the emergence of preferred environmental features as 116 

settlement progresses, characterised by effects of environmental predictors on final hihi 117 

occupancy probability? 118 

 119 



METHODS 120 

Species Description and Study Site 121 

The hihi is a small passerine endemic to New Zealand and classified as vulnerable in 122 

the IUCN Red List (BirdLife International 2016). Hihi went extinct on mainland New Zealand 123 

in the 1880s and survived solely on Te Hauturu-o-Toi/Little Barrier Island, due to the 124 

predator-free environment. Successful reintroduction programmes established another 5 125 

populations on two further islands - Tiritiri Matangi and Kapiti - and three predator-free 126 

mainland reserves; Karori Wildlife Sanctuary, Maungatautari Ecological Island (MEI) and 127 

Bushy Park (Richardson et al. 2015). All populations are dependent on the maintenance of a 128 

predator-free environment, and additionally the reintroduced populations rely on 129 

supplementary feeding stations (Chauvenet et al. 2012) and nest boxes (Richardson et al. 130 

2015) with the exception of MEI and Kapiti. The inability of hihi to disperse over long 131 

distances and high dependence on heavily managed predator-free environments mean that 132 

further increases in hihi population require further translocations, so that post-translocation 133 

monitoring, and understanding behaviour after release, is of particular importance in this 134 

species.  135 

There are several traits that make hihi an ideal candidate species for this study. Hihi 136 

breed annually between September and March, and the majority breed in their first year 137 

(Richardson et al. 2015). Previous monitoring following radio-transmitter tagged hihi 138 

released at MEI found hihi disperse quickly after release, prior to  eventual breeding site 139 

selection being primarily guided by the movements of female hihi in the first weeks post-140 

release (Richardson 2015). There was a strong correlation between female hihi location after 141 

4 weeks and their eventual breeding location, with the same, but weaker effect also present 142 

in males. Further, MEI post-release monitoring found that hihi preferred to settle on sites 143 

within 150m of a watercourse (Richardson & Ewen 2016). A further predictor of habitat 144 

selection in released hihi at MEI was proximity to both the release site and the 145 

supplementary feeders, but it was not possible to disentangle these effects due to the 146 



feeders being located at the release site. These behavioural traits, in combination with hihi 147 

being highly vocal but difficult to resight by fieldworkers, mean that monitoring using acoustic 148 

recorders and DOMs should be an effective method. 149 

 150 

The translocation of hihi to Rotokare Scenic Reserve (RSR) provided an ideal 151 

opportunity to test this method of monitoring. On 1st April 2017, 40 juvenile hihi (with an 152 

even sex ratio) were translocated from Tiritiri Matangi and released at two locations within 153 

Rotokare (Fig.1). Artificial feeders were provided at 5 locations (Fig.1). Rotokare is located at 154 

-39.448259ºS, 174.414640ºE, in the Taranaki region of North Island, New Zealand. RSR 155 

comprises 230 hectares of primary forest, wetland and lake (Scrimgeour & Pickett 2011), 156 

with 12.5 hectares of scrub, regenerating from high grazing-pressure that occurred up to 157 

2008. The site, a basin, drains into a 17.8-hectare natural lake in the centre. It is a ‘mainland 158 

island’ reserve - the perimeter of the site is enclosed with predator-exclusion fencing and 12 159 

pest species were eradicated between 2009 and 2011. The reserve is surrounded by 160 

pasture, creating a habitat barrier to dispersal beyond the reserve, with the closest suitable 161 

neighbouring habitat c1km to the east. The steep slopes and dense vegetation covering the 162 

reserve make re-sighting hihi challenging, whilst the relatively small size of the reserve 163 

allowed for comprehensive coverage with audio-recorders, therefore making RSR an 164 

excellent study site. 165 

  166 

Autonomous Recording and Survey Design  167 

We used omni-directional ARUs developed by the New Zealand Department of 168 

Conservation, and previously used to survey kiwi (Apteryx species) and Australasian bittern 169 

(Botaurus poiciloptilus) (Digby et al. 2013; Williams 2016). We deployed ARUs at 31 170 

locations across the site in a 270 m grid created using QGIS v2.18.10 (QGIS Development 171 

Team 2015). Due to the inaccessible nature of much of the forest on the reserve, we placed 172 

ARUs along the closest existing predator monitoring lines, which are spaced at 50 m 173 



intervals across the reserve, on suitable vegetation 1.5 m above ground (Fig.1). The ARUs 174 

were deployed for a total of 32 days between 18 April (18 days after the release date) and 175 

19 May 2017, to cover the expected exploration and settlement phases. Each ARU was 176 

programmed to record for two daily recording periods, lasting 2 hr each; the first being from 177 

08:00-10:00, and the second from 15:00-17:00 (sunrise was 06:53 and sunset 17:50 on 18th 178 

April 2017). This provided 64 recording periods and 128 hr of recordings per ARU. 179 

Recording periods were divided into eight 32 kHz sound files, each being 15 min in length. 180 

This resulted in the collection of 15,872 15 min recording periods across the study.  181 

 182 

Semi-automated Call Recognition 183 

We assessed the presence or absence of hihi calls in each 15 min recording using a 184 

process of semi-automated call recognition (SACR). An hour-long recording was made at 185 

RSR using the same model of ARU, during which we spoke immediately after all visually 186 

confirmed hihi vocalisations (hereafter the narrated recordings), to use as training data for 187 

the automated call recognition models. The most frequent vocalisation heard was the ‘stitch’ 188 

call (Higgins et al. 2001). Other vocalisations consisted of irregular squeaks and whistles 189 

comprising sub-song, and two high-pitched squeak-like calls; these vocalisations were either 190 

infrequent or were at a frequency that was problematic for the recorders, and we discounted 191 

them from further analysis. 192 

 193 

We created automated call recognition models (ACRMs) using SongScope v4.1.5 194 

(Wildlife Acoustics 2011). SongScope is a freely available software utilising Hidden Markov 195 

Models and spectral feature vectors to detect call structures (Wildlife Acoustics 2011b). It 196 

was chosen over other freely or cheaply available call detection programmes as it produces 197 

a higher number of true detections than Raven Pro (Bioacoustics Research Program 198 



2010)(Duan et al. 2013), and has a relatively user-friendly interface compared to R-based 199 

packages such as ‘warbleR’ (Araya-Salas & Smith-Vidaurre 2017). 200 

 201 

We collected training data for ACRMs from the narrated recording and identified 202 

further calls by visual inspection of spectrograms of recordings made at Rotokare prior to the 203 

commencement of the study period, using Raven Pro. We made annotations to the identified 204 

vocalisations in SongScope. Automated call recognition model parameters were guided by 205 

recommendations for the detection of ‘click’ type calls in Duan et al (2013) and the 206 

SongScope 4.0 User’s Manual (2011). We tested an initial subset of call recognition models, 207 

containing large variations in parameters, against a 15 min recording containing 72 hihi calls 208 

which had been manually identified using visual inspection of spectrograms in Raven Pro. 209 

Once the most successful models had been identified, we made further refinement to the 210 

parameters of the classification models in an ad hoc manner. It was apparent that no single 211 

model would be adequate as models with high levels of true positives also had 212 

correspondingly high false positive rates, to the extent that manually checking the number of 213 

false positives would be hugely time consuming. Instead, a 2 model approach was adopted, 214 

an initial model with low false positive rate to detect the majority of calls, and a second 215 

model with a higher false positive rate to be used on the sound files in which hihi had not 216 

already been detected. We tested the candidate models against a subset of the study data - 217 

the recordings from a single recorder from 18th April - 3rd May 2017- in which we manually 218 

identified hihi presence or absence for each 15 min recording by visual inspection of 219 

spectrograms in Raven Pro. All models that identified less than 50% of the recordings with 220 

hihi present were rejected, and of the remaining models, the one with the lowest number of 221 

false positives was selected as the first model. Further candidate models were then tested 222 

against the recordings from the subset of study data which the first model had identified as 223 

absent of hihi vocalisations. We selected the second model with the highest number of true 224 



detections, having rejected any model that returned over 6,000 false positives (roughly 3 225 

hours work to manually validate).  226 

 227 

We used SongScope to search all 15 min recordings for candidate vocalisations 228 

using the first model resulting in a list of all candidate detections linked to a spectrogram of 229 

the sound. As any false positives produced by the ACRMs violate an assumption of 230 

occupancy modelling, these spectrograms were manually validated to remove false-positives 231 

following the methods set out in a previous study (Campos-Cerqueira & Aide 2016). 232 

 233 

During the validation process, the SongScope spectrograms associated with 234 

candidate vocalisations were displayed with a fast Fourier transform (FFT) size of 256, FFT 235 

overlap 7/8 and 0 decibel gain. To ensure all false detections were ruled out, we discounted 236 

candidate vocalisations visually, whilst all positive detections were confirmed visually and 237 

aurally. All 15 min recordings that contained one or more hihi vocalisation were coded as 238 

present in a presence-absence matrix. All 15 min recordings in which hihi were not detected 239 

by Model 1 were then searched for candidate vocalisations using Model 2, and the validation 240 

process repeated. For Model 2 spectograms, we used a 15 decibel gain to detect quieter or 241 

more distant vocalisations (except in cases with high background noise, such as periods of 242 

heavy rain). The presence/absence database was then updated with all hihi presence 243 

detected by Model 2, with the remaining recordings coded as absence. Additionally, we 244 

coded all 15 min recording periods in which recordings were not obtained through hardware 245 

failure or human error as missing. To complete the matrix, we coded any 15 min period in 246 

which the ARU were being serviced, or when background noise blocked all bird calls for the 247 

entire recording period, as missing.  248 



 249 

Dynamic Occupancy Modelling 250 

The matrix of presence/absence data was then used to generate a single-species 251 

dynamic occupancy model using the package Unmarked in R ver3.3.1 (Fiske & Chandler 252 

2011; R Core Team 2017). To model the probability of occupancy, a period of ‘closure’ is 253 

required to ascertain the probability of detection (MacKenzie 2006; Kéry & Chandler 2016). 254 

During the closure season, replicate observations of the site are made and occupancy 255 

status, either present or absent, is assumed to remain constant throughout. In addition to the 256 

assumption of closure, DOMs also require the assumption that sites are independent from 257 

each other during a closed season. Violations of the closure assumption typically lead to 258 

over-estimation of occupancy (Rota et al. 2009), and this can be a particularly inhibiting 259 

factor in the use of DOMs for mobile species. A solution to this problem, made viable by 260 

using ARUs to collect repeat surveys without needing to return to a site multiple times, is to 261 

set the closure season to a short duration. We assumed seasons of closure to be 2 hours. 262 

Each 15 min recording was designated as a replicate visit, so that each season had 8 263 

replicate visits. 264 

Covariates were selected for all 4 parameters of the model; initial probability of 265 

occupancy (occupancy), probability of colonisation (colonisation), probability of extinction 266 

(extinction), and probability of detection (detection). Covariates were selected on a 267 

hypothesis driven basis, informed by prior research on the species and a single model set 268 

was defined a priori. Date was selected as a predictor of colonisation and extinction, as 269 

female hihi at MEI had been found to settle on breeding territories four weeks after 270 

translocation, thus changes in behaviour around this period could provide important insight 271 

in to the settlement process and final territory location at RSR. The study was designed so 272 

that the fourth week after release fell roughly in the middle of the survey period, giving the 273 

best opportunity to detect behavioural change in this period. Date was coded as a 274 

categorical variable with four levels, each level representing 8 days. It was also included as 275 



a predictor of detection to account for possible changes in vocalisations during territory 276 

formation. Distance from water (DfW) and distance from release (DfR) were included as 277 

predictors of initial occupancy, colonisation, and extinction, as these were found to be the 278 

most significant environmental predictors of hihi territory presence at MEI by Richardson and 279 

Ewen (2016). Distance from water included watercourses on the Land Information New 280 

Zealand river centrelines map plus the RSR lake edge. The interactions between Date and 281 

DfR and DfW respectively were also included as predictors of initial occupancy, colonisation, 282 

and extinction. Aspect (a categorical variable with 4 levels centred between cardinal points), 283 

and Topographical Position Index (TPI) (Weiss 2000) (a measure of exposure indexed by 284 

cell elevation relative to the average of neighbouring cells’ elevation), were included as 285 

covariates for detection as proxies for the effect of wind on the recorders, to capture the 286 

increased likelihood of target vocalisations being masked by wind noise at exposed locations 287 

or facing the prevailing wind. The interaction between Aspect and TPI were also included in 288 

detection. Time was included as a categorical predictor of detection with 4 levels (hours 1 to 289 

4), to account for possible change in vocalisation rate across the day. 290 

 291 

Covariates to retain for each parameter in the final model were selected 292 

successively, using Akaike’s information criterion (AIC) following an adapted version of the 293 

method set out by Kéry et al. (2013). Firstly, detection was optimised by successively fitting 294 

models with increasing complexity following the rules of marginality (McCullagh & Nelder 295 

1989), from a starting model with all parameters constant. For each covariate or interaction, 296 

the AIC weight from each model was summed, and any covariate or interaction with a 297 

summed AIC weight of ≥0.8 was retained. Once covariates with AIC weight of >0.8 had been 298 

identified for detection, the detection structure was maintained, and initial occupancy was 299 

optimised following the same process. Next, colonisation and then extinction were optimised, 300 

and covariates identified for each parameter. Then covariates were again identified for 301 

extinction and colonisation, this time optimising extinction first. The two sets of covariate AIC 302 



weights for extinction and colonisation were then averaged, and all covariates with a 303 

summed AIC weight of ≥0.8 were retained. 304 

Predicted occupancy patterns from the model were ascertained using the ‘predict’ 305 

function in Unmarked, and the effects of the variables on colonisation and extinction were 306 

plotted following the methods set out in Kéry & Chandler (2016). A map of RSR with 307 

predicted hihi occupancy values was generated in R. 308 

RESULTS 309 

Semi-automated Call Recognition 310 

After manual validation to remove false positives, Model 1 correctly detected the 311 

presence of hihi in 79 of the 256 15 min recordings used as a test subsample. A further 98 312 

recording periods were correctly identified as absent of hihi vocalisations, giving Model 1 a 313 

69.1% accuracy rate against the visual analysis of the test data. Model 2 correctly detected 314 

an additional 35 recordings with hihi vocalisations present, so that in combination the two 315 

models correctly identified recordings with hihi present in 75% of cases compared to visual 316 

analysis. When added to the correctly identified absences, the two models combined 317 

correctly identified hihi presence or absence in 99.2% of recordings in comparison to the 318 

visual analysis of the test data (SACR additionally detected 2 hihi calls missed by visual 319 

analysis). 320 

 321 

When applied to the full dataset, Model 1 produced 16,633 candidate vocalisations, 322 

whilst Model 2 produced 266,768 candidate vocalisations. After manual validation, Model 1 323 

detected 713 15 min recordings in which hihi were present, and Model 2 detected a further 324 

382 from recordings in which Model 1 failed to detect hihi presence. The final 325 

presence/absence matrix contained 1,015 presences, as some of the 15 min recording 326 

periods were later recategorized as missing data. Overall, missing data accounted for 1,256 327 

of recording periods or 7.9% of the total. 328 



 329 

Dynamic Occupancy Modelling 330 

The optimised model showed a strong negative correlation between date and 331 

colonisation and a strong positive correlation between date and extinction (Table 1, Fig 3), 332 

consistent with territory formation. Similarly, distance from water was found to be positively 333 

correlated with extinction and negatively correlated with colonisation (Table 1, Fig 4). Both 334 

TPI and Aspect had a strong negative effect on detection rates (Table 1). After initially even 335 

probability of occupancy across the site, a strong preference for proximity to water 336 

developed rapidly over the first week, followed by a decelerating overall reduction in 337 

occupancy while retaining the preference for proximity to water. (Table 1, Fig 5). The 338 

decrease in overall occupancy can be attributed to either mortality during the study period 339 

causing a decrease in the overall population, or hihi presence becoming intensified in 340 

preferred areas. Additional monitoring surveys conducted outside of this study using 341 

traditional transect methodology identified a minimum of 22 individual hihi between 1st and 342 

5th May 2017 (a total of 36 individuals were identified throughout May when including ad hoc 343 

sightings) (McCready 2017a, unpublished) and 26 individuals were identified during the June 344 

survey from 30th May to 3rd June (McCready 2017b, unpublished). This suggests that the 345 

population remained relatively stable during the study period, suggesting that reduced 346 

overall occupancy can be attributed to more intensive use of preferred areas and territory 347 

consolidation. The preference for proximity to watercourses is illustrated in Figure 6, with the 348 

highest probability of hihi occupancy clearly following the edge of the lake and shadowing 349 

the streams, with areas of high ground furthest from flowing water the least likely to be 350 

occupied. 351 

 352 



DISCUSSION 353 

Dynamic occupancy modelling using sound recordings collected by ARUs and 354 

processed using SACR was able to model spatial and temporal variations in hihi behaviour, 355 

answering both questions 1 and 2 effectively. We found a pattern of increasing extinction 356 

and decreasing colonisation over the duration of the study period (Fig 3) indicating that hihi 357 

were reducing their movement around the site and increasingly staying within preferred 358 

areas, behaviour suggestive of territory formation. The areas that hihi chose to settle in were 359 

strongly predicted by distance from water. We have found that ARUs were able to capture 360 

the sound recordings required for DOMs, and that SACR is an effective method to analyse 361 

large datasets to remove false positives, allowing the study to be conducted at spatial and 362 

temporal scales that facilitate a detailed analysis of occupancy not previously attempted. 363 

 364 

Semi-automated Call Recognition 365 

Detection of hihi presence or absence over a 15 min recording was successful. After 366 

the manual elimination of false-positives, SACR was as accurate as visual checking of 367 

sonograms, whilst being approximately 10 times faster. SACR successfully produced the 368 

data necessary for DOMs using free, openly available software and much faster than visual 369 

analysis of spectrograms. Although no attempt was made to quantify the percentage of calls 370 

detected against those present on the recordings, we estimate that both the chosen models 371 

detected <10% of the total number of calls that could have been detected by a visual 372 

inspection of the sonograms, emphasising the benefits of using presence or absence over a 373 

15 minute period, rather than attempting to quantify the number of calls. The models also 374 

produced a large number of false positives, particularly Model 2. This was anticipated, as 375 

‘click’ type calls, such as the hihi stitch call, show up as simple vertical lines on sonograms, 376 

which are easily mistaken for a variety of non-target sounds. This potential problem is largely 377 

overcome by the SACR method, with visual verification of even such large numbers of false 378 

positives taking less time than visual inspection of the entire dataset. Further research into 379 



the impacts of varying detection rates on occupancy modelling would be useful, as using 380 

automated recognition models that detect fewer calls but benefit from lower rates of false 381 

positives would greatly reduce the time required to analyse the recordings.  382 

 383 

Dynamic Occupancy Modelling 384 

These findings demonstrate the ability of this approach to detect not only behavioural 385 

change, but also the environmental factors that underpin habitat selection. Furthermore, the 386 

results of this study are supported by previous research conducted at MEI using radio-387 

tracking methods. Richardson and Ewen (2016) found hihi settling on to territories over a 388 

similar timescale, and also found that distance from water was the most important factor in 389 

habitat selection. However, the methods described here have several advantages over 390 

radio-tracking, namely that they are passive, involving no disturbance to the subject, studies 391 

an entire population rather than selected individuals, and is potentially more cost-effective 392 

given the dramatic decline in cost of ARUs. 393 

 394 

The models of hihi occupancy presented here are heavily simplified, and many more 395 

variables could impact on hihi occupancy than are considered here. The intention of such a 396 

pared down model was to establish whether this modelling technique could be used at such 397 

fine scale to identify behaviour already supported from previous studies, in which we were 398 

successful. However, these techniques could also be used for translocation monitoring of 399 

species about which we have little or no a priori knowledge of their habits in the wild, by 400 

fitting a model with all hypothesised covariates and examining the effects of each on the 401 

model. Further research in to the effects of varying the duration of closure seasons would be 402 

beneficial to establish if there is an optimal duration to avoid any possible violations of the 403 

DOM assumptions, whilst minimising the effort required to gather data. 404 

 405 



Conclusion 406 

Effective monitoring of post-release dispersal is necessary to evaluate conservation 407 

translocations and to inform future translocation planning, but it presents a range of 408 

logistical, financial and technological challenges to practitioners. This novel combination of 409 

ARUs and dynamic occupancy modelling has proved a powerful tool, able to temporally and 410 

spatially model hihi behaviour at scales that previously required expensive, intrusive and 411 

logistically challenging transmitter technology. The acoustic analysis was able to effectively 412 

detect hihi stitch calls sufficiently well to enable dynamic occupancy modelling, despite being 413 

one of the least suitable vocalisations for this method, indicating this method could be 414 

applied to a wide range of vocal species. This method allows translocation monitoring to be 415 

conducted effectively and efficiently across a range of areas and species that would 416 

previously have proven too challenging, improving understanding of the factors that lead to 417 

successful conservation translocations. Furthermore, this method could be readily applied to 418 

a range of scenarios beyond translocation ecology where monitoring of animal behaviour is 419 

desirable but currently challenging. For instance, it would make an excellent tool for 420 

monitoring behavioural change and area-avoidance post-construction of wind farms, or for 421 

monitoring conservation actions designed to alter the habitat use of target species, giving 422 

this novel monitoring method a truly broad range of possible applications. 423 

 424 
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TABLES 586 

Table 1: Model parameters and variables used in the dynamic occupancy model of 587 

hihi (Notiomystis cincta) dispersal behaviour at Rotokare Scenic Reserve, North 588 

Island, New Zealand. Note numbers relate as follows: 1. Environmental variable 589 

predicted to have an impact on hihi distribution; 2. Temporal, categorical variable predicted 590 

to have an impact on hihi distribution; 3. Temporal variable predicted to have an impact on 591 

hihi detection; 4. Environmental variable predicted to have an impact on hihi call detection. 592 

 593 

Model parameters Covariates  Summed 

AIC weight 

Covariate Coefficients 

in Optimised Model 

(SE) 

Initial probability of 

occupancy (ψ) 

Distance from water 

(DfW)1 

0.585  

Distance from Release 

(DfR)1 

0.284  

Colonisation (γ) Date2 0.992 Date1: contrast baseline 

Date2: -0.789 (0.260) 

Date3: -0.294 (0.250) 
 
Date4: -0.800 (0.257) 
 

DfW1 0.890 -0.175 (0.086) 
 

DfR1 0.192  

Date*DfW 0.124  

Date*DfR 0.026  

Extinction (ε) Date2 0.895 Date1: contrast baseline 

Date2: 0.227 (0.314) 
 
Date3: 0.749 (0.313) 
 
Date4: 0.784 (0.373) 
 



DfW1 0.999 0.656 (0.171) 

DfR1 0.609  

Date*DfW 0.173  

Date*DfR 0.101  

Probability of 

detection (p) 

Date3 0.63  

Aspect4 1.00 E-S: contrast baseline  

S-W: -0.6951 (0.1433) 
 

W-N: -0.9804 (0.1416) 
 

N-E: -0.0211 (0.1069) 
 

 

Topographical Position 

Index4 

1.00 -0.3448 (0.0411) 

Time3 0.46  

Aspect*TPI 0.079  

Optimised model parameters: 

ψ = ~1 γ = ~DfW + date, ε = ~DfW + date, p= ~Aspect 

+ TPI 

 

 594 



FIGURES 595 

 596 

Figure 1: Locations of 32 autonomous recording units (Stars) deployed at Rotokare 597 

Scenic Reserve, North island, New Zealand to monitor dispersal of 40 translocated 598 

hihi post release. Recorders were deployed between 18th April and 19th May 2017. 599 

Triangles denote release sites and circles are feeder locations. 600 

 601 



 602 

Figure 2: An example of spectrograms detected on autonomous recording devices 603 

deployed at Rotokare scenic reserve, North island, New Zealand. Top: Three hihi 604 

(Notiomystis cincta) 'stitch' vocalisations, recorded during the study with FFT at 512 605 

points, a 50% overlap, and Hann windowBottom: A spectrogram of New Zealand 606 

fernbird (Megalurus punctatus) showing how these calls are similar to those of hihi 607 

and therefore likely to be detected as false positives by automated call recognition 608 

models. 609 



 610 

Figure 3: The effect of time after release on the probability of hihi colonisation and 611 

extinction at any given point in Rotokare Scenic Reserve.  612 

 613 



Figure 4: The effect of distance from water on hihi colonisation and extinction 614 

probability at Rotokare Scenic Reserve. 615 

 616 

 617 

Figure 5: The effect of distance from water on the probability of hihi occurrence on 618 

19th May 2017 at Rotokare Scenic Reserve. 619 

 620 



 621 

Figure 6: Map of hihi occurrence probability at Rotokare Scenic Reserve at the end of 622 

the study period.  623 

 624 
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