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Edge-illumination tomography is a modality for performing x-ray phase-contrast imaging in 3D, based
on structuring the primary beam into an array of beamlets and employing a dedicated incoherent sensing
mechanism. In this article, we provide a theoretical framework for the spatial resolution of this method,
based on the concept of the bowtie-shaped essential support of the Radon transform in frequency space,
which is well known in conventional tomography. The additional complexity caused by the use of beamlets
is added to the model, and its validity is confirmed by means of simulated and experimental results. In
essence, we show that the precise location of non-negligible entries in the two-dimensional frequency
spectrum of an edge-illumination sinogram can be predicted by only two parameters, the beamlet width
and the sample thickness. This enables the derivation of sampling schemes tailored to avoid aliasing, thus
maximizing spatial resolution.
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I. INTRODUCTION

Edge-illumination tomography [1,2] is a technique for
3D, phase-sensitive x-ray imaging, which has been under
continuous development alongside other approaches for
this purpose, such as propagation-based imaging [3],
analyzer-based imaging [4], grating interferometry [5], and
lately speckle-based techniques [6–8]. Being able to con-
vert the phase shift that x-rays experience when they pass
through matter into contrast, instead of, or in addition to
their attenuation, has proven invaluable for samples for
which attenuation contrast is inherently weak, such as
soft biological tissues, or generally low-Z materials. This
is because for such samples phase-shift differences are
often relatively larger than attenuation ones, a fact which,
if properly exploited, can lead to a significant increase
in contrast-to-noise ratio [9]. The various existing phase-
imaging approaches differ in their experimental setup and
demands on spatial and temporal coherence, and therefore
their translatability to conventional (weakly coherent) x-
ray sources. Edge-illumination tomography, whose work-
ing principle is summarized below, has relatively relaxed
coherence requirements and, thus, can be implemented

*charlotte.hagen.10@ucl.ac.uk

Published by the American Physical Society under the terms of
the Creative Commons Attribution 4.0 International license. Fur-
ther distribution of this work must maintain attribution to the
author(s) and the published article’s title, journal citation, and
DOI.

with conventional x-ray tubes, allowing a widespread use
of the technique.

In brief, the method works by preshaping an x-ray beam
into an array of narrow beamlets using a mask (sample
mask in the following), and sensing refraction using a
series of beam stops created by a second mask (detec-
tor mask in the following), as illustrated in Fig. 1. Ini-
tially, each beamlet is aligned with the edge of a beam
stop, causing a specific number of photons to hit each
pixel [Fig. 1(a)]. When a sample is placed into the setup
(immediately downstream of the sample mask), refrac-
tion—which can be interpreted as the macroscopic mani-
festation of the phase shift—changes the direction of the
beamlets [Fig. 1(b)]. This, in turn, causes a smaller or
greater number of photons to hit the pixels, giving rise
to contrast. A tomographic scan involves acquiring a set
of projections while rotating the sample (forming the sino-
gram), and applying postprocessing methods to reconstruct
cross-sectional tomograms. The period (p) of the sample
mask must match the demagnified pixel size, and typically
the ratio between the beamlet width (w) and p is within 1/3
and 1/8. These specific criteria require a careful design of
the experimental setup. Note that, unlike in the schematic
in Fig. 1, in the remainder of this paper we assume a par-
allel beam, implying that the sample-mask period and the
pixel are both of dimension p , allowing the magnification
between the two planes to be omitted.

Besides providing access to phase-contrast, an inter-
esting side effect of using beamlets is that it decouples
the spatial resolution from the dimensions of the detector
pixels and the source, which are the driving factors for

2331-7019/18/10(5)/054050(11) 054050-1 Published by the American Physical Society

https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevApplied.10.054050&domain=pdf&date_stamp=2018-11-21
http://dx.doi.org/10.1103/PhysRevApplied.10.054050
https://creativecommons.org/licenses/by/4.0/


HAGEN, VITTORIA, ENDRIZZI, and OLIVO PHYS. REV. APPLIED 10, 054050 (2018)

(a) (b) FIG. 1. Schematic illustrating
the working principle of edge-
illumination x-ray tomography
(note that this drawing is not
to scale, shows a setup as seen
from the top, and the configura-
tion extends uniformly in the y
direction, which is perpendicular
to the plane of the paper).

this metric in conventional tomography. It has been shown
that, instead, the spatial resolution is to first approxima-
tion defined by the beamlet width, provided that this is
smaller than the effective (i.e., scaled to the sample plane)
projected source and pixels, and that diffraction effects
and any form of signal diffusion (e.g., within the detector)
can be neglected [10] (for simplicity, we assume that the
sample-mask plane and the sample plane coincide). There-
fore, high spatial resolutions can be achieved even with
relatively large pixels, as demonstrated previously when
a spatial resolution of 3 μm was achieved with a detec-
tor featuring 50-μm pixels [11]. This also implies that a
high spatial resolution is not limited to a small field of
view, as the resolution is solely defined by the mask (pro-
vided that the sampling is adequate, see below), and such
mask structures can readily be manufactured up to 10 cm
by 10 cm.

However, the use of beamlets also leads to gaps in the
acquired projections, as the nonirradiated parts of the sam-
ple are not seen. As a consequence, the intrinsically high
spatial resolution capabilities can only be exploited if mea-
sures are taken to fill these gaps. A common way to achieve
this is by means of a process called dithering, by which the
sample is scanned laterally (along the x direction) in steps
smaller than the sample-mask period, a frame is acquired at
each step, and all frames are subsequently combined into a
single, upsampled projection. Dithering can be performed
either in step-and-shoot or continuous mode; in the for-
mer, the sample is displaced in between the acquisition of
consecutive frames (i.e., while the detector is reading out),
whereas in the latter the sample is displaced during the
acquisition of frames (i.e., while the detector is integrat-
ing) [12]. While the effect of dithering on spatial resolution
has previously been analyzed for two-dimensional (2D)
(planar) edge-illumination imaging [10], an investigation
for three-dimensional (3D) (tomographic) imaging, where
sinograms are acquired rather than individual projections,
is still lacking. In tomography, dithering is combined with
the rotation of the sample, involving the sampling of lat-
eral and angular coordinates, making their interaction more
complex.

In conventional tomography (i.e., when the beam is not
structured and the setup is only sensitive to the attenua-
tion of x-rays), the interplay between lateral and angular
sampling, and their effect on the spatial resolution in the
tomograms, is well understood thanks to a theory by Rat-
tey and Lindgren [13]. Their work provides a simple but
sufficiently accurate description of how a tomographic
imaging system responds in frequency space to an impulse
it receives in real space; in fact, it has been demonstrated
that the spectral content of the Radon transform is con-
fined to a well-defined area that has the shape of a bowtie.
This has proven to be a powerful insight, not only for char-
acterizing the spatial resolution in tomographic scanners
in general, but also for, e.g., improving the image recon-
struction process [14] and developing new approaches to
region-of-interest scanning [15].

Here, we apply the concepts by Rattey and Lindgren to
enhance the understanding of spatial resolution in edge-
illumination x-ray tomography, and how it is linked to
the sampling of the sinogram along the lateral and angu-
lar directions. Due to the beamlet-based decoupling of
spatial resolution from the pixel and source dimensions,
this relationship is expected to differ from that in conven-
tional tomography. In Sec. II, we provide an appropriate
adaptation of the theory, which requires treating the cases
of step-and-shoot and continuous dithering separately. We
then exploit this theory to derive optimal sampling con-
ditions that maximize spatial resolution while minimising
dose. In Sec. III, we present a series of simulated and
experimental results that validate the presented framework.
This article concludes with a brief summary and a critical
evaluation of the work.

II. THEORY

The spatial resolution in a tomogram is generally
defined by a combination of the following aspects: the
highest spatial frequency that is present in the image-
formation process, the way by which the data are sam-
pled, and any postprocessing applied to the data, e.g.,
interpolation, filtering, or tomographic reconstruction. In
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the following, we will discuss the first two aspects in
the context of edge-illumination tomography, but will
neglect the latter aspect, as the multitude of available post-
processing methods would go beyond the scope of this
article.

In conventional tomography, it is common that the spa-
tial resolution in a 3D volume is nonisotropic; typically,
the in-slice resolution (relating to cross sections perpen-
dicular to the axis of rotation) exceeds the slice thickness
(relating to the direction parallel to the axis of rotation).
This is done to keep the dose within acceptable limits, as
an increase of spatial resolution translates into an increase
in dose. In the case of edge-illumination tomography, it is
sensible to adopt this distinction, as the shape and orien-
tation of the beamlets shown in Fig. 1 mean that only the
in-slice resolution is decoupled from the pixel and source
dimensions, while the slice thickness remains defined by
the pixel size [10]. In this article, we therefore focus on
analyzing the effect of sampling on the in-slice resolution.
Note that a differently shaped sample mask, e.g., one that
creates an array of pencil beams, would decouple also the
slice thickness from the pixel size.

A. The 2D frequency response of edge-illumination
x-ray tomography

It is generally useful to discuss spatial resolution in
both real and frequency space, which are related via the
Fourier transform. Understanding how an imaging system
responds in frequency space to an impulse it receives in
real space provides an understanding of the highest spatial
frequency that is involved in the image-formation process,
and, thus, of the spatial resolution that can be accessed (in
imaging systems’ theory, this is often described by means
of the modulation transfer function).

One way of describing the frequency response of a
tomographic system is by means of the Fourier transform
of the Radon transform, i.e., the mathematical descrip-
tion of the sinogram. As stated above, for conventional
tomography it has been shown [13] that, when a sample
is b-bandlimited, i.e., it can be described by a function
whose Fourier transform is confined to a disc of radius
b around the origin of frequency space, the Fourier trans-
form of its Radon transform is confined to the set of spatial
frequencies (ωθ , ωx) fulfilling |ωθ | < max(1, 1 + |ωx|t/2)

and |ωx| < b. Here, t denotes the thickness of the sam-
ple, which for samples of noncylindrical shape refers to
their thickest part. This set of spatial frequencies, known
as the Radon transform’s essential support, has the shape
of a bowtie. Although the notion of a bandlimited sample
is a theoretical construct, an actual bandlimit is imposed
by the highest spatial frequency that the imaging system
can transfer. In conventional tomography, where the sam-
ple is illuminated by the full x-ray beam, this is defined
by the pixel response function (under the assumption that

the effect of the source blur can be neglected), which, in
the idealized case, can be described by a box function
of width p . This becomes a sinc function in frequency
space, with a first root at 1/p (assuming the unitary, ordi-
nary frequency convention of the Fourier transform) and
insignificant magnitude for spatial frequencies larger than
that. Thus, the actual bandlimit imposed by the imaging
system is approximately 1/p .

This is somewhat more complex in edge-illumination
tomography, and requires treating the cases of step-and-
shoot and continuous dithering separately. In the former,
the imposed bandlimit is given by the inverse of the beam-
let width, 1/w. This is because, analogously to the pixel in
conventional tomography, the beamlet can be described by
a box function (of width w) in real space, which becomes
a sinc function (with the first root at 1/w) in frequency
space. When continuous dithering is applied, the sample
motion acts as an additional low-pass filter, thus chang-
ing the transferred frequency content. Assuming that the
sample is moved by a lateral distance of a during the acqui-
sition of a frame, the system’s response in real space can be
modeled as the convolution of a box function (of width a)
with the beamlet. When a < w, the frequency response is
still dominated by the beamlet width, thus not changing the
bandlimit compared to the step-and-shoot case. However,
when a > w, the sample motion becomes the dominat-
ing factor, narrowing the frequency response and reducing
the bandlimit to approximately 1/a. This is illustrated
in Fig. 2(a) for a = 0 (corresponding to step-and-shoot
dithering), a = 2w and a = p . Figure 2(b) compares the
frequency response of the latter case (a = p) to that of
conventional tomography where the full x-ray beam is
used instead of beamlets. While there are some small dif-
ferences in the higher spatial frequencies, the bandlimit
(approximately given by the first root of the response
function) is the same in both cases. This shows that edge-
illumination tomography can be used to reproduce the
frequency response of a conventional tomography scanner
by applying continuous dithering and moving the sample
by a distance equal to the pixel size.

The option to choose between step-and-shoot and con-
tinuous dithering, and thereby to manipulate the accessible
frequency content, implies that edge-illumination x-ray
tomography exhibits some degree of flexibility in terms
of spatial resolution, with resolutions ranging from p
(as defined by the sample-mask period) down to w (as
defined by the beamlet width) accessible. This is another
competitive advantage of the technique, as the spatial
resolution can be tailored to the needs of the imaged
sample, also while using the same experimental setup.
For example, as continuous dithering with a relatively
large sample movement leads to a dose reduction (in a
similar fashion as increasing the pixel size does in con-
ventional tomography), this approach may be favorable for
radiation-sensitive samples.
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(a) (b)

FIG. 2. (a) The effect of moving the sample during the acquisition of a frame when applying continuous dithering. The sample
movement, which can be modeled by a box function of width a, is convolved with a box function of width w describing the beamlet.
This corresponds to applying a low-pass filter, modulating the frequency response of the imaging system. FT, Fourier transform. (b)
Comparison of the frequency response of the edge-illumination method when the sample is moved by a distance equal to the pixel size
during continuous dithering to that of conventional tomography with the same pixel size.

Having established the bandlimit determined by the
imaging setup, we can now describe the essential support
of the Radon transform of edge-illumination tomography
in frequency space for step-and-shoot [Eq. (1)] and con-
tinuous dithering [Eq. (2)]. For comparison, the essential
support of conventional tomography is given by Eq. (3).

(ωθ , ωx) fulfilling |ωθ | < max
(

1, 1 + |ωx|t
2

)

and |ωx| <
1
w

, (1)

(ωθ , ωx) fulfilling |ωθ | < max
(

1, 1 + |ωx|t
2

)

and |ωx| < min
(

1
w

,
1
a

)
, (2)

(ωθ , ωx) fulfilling |ωθ | < max
(

1, 1 + |ωx|t
2

)

and |ωx| <
1
p

. (3)

The corresponding areas of 2D frequency space are shown
in Figs. 3(a) and 3(b) next to the respective imaging setup,
highlighting again that edge-illumination x-ray tomogra-
phy provides access to higher spatial frequencies than
a conventional tomography system using the same size
pixels.

B. Optimal sampling conditions for edge-illumination
x-ray tomography

In general, the process of sampling can be modeled as
the multiplication of an ideal signal with a Dirac comb.

In frequency space, this multiplication corresponds to a
convolution between the Fourier transforms of that signal
and Dirac comb, yielding shifted replicas of the former.
Any overlap between the replicas causes aliasing, i.e., an
incorrect weight to be assigned to the affected spatial fre-
quencies. This observation leads to Nyquist’s theorem for
b-bandlimited signals [16,17]: in order to avoid aliasing,
the shifted replicas must be separated by a distance of at

(a)

(b)

FIG. 3. (a) Simplified schematic of edge-illumination x-ray
tomography with pixel size p and beamlet width w, and the asso-
ciated bowtie-shaped essential supports of the Radon transform
when applying step-and-shoot dithering (middle) and continuous
dithering with a sample motion by distance a (a > w) during the
acquisition of each frame (right). In the lateral direction, these
are bandlimited by 1/w and 1/a, respectively. (b) Schematic
of a conventional tomography setup with pixel size p and the
associated essential support of the Radon transform, which is
bandlimited in the lateral direction by 1/p .
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TABLE I. Overview of optimal sampling conditions for edge-illumination x-ray tomography.

Dithering mode Sampling scheme
Lateral sampling

interval (�x)
Angular sampling

interval (�θ )
Angle-dependent

offset (d)

Step-and-shoot Rectangular w/2 1/(2 + t/w) 0
Step-and-shoot Interlaced w 1/(4 + t/w) w/2
Continuous (a > w) Rectangular a/2 1/(2 + t/a) 0
Continuous (a > w) Interlaced a 1/(4 + t/a) a/2

least 2b, which can be achieved by sampling in real space
with an interval of 1/(2b). Nyquist’s theorem can easily
be extended to two dimensions, by multiplying a 2D signal
with a Dirac brush (i.e., a 2D Dirac comb), and noting that
the convolution in Fourier space yields shifted tiles instead
of one-dimensional (1D) replicas, which again must be
spaced apart by a sufficient distance so as to not over-
lap. The process of sampling the Radon transform during
a tomographic scan can therefore be thought of as creat-
ing shifted replicas of its essential support, i.e., as tiling
frequency space with bowties. The Dirac brush applied
during a tomographic scan (i.e., the real-space-sampling
grid) can be described by vectors a1 = (�θ , 0) and a2 =
(0, �x), 0 < �x ≤ p , where �θ and �x are the angular and
lateral sampling interval, respectively. The corresponding
frequency-space sampling grid can be described by vec-
tors b1 = (1/�θ , 0) and b2 = (0, 1/�x). The lengths of
these vectors determine the spacing between the shifted
bowties, allowing conditions for a no-overlap scenario to
be formulated.

To derive such optimal sampling conditions for edge-
illumination x-ray tomography, it is again necessary to
treat the cases of step-and-shoot and continuous dither-
ing separately. In the case of the former, a no-overlap
scenario is achieved when |b1| = 2 + t/w and |b2| = 2/w,
which corresponds to lateral and angular sampling inter-
vals of �x = w/2 and �θ = 1/(2 + t/w) (note that �θ is
given in radians). In practice, this means that the sample
must be laterally displaced 2p/w times by a distance of
half the beamlet width and a frame taken at each displace-
ment, a procedure which is to be repeated at every rotation
angle. Thus, this sampling scheme requires the acquisi-
tion of (p/�x) · (π/�θ) = (2p/w) · [π(2 + t/w)] frames,
assuming a total range of 180◦ for the sample rotation.
Analogously, when continuous dithering is applied (with
a > w), the shifted bowties must be spaced apart by at
least |b1| = 2 + t/a and |b2| = 2/a, which corresponds to
�x = a/2 and �θ = 1/(2 + t/a). As the required �x is
smaller than the distance a, in practice this means that the
sample must be shifted back by a/2 after the acquisition
of each frame (during which the sample is moved later-
ally by distance a). The number of frames required for
continuous mode dithering is thus (2p/a) · [π(2 + t/a)].
These sampling conditions, which are summarized in the
first and third rows of Table I, are optimal in the sense
that, to first approximation, no increase in spatial resolution

can be achieved by further decreasing the lateral or angular
sampling intervals.

The vectors a1, a2, b1, and b2 as defined above span
rectangular grids, leading to an orthogonal arrangement of
bowties in frequency space [Figs. 4(a)–4(c)]. However, as
was already observed for conventional tomography [13,
18,19], an alternative tiling that better accommodates the
actual shape of the bowties can be achieved by sam-
pling on interlaced grids [Figs. 4(d)–4(f)]. These can be
described by vectors a1 = (�θ , −d) and a2 = (�θ , �x −
d) in real space, and b1 = [1/�θ(1 − d/�x), −1/�x]
and b2 = (d/�θ�x, 1/�x) in frequency space, where d
denotes an offset between adjacent rows and columns of
grid points. Edge-illumination x-ray tomography possesses
the necessary flexibility for realizing this experimentally,
as it provides the option to offset the sample at every other
rotation angle with respect to the lateral sampling step,
allowing the interlaced geometry to be implemented in
a straightforward fashion. When sampling on interlaced
grids and employing step-and-shoot dithering, a lateral
sampling interval of �x = w, a relative offset of d = w/2,
and an angular sampling interval of �θ = 1/(4 + t/w) are
required to generate a no-overlap tiling of frequency space.
In practice, this requires the sample to be displaced lat-
erally p/w times by a distance equal to the width of the
beamlet at each tomographic view, and, at every other
view, the sample to be displaced laterally by half the
beamlet width. This scheme requires the acquisition of
(p/w)[π(4 + t/w)] frames, which is approximately two
times less than what is required when sampling on rectan-
gular grids. Thus, these sampling conditions are not only
optimal in terms of spatial resolution, but also in terms
of dose as they achieve the maximum spatial resolution
with the minimum amount of data. The analogous, dose-
optimized sampling conditions for continuous dithering
are summarized in the bottom row of Table I. Note that
the reconstruction of tomographic images from data sam-
pled on interlaced grids requires the use of specialized
algorithms [20].

An interlaced acquisition scheme has previously been
suggested in the context of phase tomography for grating
interferometry [21]. However, that method is fundamen-
tally different to the interlaced sampling discussed here, as
it focuses on phase stepping, a procedure by which one of
the gratings is scanned with respect to the other in order
to quantitatively extract the phase shift. Interlaced phase
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(a) (b) (c)

(d) (e) (f)

FIG. 4. Different possible
sampling schemes for edge-
illumination x-ray tomography:
(a) rectangular real space grid,
(b) rectangular frequency space
grid, (c) the corresponding
orthogonal arrangement of the
Radon transform’s essential
support in frequency space,
(d) interlaced real-space grid,
(e) interlaced frequency-space
grid, (f) the corresponding
interlaced arrangement of the
Radon transform’s essential
support in frequency space.

stepping, during which the sample is slightly rotated in
between phase steps, has been shown to reduce artefacts
typically associated with limited field-of-view tomogra-
phy; however, it does not have any effect on spatial
resolution.

III. VERIFICATION THROUGH SIMULATIONS
AND EXPERIMENTS

In order to validate the presented theoretical framework
for spatial resolution in edge-illumination tomography, a
series of simulation-based and experimental studies are
performed. Experimental data are acquired with a setup
featuring a Rigaku 007 HF MicroMax (Japan), a rotat-
ing anode (Mo) x-ray tube with a horizontal focal spot
of approximately 70 μm. The source, when operated at
25 mA and 40 kVp (no external filtration), produces a
polychromatic spectrum with a mean energy of approxi-
mately 18 keV. The detector is Pixirad-2 (Italy), a single
photon counter with a pixel size of 62 μm. The sample
mask has a period (p) of 48 μm, and its aperture size,
which defines the width of the beamlets (w), is 12 μm.
The period and apertures of the detector mask are 60 and
15 μm, respectively. Both masks are fabricated by elec-
troplating gold strips onto a graphite substrate (Creatv
Microtech, USA). The source-to-mask and mask-to-mask
distances are 1.6 and 0.4 m, respectively, corresponding to
a magnification factor of m = 1.25 between the two planes.
The detector is placed approximately 6 cm downstream
of the detector mask to ensure the pixel size matches
the projected periods of the masks. The scanned sample
is a custom-made phantom composed of several plastic

wires (diameter = 300 μm) arranged in a plastic cylinder
(diameter = 3.2 mm).

Simulations are based on a wave optics model (based on
the wave theory of optics in the Fresnel approximation),
which has previously been found to reliably predict exper-
imental edge-illumination results [22]. The parameters for
the simulation are chosen to match the setup described
above; however, a monochromatic beam with an energy
of 18 keV is considered for the sake of simplicity. As
previously demonstrated [23], an edge-illumination setup
responds to different energies in the same way (the energy
dependence of the signal is due to the sample alone),
and hence this assumption does not affect the results of
our analysis. We simulate scans of a numerical resolution
phantom consisting of ten radially arranged sets of black
and white wires with negative and positive attenuation and
refraction properties, providing a visual representation of
the line pairs per mm (lp/mm) definition of spatial reso-
lution. The diameters of the wires are approximately 83,
71, 62.5, 56, 50, 25, 17, 12.5, 10, and 8 μm, correspond-
ing to 6, 7, 8, 9, 10, 20, 30, 40, 50, and 60 lp/mm. Such a
sample could be realized experimentally by placing two
types of wires in a surrounding liquid with attenuation
and refraction properties in between the ones of the wires.
Please note that the fact that we use a much simpler phan-
tom for our experimental results does not affect the overall
conclusions of the paper. Rather, it reflects the sample-
independent nature (apart from relying on its thickness) of
the theoretical model.

For both simulation and experiment, tomographic recon-
struction is performed by means of the filtered back-
projection algorithm. To make this possible, all data are
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sampled on rectangular grids (the reconstruction from
interlaced grids will be investigated as part of future work).
Due to the fact that edge-illumination tomography pro-
vides phase-contrast (in the form of refraction) in addi-
tion to attenuation contrast, a phase-retrieval algorithm
is applied prior to reconstruction, converting refraction,
which manifests as dark and bright fringes at contours
and boundaries within the sample, into area signal. We
apply a recently developed single-shot method [25] that
takes only one projection as the input at each tomo-
graphic angle (other methods require two or more input
projections [24]). The method, which is an adaptation of
Paganin’s approach [26] to edge-illumination tomogra-
phy, assumes a linear relationship between refraction and
attenuation, which is strictly valid only for quasihomoge-
neous samples, i.e., when the ratio between attenuation and
refraction properties is constant, which is fulfilled for all
samples involved in this study.

As a first step, we use a combination of simulated and
experimental results to verify the existence of the essen-
tial support of the Radon transform in frequency space
for edge-illumination tomography. By means of simula-
tion, we generate a sinogram of the numerical phantom in
order to then analyze its 2D frequency spectrum. Consid-
ering that the overall thickness of the numerical phantom
(the distance from the origin at which the wires are placed,
plus the radius of the thickest wires) is t = 1 mm, in addi-
tion to the beamlet width (w = 12 μm) of the simulated
setup, the optimal lateral and angular sampling intervals
(according to Table I for step-and-shoot dithering and rect-
angular grids) are �x = 6 μm and �θ = 0.0117 rad (=

0.6714◦). To exclude any undersampling artefacts, the sim-
ulation is initially run with �x and �θ ten times smaller
than these conditions. The results of the simulation are
shown in the top row of Fig. 5. Panel (a) shows the recon-
structed tomogram, providing a visual representation of the
numerical phantom, and (b) shows the sinogram. While
phase retrieval is applied prior to the reconstruction of
the tomogram, the sinogram still contains a combination
of attenuation and phase (refraction) contrast. Panel (c)
shows the sinogram’s 2D Fourier transform, with the ver-
tical and horizontal spatial frequency axes relating to the
lateral and angular directions, respectively. Note that sam-
pling at lateral and angular intervals ten times smaller than
the optimal ones provides access to a very large area of
Fourier space (much larger than the anticipated essential
support), so in the interest of clarity only the relevant part
of Fourier space is shown. The red dashed line indicates
the essential support in frequency space that is predicted
by the theory for a sample of the given thickness and a
setup with the given beamlet width [Eq. (1)]. The match
between theory and simulation is evident, as virtually the
entire frequency information is located precisely within the
predicted region.

The bottom row of Fig. 5 shows the corresponding
experimental data obtained for the scanned wire phan-
tom (note this is acquired over 360 degrees, although only
a 180◦ region of the sinogram is shown). For practical
reasons (time constraints), it is not possible to sample at
intervals as high as in the simulated case, and the applied
lateral and angular sampling steps are �x = 6.86 μm
and �θ = 0.0044 rad (= 0.25◦). These sampling intervals

(a) (b) (c)

(d) (e) (f) (g)

FIG. 5. Simulated data of the numerical resolution phantom (top row) and experimental data of the custom-built wire phantom (bot-
tom row): tomogram reconstructed from the simulated sinogram (scale bar, 200 μm) (a), simulated sinogram (b), 2D Fourier transform
of the simulated sinogram (c), tomogram reconstructed from the experimental sinogram (scale bar, 200 μm) (d), experimental sinogram
(e), 2D Fourier transform of the experimental sinogram (f), and enlarged central area (g).
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require that seven frames are acquired at each rotation
angle. The overhead per frame (i.e., the time additional
to the actual x-ray exposure of 1 s, required for detec-
tor read out and motor movements) is approximately 4
s, though this has not been optimized. Note that these
intervals fall slightly short on the optimal sampling condi-
tions for a sample with t = 3.2 mm and the given imaging
setup (according to Table I, the optimal steps in this case
are �x = 6 μm and �θ = 0.0037 rad), implying that the
accessible region of frequency space is smaller than the
theoretical bowtie support. Nevertheless, within the avail-
able region, the match between experiment and theory is
evident, as shown by the enlarged area in (g).

Despite the overall agreement with the theory, two dif-
ferences between the experimental and the simulated 2D
frequency spectra can be observed, indicated by the num-
bered arrows in Fig. 5(g); (1) the experimental one features
a second, inner bowtie in addition to the outer one that
aligns with the theoretical prediction, and (2) a horizontal
band of background signal is present. Point (1) is a result of
the custom-built experimental phantom effectively being
composed of several subsamples of different thicknesses
(i.e., each wire located at a different distance from the
samples centre can be considered a subsample). Since the
Radon transform and Fourier transform are linear oper-
ations, each subsample is expected to generate its own
bowtie. To support this explanation, we add a layer of
wires to the numerical phantom closer to its centre and
repeated the simulation (now using the optimal sampling
conditions). The results are shown in Figs. 6(a) and 6(b).
As expected, the sinogram’s 2D Fourier transform shows

a second, inner bowtie, analogous to that observed exper-
imentally. Point (2) in Fig. 5(g) can be attributed to the
processing of the experimental data. To compensate for
system drifts over time, a flat field is collected at each
angular view and used to correct all frames (i.e., the dif-
ferent lateral sampling positions) taken at that angle. While
this is an efficient method to eliminate ring artefacts, it also
correlates the noise between the individual frames (since
they are divided by the same noisy flat field), causing the
observed horizontal band. To support this explanation, we
process the experimental data again without flat field cor-
rection. The results are shown in Figs. 6(c)–6(e); as can
be seen, the horizontal band of background signal is elim-
inated from the sinogram’s 2D frequency spectrum; how-
ever, strong ring artefacts are created in the reconstructed
tomogram at the same time.

As a second step, we analyze the validity of the optimal
sampling conditions by considering the case of step-and-
shoot dithering and rectangular grid sampling as an exam-
ple. For this purpose, we simulate scans of the numerical
phantom with lateral and angular sampling intervals two
times larger than, equal to, and two times smaller than
the optimal ones. We then analyze the spatial resolution
in each respective reconstructed tomogram by fitting an
error function to an edge profile yielding the edge spread
function (ESF), calculating its derivative to obtain the line
spread function (LSF), and measuring its FWHM. The
results are shown in Fig. 7. In accordance with the theory,
the optimal sampling conditions [Fig. 7(b)] lead to a mea-
sured spatial resolution of 12 μm (approximately equal to
42 lp/mm), equal to the beamlet width. This is reflected

(a) (b)

(c) (d) (e)

FIG. 6. Simulated (top row) and experimental results (bottom row) generated to explain observations (1) and (2) in Fig. 5(f). (a)
Simulated tomogram of the updated numerical phantom, now containing additional sets of wires (scale bar, 200 μm), (b) 2D Fourier
transform of the simulated sinogram. (c) Experimental tomogram (scale bar, 200 μm) and (d) corresponding sinogram after eliminating
flat fielding from the data processing, (e) 2D Fourier transform of the experimental sinogram.
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(a) (b) (c) (d)

FIG. 7. Tomograms of the numerical resolution phantom simulated with different lateral and angular sampling intervals and corre-
sponding spatial resolution analysis (all scale bars, 200 μm). (a) Double the optimal intervals, (b) optimal sampling (according to the
first row of Table I), (c) half the optimal intervals, (d) half the optimal intervals with added noise.

by the small inset, which shows an enlargement of the 40
lp/mm wires, clearly allowing adjacent black and white cir-
cles to be differentiated. When selecting lateral and angular
sampling steps larger than the optimal ones [Fig. 7(a)],
the measured spatial resolution is reduced as expected (20
μm = 25 lp/mm; the inset shows an enlargement of the 20
lp/mm wires). While, according to the theory, we would
expect that sampling with smaller intervals than the opti-
mal ones [Fig. 7(c)] would provide no resolution gain
beyond the beamlet width, we measure a spatial resolution
of 8 μm (= 62.5 lp/mm) in this case. This high resolution
is also reflected by the inset, clearly revealing wires at 60
lp/mm.

To explain this discrepancy between simulation and the-
ory, it is important to note that the assumption made to
derive the latter (that the highest transmitted frequency
in edge-illumination x-ray tomography is determined by
the inverse of the beamlet width, 1/w), is not accounting
for higher-order contributions that can be observed in the
absence of noise (as is the case in our simulation). To show
this, we analyze the 2D Fourier spectrum of the sinogram
leading to the results in Fig. 7(c) in more detail. As pre-
sented in Fig. 8, this reveals the presence of information
outside the bowtie-shaped frequency-space essential sup-
port (enlarged and contrast adjusted in the inset); these
entries are, however, approximately two orders of magni-
tude smaller than those within the bowtie. The presence
of these higher-order frequencies can be due to several
factors, most prominently the ripples of the sample-mask
apertures’ frequency response function beyond its first
roots (shown in Fig. 2). These are typically ignored as

entries at these frequencies are often below the noise level
in experimental data. To demonstrate this, we add white
Gaussian noise (power, −30 dB) to the sinogram yielding
the results in Fig. 7(c), reconstruct the tomogram again,
and repeat the resolution analysis. The results, shown in
Fig. 7(d), now reveal a measured resolution of 12 μm,
matching the theory.

FIG. 8. 2D Fourier transform of the sinogram simulated for
the numerical phantom with half the optimal lateral and angular
sampling intervals.
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IV. SUMMARY AND DISCUSSION

We present a theoretical framework for spatial resolu-
tion in edge-illumination x-ray tomography, a metric that
has specific features as it is decoupled from the source
and pixel dimensions due to the structuring of the primary
beam into an array of beamlets. Moreover, spatial resolu-
tion is also affected by the type of dithering (step-and-shoot
or continuous). The option to choose between these dif-
ferent modes of sampling provides flexibility to the user
in terms of adjusting the spatial resolution to the specific
imaging needs of the scanned sample.

The presented theoretical framework is based on the
concept of the bowtie-shaped essential support of the
Radon transform in frequency space. The demonstration of
the existence of such a support for edge-illumination x-ray
tomography and its agreement with the theory are the main
results of this article. It is in fact remarkable that a simple
model like Eq. 1, based only on two parameters (t and w)
can precisely predict the location of frequency content in
2D Fourier space, despite the fact that the functionality of
edge-illumination x-ray tomography generally depends on
a variety of additional parameters. In particular, any type
of diffusion of the information carried by the individual
beamlets, caused by, e.g., cross talk among the detector
pixels, excessive source blur, or partial transmittance of
the masks’ gold layers, can worsen its performance [27].
However, the theory presented in this paper proves to be
relatively robust against these imperfections, as shown by
the good agreement with the experimental results. It should
be noted though that some effort is taken to minimize sig-
nal diffusion by employing a photon-counting detector, and
that further work would be required to evaluate the model’s
performance in a scenario where significantly higher levels
of cross talk are present.

As a second aspect, we exploit the existence of the
essential support in frequency space to derive optimal sam-
pling conditions for edge-illumination x-ray tomography,
providing insight on how to acquire data to maximize spa-
tial resolution (at minimal dose). Validating these condi-
tions reveals a limitation of the theory, as in the simulated,
noise-free case sampling above the optimal rates provides
access to higher spatial frequencies than predicted. This is
due to the fact that, while present and significant in the
absence of noise, higher-order contributions to spatial res-
olution are neglected in the theory, which is reasonable
when dealing with real (noisy) data. The optimality condi-
tions derived in this article should therefore be considered
a practical guide for choosing lateral and angular sampling
steps for experimental edge-illumination x-ray tomogra-
phy scans, rather than a rigorous recipe for predicting the
outcome of noiseless simulations.

Higher-order contributions to spatial resolution are most
commonly due to oscillations in the frequency response
function of a square aperture (that are typically neglected).

It should be noted, however, that in the special case of
edge-illumination x-ray tomography higher-order effects
can also occur due to other reasons. In fact, contrary to
an assumption commonly made as part of the derivation
of phase-retrieval algorithms, the image-formation process
in this method is not strictly uniform across the beamlet
width. As was shown previously [10], the attenuation con-
trast in a projection originates to a large extent from those
parts of the beamlets that are not stopped by the second
mask in front of the detector, while the refraction contrast
can originate from the entire beamlet cross section. In addi-
tion to that, small-angle scattering might occur on a scale
below the beamlet width, which can be accessed when the
experimental setup is operated in dark-field mode [28].
Both of these features imply that edge-illumination x-ray
tomography could ultimately be used for super-resolution
imaging on the subbeamlet scale. Generally, when increas-
ing the spatial resolution care has to be taken to minimize
errors in the sampling positions due to potential position-
ing uncertainties of the involved translation and rotation
stages.

While the sampling conditions here are derived for slit-
shaped apertures, extensions to other aperture shapes are
possible and will be investigated as part of future work.
One focus might be on using round apertures generating
pencil beams, which would lead to a decoupling of the
spatial resolution from the source and detector blur along
other directions than the in-slice plane. We believe that,
by designing dedicated sampling schemes, this could be
exploited to the full, leading to a highly versatile imaging
system with regards to spatial resolution.

Generally, we expect the results presented in this arti-
cle to inform the design of new experimental setups and/or
data acquisition schemes. We also anticipate that it will
help to understand how spatial resolution (and hence image
quality) is affected when the optimal sampling conditions
cannot be met, e.g., due to constraints on scan time or
dose.
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