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SUMMARY

The neural crest (NC) is a transient embryonic
stem cell-like population characterized by its multi-
potency and broad developmental potential. Here,
we perform NC-specific transcriptional and epige-
nomic profiling of foxd3-mutant cells in vivo to define
the gene regulatory circuits controlling NC spec-
ification. Together with global binding analysis ob-
tained by foxd3 biotin-ChIP and single cell profiles
of foxd3-expressing premigratory NC, our analysis
shows that, during early steps of NC formation,
foxd3 acts globally as a pioneer factor to prime the
onset of genes regulating NC specification and
migration by re-arranging the chromatin landscape,
opening cis-regulatory elements and reshuffling nu-
cleosomes. Strikingly, foxd3 then gradually switches
from an activator to its well-described role as a
transcriptional repressor and potentially uses differ-
ential partners for each role. Taken together, these
results demonstrate that foxd3 acts bimodally in
the neural crest as a switch from ‘‘permissive’’ to
‘‘repressive’’ nucleosome and chromatin organiza-
tion to maintain multipotency and define cell fates.

INTRODUCTION

The winged-helix, forkhead transcription factor (TF) FoxD3 is an

important stem cell factor that functions reiteratively during

development. At early stages of development, it is thought to

maintain pluripotency of epiblast cells. In embryonic stem (ES)

cells, its loss leads to premature differentiation intomesendoder-

mal lineages while ectodermal lineage markers are reduced (Liu

and Labosky, 2008). Later, FoxD3 plays a critical role in the spec-

ification and subsequent differentiation of the neural crest (NC), a

remarkable transitory and multipotent embryonic cell popula-

tion. NC cells are specified at the border of the forming central

nervous system (neural plate border, NPB), but then undergo
608 Developmental Cell 47, 608–628, December 3, 2018 ª 2018 The
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an epithelial to mesenchymal transition (EMT) to delaminate

from the neural tube, migrating into the periphery where they

give rise to diverse derivatives such as peripheral ganglia,

craniofacial skeleton, and pigmentation of the skin (Sauka-Spen-

gler and Bronner-Fraser, 2008). Although individual neural crest

cells are multipotent (Baggiolini et al., 2015; Bronner-Fraser and

Fraser, 1988), it has been a matter of debate whether the NC

population as a whole is homogeneous or a heterogeneous

mixture of cells specified toward a particular fate (Harris and

Erickson, 2007; Krispin et al., 2010; Nitzan et al., 2013).

Themolecular mechanisms by which FoxD3 influences ES cell

development in vitro have been extensively studied. During the

transition from naive to primed pluripotency cells, FoxD3 re-

presses enhancers by recruiting H3K4 demethylase, Lsd1, re-

sulting in a decrease of active enhancer marks and an increase

in inactive enhancer marks (Respuela et al., 2016). During the

subsequent pluripotent to epiblast cell transition, FoxD3 primes

enhancers by co-recruiting nucleosome remodelling and deace-

tylase complex members Brg1 and histone deacetylases 1/2

(HDAC1/2). As a result, different subsets of enhancers get fully

activated or are kept repressed during differentiation, depending

on the effects mediated by HDAC1/2 removal or retention (Krish-

nakumar et al., 2016). These studies led to the realization that

FoxD3-mediated gene regulation in ES cells may function via

modulation of associated enhancers.

In contrast to ES cells, the molecular mechanisms through

which neural crest cells transition from pluripotent cells to fate

restricted cells in the embryo and the role of FoxD3 therein

remain poorly understood. A neural crest gene regulatory

network (GRN) that describes the genes expressed during NC

ontogeny and their epistatic relationships has been proposed

(Sauka-Spengler and Bronner-Fraser, 2008). Within this frame-

work, FoxD3 is known to act downstream of NPB genes and

upstream of factors mediating EMT (Betancur et al., 2010; Si-

mões-Costa and Bronner, 2015). In the zebrafish embryo,

foxd3 is one of the earliest zygotically expressed genes (Lee

et al., 2013), first detected during epiboly in the dorsal mesendo-

derm and ectoderm (Wang et al., 2011) and later in the NPB,

tailbud mesoderm, and floor plate (Odenthal and N€usslein-Vol-

hard, 1998). A second phase of foxd3 expression occurs in

premigratory neural crest cells within the neural folds at all axial
Authors. Published by Elsevier Inc.
commons.org/licenses/by/4.0/).
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Figure 1. Transcriptome Characterization of foxd3-Expressing NC

(A) Zebrafish embryo stages examined in this study (hpf – hours post fertilization). 75% epiboly—a gastrulation stage during which embryonic shield and hy-

poblast are formed. 1–2 and 5–6 somite stages—induced and specified premigratory neural crest (NC), respectively. 14–16ss – migratory NC. Foxd3 expression

is labeled in green.

(B) Experimental pipeline for obtaining foxd3-expressing cells and performing single-cell RNA-seq (scRNA-seq). The genetrap zebrafish line, Gt(foxd3-cit-

rine)ct110, expressing foxd3-Citrine fusion is outcrossed to wild-type resulting in fluorescent signal in endogenous foxd3+ cells, enabling their isolation by FACS.

5–6ss Citrine-positive NC cells are collected into individual wells of the 96-well plate and processed for smartseq2-based scRNA-seq. Total of 94 cells was sorted

with two empty, External RNA Controls Consortium (ERCC)-only wells left as controls.

(C) Heatmaps illustrating the hierarchical clustering of foxd3+ single cells at 75% epiboly (200 cells) and 5–6ss (93 cells) and showing transcriptional levels

(depicted in Log2 RPKM) of selected NC and stem cell genes. NC cells that express negligent levels of bona fideNC specifiers (zic2b, tfap2a, sox10, twist1b, ets1,

(legend continued on next page)
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levels. Even later, foxd3 becomes restricted to a subset of

migrating cranial neural crest cells and is downregulated in the

trunk crest, reappearing in neural crest-derived peripheral glia

and other tissues such as the somites (Gilmour et al., 2002; Kelsh

et al., 2000).

Here, we tackle the molecular mechanisms by which foxd3

influences neural crest development by taking advantage of

wild-type and mutant zebrafish foxd3 lines to characterize the

transcriptional and epigenetic landscape of foxd3-expressing

cells in vivo. First, using single-cell RNA sequencing, we demon-

strate that foxd3-expressing cells display a distinct and homoge-

neous molecular signature in a stage-specific manner. Intrigu-

ingly, we observed a decoupling of the different strategies

employed by foxd3 to regulate gene expression over the course

of neural crest ontogeny. Contrasting with its previously defined

role as a transcriptional repressor, early knockout foxd3, in the

premigratory crest, resulted in global downregulation of neural

crest genes, favoring the idea that foxd3 acts as a pioneer factor

during early stages of neural crest development. This was shown

by comprehensively analyzing the effects of foxd3 depletion on

chromatin accessibility, histone modifications, and nucleosome

positioning, as well as by generating in-depth stage-specific

foxd3 binding maps using our newly developed biotin chromatin

immunoprecipitation sequencing (ChIP-seq) method. At later

stages, foxd3 assumes its known role as a transcriptional

repressor. Biotin ChIP-seq confirms the direct association of

foxd3 with a number of genes, both downregulated and upregu-

lated in the foxd3mutant, exemplifying its bimodal function in NC

gene regulation. By exploring the underlying foxd3 DNA binding

codes across different stages of NC development (early-acti-

vating and late-repressing stages), we show that these two con-

trasting foxd3 activities are likely to be achieved by engaging

differential co-partners. This in turn possibly leads to the recruit-

ment of different chromatin remodeling complexes, such as

Brg1 or PRC1 members, that mediate chromatin priming and

compaction, respectively. In summary, we demonstrate that

foxd3 drives several independent chromatin-organizing mecha-

nisms, switching from activator to repressor roles to orchestrate

multiple regulatory programs during NC formation, starting with

priming early NC specification to regulating essential signaling

pathways, maintaining multipotency by controlling stem cell pro-

grams, and preventing premature migration and differentiation

into neuronal NC derivatives.

RESULTS

Single-Cell RNA-Seq Identifies Distinctive
Transcriptional Signatures between foxd3+ Stem Cells
and foxd3+ NC Cells
In this study, we examined foxd3 roles throughout premigratory

and migratory NC ontology in zebrafish embryos (Figure 1A). We

first looked at 75%epiboly stage embryos during which gastrula-

tion takes place, forming the embryonic shield and hypoblast. We
or pax3a) but high levels of lratb, cxcr4b, and ved, as well as other markers of ste

specified NC progenitors maintained in premigratory NC (boxed and labeled in r

(D) tSNE plots for selected stem cell (sox2, pou2f1, vent) and NC genes (snai1a, s

subpopulations. Clustering of 5–6ss NC cells identifies a small group of cells th

scRNA-seq quality control (QC) and more details.
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then lookedatpremigratoryNCstages,whichoccur during the ze-

brafish segmentation period and when NC gets induced and later

specified at the NPB1–2 and 5–6 somite stages (ss), respectively.

Finally, we examined a migratory NC stage (14–16ss).

As a first step in characterizing the global developmental func-

tions of foxd3, we examined foxd3-positive stem and NC cells at

a single-cell level, to ascertain whether these seemingly different

cell populations were non-heterogeneous. There have been de-

bates in the literature regarding whether the premigratory neural

crest is a homogeneous or heterogeneous cell population (Harris

and Erickson, 2007; Krispin et al., 2010; Nitzan et al., 2013). We

used a gene trap line, Gt(foxd3-citrine)ct110 (Hochgreb-H€agele

and Bronner, 2013), which drives the expression of foxd3-Citrine

fusion, yielding a fluorescent signal in endogenous foxd3+ cells.

This line enabled us to carry out RNA sequencing (RNA-seq) on

single foxd3-expressing NC cells (single-cell RNA-seq [scRNA-

seq]) isolated from the developing zebrafish embryos by fluores-

cence-activated cell sorting (FACS) (Figure 1B). Metrics show

that our libraries are of excellent quality (high complexity, a

high number of uniquely mapped sequencing reads, and up to

�5,500 transcripts detected per cell; Figures S1A and S1B).

We performed t-distributed stochastic neighbor embedding

(tSNE) and principal-component analyses (PCAs) of single-cell

transcriptomes at 5–6ss, based on either all 5,243 or the top

500 most divergent genes (Figures S1C and S1D). Surprisingly,

we failed to identify multiple NC-specific subpopulations but

instead singled out a small population of NC cells which ex-

pressed extremely low levels of bona fide NC specifiers (zic2b,

tfap2a, sox10, twist1b, ets1, or pax3a) and lower levels of

foxd3 itself. However, these cells expressed high levels of lratb,

cxcr4b, and ved, as well as other markers of multipotent progen-

itors (snai1a, vent, vox, and cx43.4; Figure 1C, outlined in red),

suggesting that they may represent pluripotent non-specified

NC progenitors maintained in premigratory NC.

In addition, to identify potential differences between the foxd3-

positive stem and NC cells, we compared the transcriptional

foxd3+ single-cell signatures at 50% epiboly (5.3 hours post

fertilization [hpf]) (Satija et al., 2015) and 5–6ss (this study) (Fig-

ures 1C, 1D, S1E, and S1F). tSNE plots comparing expression

of core NC and stem cell genes in single foxd3+ cells show

that, at both stages, nearly all foxd3+ cells expressed the plurip-

otency factor cx43.4 and NPB specifiers id1 and zic2b at high

levels, while more than 50% of cells expressed pou2f1b, zic3,

and id3 (Figures 1C and 1D). Interestingly, however, the expres-

sion of core pluripotency factors was different at the two stages

examined. The majority of foxd3+ single cells at 50% epiboly ex-

pressedOct4 orthologs (pou5f3, pou2f1b), SoxB ortholog (sox3),

nanog, and vox (reminiscent of Xenopus XOct, Xsox2, and XVent)

(Buitrago-Delgado et al., 2015). In contrast, 5–6ss single foxd3+

cells did not express nanog, and only a few cells expressed sox3

or pou5f3 at low levels (Figures 1C and S1E), while the greater

portion of cells expressed paralogous factors sox2, pou2f1b,

vent, and vox (Figures 1C, 1D, and S1E). Furthermore, foxd3+
mness (snai1a, vent, vox, and cx43.4), possibly representing pluripotent non-

ed).

ox5, tfap2a, sox10) indicate individual epiblast, and NC cells do not reveal cell

at appear to be pluripotent non-specified NC progenitors. See Figure S1 for
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Figure 2. Transcriptional Profiling of foxd3 Mutant NC

(A) Experimental strategy for obtaining foxd3-mutant (yellow) and foxd3-control (green) NC cells. Mutant (Citrine/Cherry; CC) and control (Citrine only; C) NC cells

were isolated by FACS from crosses of heterozygote fluorescent foxd3 transgenic fish, foxd3-mCherry and foxd3-Citrine at three stages—75% epiboly, 5–6ss,

and 14ss.

(legend continued on next page)
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gastrula progenitors expressed a different complement of ortho-

logs of EMT factors compared to premigratory NC, with zeb1a,

snai1a, and snai2 present at 50% epiboly, but poorly expressed

in most 5–6ss foxd3+ NC cells, which favored zeb1b/2a and

snai1b (Figures 1C, 1D, and S1E). NC specifiers (sox5, sox10,

twist1b, pax3a) were expressed at high levels in almost all

5–6ss foxd3+ NC cells but were absent from the majority of

50% epiboly foxd3+ cells, where early NC specifiers (snai1b,

sox9b, tfap2a, ets1, id2a) were expressed more pervasively (Fig-

ures 1C, 1D, and S1F). In Xenopus, it has been suggested that

neural crest cells may retain blastula-stage competence (Bui-

trago-Delgado et al., 2015). We found that orthologs of Xenopus

genes were indeed expressed in the 50% epiboly foxd3+ cells in

zebrafish (Figure 1C). However, as described above, our data re-

vealed that 5–6ss foxd3+ cells do not express the same but

rather paralogous pluripotency factors to those found in the

epiblast. This suggests a possible redeployment of a paralogous

GRN rather than maintenance of the epiblast GRN in the newly

specified neural crest, in agreement with the recent single-cell-

based analysis performed in both frog and fish (Briggs et al.,

2018), and thus challenging the proposition that NC cells are re-

sidual blastula cells (Buitrago-Delgado et al., 2015).

Taken together, the results show that both foxd3+ epiblast and

foxd3+ premigratory NC cell populations are non-heteroge-

neous, as well as distinctive from one another.

Knockout of foxd3 Leads to Downregulation of NC
Specifier Genes at Premigratory NC Stages and
Upregulation of NC Differentiation Genes at Migratory
NC Stages
We next inquired how foxd3 depletion affects NC progenitor

cells on a transcriptional level using two zebrafish transgenic

lines Gt(foxd3-mCherry)ct110R and Gt(foxd3-Citrine)ct110 (Figures

2A and 2B) in which the fluorescent reporter proteins interrupt

the DNA binding domain, creating mutant fluorescent foxd3 al-

leles (Hochgreb-H€agele and Bronner, 2013). These lines were

crossed, and dissociated embryonic cells obtained from corre-

sponding clutches were fluorescence activated cell (FAC)-

sorted to isolate Citrine only expressing foxd3+ cells (C) as a

control and foxd3-mutant cells expressing both fluorophores

(Citrine and Cherry; CC) (Figures 2A and 2B). PCA and scatter-

plots of normalized read counts comparing RNA-seq biological

replicates show a high level of reproducibility in our experiments

(Figure S2). De novo assembly and analysis of the foxd3-mutant

transcriptomes revealed the presence of truncated foxd3 fluo-

rescent fusion transcripts (Figure S3A), encoding only 93 N-ter-

minal amino acids, as shown previously (Hochgreb-H€agele and

Bronner, 2013). The truncated N-terminal foxd3 variants are

non-functional (Yaklichkin et al., 2007), whereas dominant nega-
(B) Lateral view of a foxd3-mutant embryo expressing both Citrine and mCherry

(C and D) (C) Bar plot comparing numbers of differentially expressed genes i

differences.

(E and F) Venn diagrams comparing upregulated (E) and downregulated (F) gene

(G) Heatmap showing fold change in expression of known NC genes between

grouped to reflect NC-GRN structure.

(H) Bubble plot summarizing enrichment and ps (Benjamini-Hochberg corrected)

expressed genes.

(I) In situ hybridization of 3–6ss zebrafish embryos (dorsal view) showing decreas

(J) Bar plot representing fold change in expression of NC factors showing that p
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tive activity is associated with the C terminus regions (Kubic

et al., 2015; Zhu et al., 2014). Utilizing these lines, we investi-

gated transcriptional changes in the absence of the functional

foxd3 protein at three key stages of neural crest ontogeny

(75% epiboly, 5–6ss, and 14–16ss) (Figure 2A).

At 75% epiboly, differential expression analysis between

foxd3-mutant (CC) and control samples (C) yielded comparable

numbers of upregulated and downregulated genes. In contrast

at 5–6ss and 14–16ss, a larger number of putatively repressed

foxd3 targets (or upregulated genes) was observed (Figures 2C

and 2D), suggesting a possible change between activator and

repressor roles of foxd3 during NC ontogeny. Sets of upregu-

lated and downregulated genes were distinct at different stages,

with some level of overlap between 5–6ss and 14–16ss, in partic-

ular among the genes de-repressed in foxd3mutants (Figures 2E

and 2F).

FoxD3 is required for maintenance of the multipotent NC pro-

genitor pool and, at later stages, for control of distinct NC lineage

decisions, mostly by repressing mesenchymal and promoting

neuronal derivatives (Dottori et al., 2001; Kos et al., 2001; Lister

et al., 2006; Montero-Balaguer et al., 2006; Mundell and Lab-

osky, 2011; Stewart et al., 2006; Teng et al., 2008). Examination

of gene ontology (GO) terms overrepresented in differentially

regulated genes indicated that at 75% epiboly, foxd3 appears

to repress cell metabolism pathways, in particular ribosome

biogenesis, RNA processing, and translation genes, as well as

to negatively control genes involved in progenitor adhesion

and migration (e.g., nrp2a, nrp1b, slit1a; *p < 0.05; Figures 2G

and 2H), while at the same time priming genes involved in tis-

sue-specific programs (gata2a, gata5, ets1, six1a/b, tfap2a/c,

etc.) (Figures 2G and 2H). Strikingly at 5–6ss, we found foxd3-

mutant cells (CC) downregulated a large proportion of known

NC genes distributed across all defined NC-GRN modules

(**p < 0.01; Figures 2G and 2H), many of which were bona fide

NC transcription factors (�40%) and signaling or cell junction

and adhesion molecules (�25%) (Figures 2G and S3B). Some

factors previously reported to act upstream of foxd3, such as

prdm1 and tfap2a/c (Li and Cornell, 2007; Powell et al., 2013;

Sauka-Spengler and Bronner-Fraser, 2008), were downregu-

lated (Figure 2G), challenging proposed epistatic relationships

within the NC-GRN. Statistical overrepresentation of the entire

set of genes downregulated at 5–6ss yielded highly significant

association with neural crest and stem cell development GO

terms as well as terms linked to onset of EMT, cell adhesion

changes, and NC cell migration (Bonferroni; **p < 0.01; Fig-

ure 2H). Interestingly, enriched terms also linked to NC derivative

fates (pigment cells, cranial skeletal development, and auto-

nomic and enteric nervous system). However, this enrichment

was correlated to the defect in expression of the core NC TFs
instead of foxd3 in premigratory NC.

n foxd3-mutant and control NC and (D) violin plots comparing fold-change

s in foxd3-mutant cells.

foxd3-mutant and control cells at 75% epiboly, 5–6ss, and 14ss. Genes are

for the most significant biological process GO terms associated to differentially

e or loss in expression of NC specifier genes in foxd3-mutants.

aralogs are differentially regulated by foxd3.
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Figure 3. Biotin-ChIP Analysis Supports a Direct Bi-modal foxd3 Regulatory Action on NC Gene Expression
(A) Experimental strategy for biotagging foxd3 protein in vivo. Zebrafish transgenics expressing Avi-tagged foxd3 and ubiquitous NLS-BirA are crossed to obtain

embryos expressing biotinylated foxd3 for use in biotin ChIP-seq.

(legend continued on next page)
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(pax3a, sox9b, sox10, tfap2a, etc.) that act both in NC specifica-

tion and later in NC differentiation rather than to the loss of NC

downstream differentiation markers proper, which were unaf-

fected at premigratory stage (5–6ss) (Figure 2G). Downregulation

of NC specifiers was confirmed by in situ hybridization

(Figure 2I).

Analysis of foxd3 mutant cells (CC) at migratory NC stages

(14–16ss) showed dysregulation of NPB and derivative markers

(Figure 2G). Surprisingly, in migrating foxd3-mutant NC, we

observed an untimely upregulation of markers of ectomesenchy-

mal derivatives (lmx1ba/b, bmp5/6, col2a1b) and neuronal

lineages (delta b/d, robo4, slit1a/b, slit2/3), but only partially of

melanophore, xanthophore (isl1, kita1, pmela/b, tyrp1b, ascl1a),

and glial lineages (gfap, olig2/4, gfra1b, myt1a/b, plp1, slc1a3b,

bhlhe23), which normally would be expressed much later or not

expressed in foxd3+ NC derivatives (Figure 2G). Notably, two

other characterized zebrafish foxd3 mutants, mother superior

(mos) (Montero-Balaguer et al., 2006) and sympathetic (sym1)

(Stewart et al., 2006), showed cranio-facial defects at later

stages of development (�3 dpf [days post fertilisation]) affecting

branchial arches while sym1 mutants were also lacking sympa-

thetic neurons. Our observed mis-expression of differential

markers at 14–16ss that were expected to be expressed at later

stages (�20ss) suggests a likely dysregulation of differentiation

of daughter cell types at stages prior to that at which the pheno-

type is observed.

Several derivative and ectomesenchymal markers (col2a1a/b,

lmx1bb/b) and cell surface signaling molecules (epha4a, slit2/3,

robo4), were already de-repressed at the premigratory stage

(Figure 2G), in line with a role of foxd3 in preventing premature

differentiation into NC derivatives. Statistical overrepresentation

tests associated the upregulated gene sets to multiple GO terms

reflecting biological processes essential for NC migration (cell

migration and adhesion), suggesting a possible role of foxd3 in

active repression mesenchymal and migrating programs at this

stage (Figures 2G and 2H). Interestingly, a number of derivative

markers associated with late NC differentiation (neurogenesis,

axonogenesis), not expressed above background (> 1FPKM) in

foxd3+ control cells (C) at this stage, were upregulated (de-

repressed) in foxd3-mutant cells (CC), suggesting a continuous

repressive role of foxd3, possibly ensuring commitment to spe-

cific NC lineages.

To assess whether the foxd3 mutant cells retain their NC iden-

tity, we performed comparative differential expression analysis

of foxd3-control (C) and foxd3-mutant (CC) cells versus the cor-

responding foxd3-negative embryonic cells. Examination of their

transcriptional signature shows that foxd3-mutant cells retain a
(B) Lateral view of the embryo issued from crosses of TgBAC(foxd3-Avi-2A-C

reporters. Scale bars correspond to 100 mm.

(C) Genome browser screenshot showing mapped foxd3-biotin-ChIP-seq at 75%

developmental zebrafish stages within the foxd3 regulatory locus. BirA-only ChIP-

indicated as vertical lines underneath each biotin-foxd3 ChIP track. The bottom t

(D) Volcano plot highlighting that most NC specifiers are downregulated in foxd3

bound by foxd3 at 1–2ss are marked in bold. On the right side (upregulated gene

5–6ss and 14ss are marked in bold.

(E) Heatmap displaying top 50most upregulated genes, based on log2-fold chang

(CC) NC that were found to be occupied by foxd3 at 1, 2, 3, or 4 associated cis-

(F) Bar plot showing GO terms significantly enriched (**p < 0.01) to downregulate

embryos that were bound by foxd3 at 1–2ss and at 5–6ss/14ss, respectively.

614 Developmental Cell 47, 608–628, December 3, 2018
mesenchymal NC-like phenotype and have distinct signatures

from the other cells in their environment (Figure S3C). This is

consistent with extensive phenotypic analysis of foxd3-mutants

demonstrating that they exhibit defects in formation of the full

complement on NC derivatives (Hochgreb-H€agele and Bronner,

2013).

Interestingly, several paralogs belonging to the same gene

family were differentially regulated in the mutant cells. For

instance, key NC factors (snai1b, twist1b, etc.) were downregu-

lated, while snai2 and twist2 were upregulated (Figure 2J), offer-

ing a possible mechanism for rescue of foxd3 transcriptional

phenotype by paralogous genes (Marletaz et al., 2015). Addition-

ally, several Fox transcription factors were upregulated in foxd3

mutants, which suggests a different, upstream compensating

mechanism by different Fox family members.

Altogether, these results show that foxd3 may play different

regulatory roles depending on the temporal context. Importantly,

in the absence of a functional foxd3 protein, much of the NC

specificationmodule is absent at 5–6ss.Wealso find unexpected

other Fox proteins and alternative NC factor upregulation that

suggests a potential compensation in the mutant and explains

a partial rescue of NC specification by early delaminating NC

stages (Figures 2J and S3D). While genes associated with NC

and stem cell processes are downregulated in the mutant premi-

gratoryNC, genes governingmigration anddifferentiation are up-

regulated at migratory stages (Figure 2H), suggesting that foxd3

switches from an activator to a repressor of NC programs.

Biotin-ChIP Confirms Direct Bimodal Action of foxd3 on
the NC Gene Regulation
To further investigate the apparent bimodal function of foxd3 in

gene regulation throughout NC ontogeny, we interrogated the

genome-wide dynamics of direct foxd3 binding from early steps

of NC induction (75%epiboly, 1–2ss) and specification (5–6ss) to

migratory NC stages (14ss). To this end, we used our recently

developed binary biotagging approach (Trinh et al., 2017),

enabling specific biotinylation of target proteins in vivo for subse-

quent use in biochemical procedures (Figure 3A). The effector

transgenic zebrafish line, TgBAC(foxd3-Avi-2A-Citrine)ox161, ex-

pressing Avi-tagged foxd3 protein in an endogenous fashion

(Figure 3B), was crossed to the ubiquitous BirA driver, Tg(u-

biq:NLS-BirA-2A-Cherry)ox114, expressing the biotin ligase,

BirA, targeted to the nucleus (Figure 3A). The resulting progeny

was collected for biotin ChIP-seq (Figure 3C), with BirA-only ex-

pressing embryos used as control.

Biotin ChIP-seq revealed 624 foxd3-bound regions at 75%

epiboly, 531 at 1–2ss NC, 2,955 at 5–6ss NC and 658 at 14ss
itrine)ox161 and Gt(foxd3-mCherry)ct110R shows overlap of Citrine and Cherry

epiboly (in blue), 1–2ss (in pink), 5–6ss (in light green) and 14ss (in dark green)

seq control at 5–6ss is shown in purple (top track). Positions of called peaks are

rack black boxes display identified cis-regulatory elements of the foxd3 gene.

-mutant NC at 5–6ss. On the left side (downregulated genes), genes directly

s), genes that are still upregulated at 14ss and are directly bound by foxd3 at

e of differential gene expression, out of total 223 genes, at 14ss in foxd3mutant

regulatory elements at 5–6ss and 14ss.

d genes at 5–6ss in blue and upregulated genes at 14ss in red in foxd3-mutant
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Figure 4. Epigenomic Profiling of Chromatin Accessibility in foxd3 Mutant NC across Developmental Time

(A and B) (A) Stacked bar plots depicting genomic annotation of ATAC-seq peaks across stages analyzed (75% epiboly; bud stage; 5–6ss and 14–16ss) and (B)

quantification of open elements at earlier stages as a proportion of accessible elements detected in migrating/differentiating NC.

(C) Violin plots correlating putative promoter and cis-regulatory elements with gene expression levels. Bimodal distribution of gene expression is associated with

putative enhancers at all stages, but with promoters only at epiboly.

(D) Pie charts comparing Citrine-only, Cherry-only, and Citrine/Cherry peak number proportions of ATAC-peaks.

(E) Genome browser screenshot showing RNA-seq and ATAC-seq profiles in foxd3 mutant (red) and foxd3-control cells (green) within sox10 locus.

(F) Tracks showing normalized ATAC-Rx profiles obtained using reference exogenous Drosophila epigenome.

(G)Mean densitymaps ofmerged profiles and corresponding scatterplots of raw counts for k-means clusters featuring elements with differential accessibility and

signal levels in foxd3-mutant and controls at 5–6ss.

(H) Boxplots and heatmap (raw read counts) showing fold change in accessibility and comparing ATAC signal levels between control (C) and mutants (CC) k-

cluster 3 elements with and without Rx normalization.

(legend continued on next page)
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NC, with only 89 non-specific peaks identified in the BirA-only

controls. The substantial increase in foxd3-occupied genomic

loci at 5–6ss followed by a drop in the peak number at 14ss sug-

gests that the 5–6 somite stage represents a highly dynamic

interface stage encompassing both activating and repressive

modes of foxd3 action.

We next sought to distinguish genes that are either directly

activated or repressed by foxd3. To this end, we annotated

each NC foxd3-biotin ChIP-seq peak to the nearest expressed

gene at the corresponding or later stage. We found that 14.3%

of genes downregulated in the 5–6ss foxd3-mutant NC (Fig-

ure 3D) and 30.8% of genes upregulated in the 14ss foxd3-

mutant NC were normally directly bound by foxd3. Notably, 61

out of 223 direct foxd3 target genes (at 5–6ss and 14ss) were

found upregulated in foxd3 mutants starting from 5–6ss (Fig-

ure 3D). This further supports our hypothesis that foxd3-medi-

ated activation of later NC factors and foxd3 repression of those

no longer used co-occur at the premigratory NC stage.

Statistical overrepresentation of foxd3-primed, directly

controlled genes, downregulated in foxd3-mutant at 5–6ss (Fig-

ure 3D) revealed a significant association with neural crest, stem

cell, and mesenchymal cell development, NC cell migration, and

regulation of neurogenesis (**p < 0.01; Figure 3F). Important

genes in NC development, such as pax3a, tfap2a, nrp2a, and

foxd3 itself, appeared to be positively regulated by the upstream

action of foxd3 at early premigratory NC stages. Similarly,

expression of transcription factors id2a and gata3, a signaling

molecule wnt4a and a cytokine mdkb (all implicated in NC

neuronal lineages), also appeared to be activated by foxd3 (Fig-

ure 3D). Conversely, by 14ss stage, foxd3-facilitated gene

repression was directed at various genes involved in cell fate

commitment, including olig2, tfap2c, and hey2, wnt signaling

genes (e.g., wnt3), and neuronal differentiation (e.g., slit2/3,

neurod4, gli2b, otx2, and efna1b; Figures 3E and 3F).

Cumulatively, our foxd3 biotin ChIP-seq data in premigratory

and migratory NC argue for direct activation of a large portion

of NC specification genes, followed by direct repression of cell

differentiation genes, particularly to prevent premature differen-

tiation into neuronal lineages.

foxd3 Affects Chromatin Accessibility of Distal cis-
Regulatory Elements
The counter-intuitive finding that a large number of NC specifica-

tion factors (Figures 2G and 3D) were downregulated in foxd3-

mutant at 5–6ss raises the intriguing possibility that, much like

FoxA1/A2 factors during endodermal specification (Iwafuchi-

Doi et al., 2016), FoxD3 may act as a pioneer factor during NC

specification. Therefore, in addition to its described role as a tran-

scriptional repressor (Xu et al., 2007; Xu et al., 2009), FoxD3 may

modulate the local epigenetic state of multiple cis-regulatory ele-

ments and thuspositively control NCgenes. To assess chromatin
(I) Bar chart depicting functional annotation of k-cluster 3 shows enrichment in z

opment (Bonferroni; **p < 0.01). For further analysis of k-cluster, see Figure S4.

(J) Merged profiles for 3,565 elements open at 75% epiboly showed more promin

compensation over time.

(K and K0)Cis-regulatory elements from k-cluster 3 showNC-specific reporter activ

enh2 GFP reporter constructs into the genetic background of foxd3-Cherry and

Fluorescent and bright-field overlay images of pax3a and ets1 (dorsal view) and
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accessibility status in foxd3-mutant NC cells, we carried out cell-

type specific assay for transposase-accessible chromatin using

sequencing (ATAC-seq) at different stages of NC formation on

either FAC-sorted foxd3-expressing (C) and foxd3-mutant NC

cells (CC) (75%epiboly and 5–6ss) or on dissected foxd3-mutant

and control anterior embryonic cells at 1–2ss. In addition, we

used our previously published 16ss sox10-specific ATAC-seq

(Trinh et al., 2017), containing an extensive cohort of open cis-

regulatory elements in migratory NC.

We recovered a constant number of open chromatin regions

(ATAC-seq peaks) at all early stages with a similar genomic dis-

tribution as distal (intronic, intergenic) or proximal (promoter).

The dramatic increase in the total number of open elements in

late migratory and differentiating NC cells was entirely ac-

counted for by novel distal non-promoter elements (Figure 4A).

The foxd3 depletion did not affect the distribution of peaks ac-

cording to genomic annotation (p = 0.8743 and 0.614 for epiboly

and 5–6ss, respectively), and over 60% of total peaks observed

in sox10-specific differentiated cells were already opened at

earlier stages (Figures 4B and 4E). To verify whether the open

chromatin state of promoters and distal cis-regulatory elements

correlates with gene expression, we analyzed the transcription

levels of the closest associated genes. We noted a bimodal dis-

tribution of gene expression levels associated with putative

enhancer elements at all stages but with putative promoters

only at epiboly. Unimodal distributions after epiboly for genes

associated with putative promoters indicated an onset of the

cis-regulatory role for foxd3 at 5–6ss (Figure 4C). Moreover,

while at 75% epiboly, the difference in number of unique peaks

in control (C) and cells is negligible (21% versus 19%), the num-

ber of peaks in control cells at 5–6ss is almost 2-fold of that in

mutants (33% versus 17%) (Figure 4D).

To investigate whether the accessibility dynamics of distal reg-

ulatory elements could account for the drastic depletion of NC

specification genes at 5–6ss, we compared the ATAC-seq pro-

files in foxd3-mutant (CC) and foxd3-control cells (C) (Figure 4E).

K-means clustering identified 8 cohesive groups of elementswith

3 general trends: (1) k-clusters 1, 4, and 8 contained lower signal

elements with prominent accessibility differences between

mutant and controls (C >> CC), (2) k-clusters 5, 6, and 7

comprised elements of equally low comparable accessibility

(CzCC), and (3) k-cluster 3 contained highly accessible regions

with broadATAC-seq peakdistribution that showed intermediate

signal decrease inmutants (C>CC) (Figure 4G). Functional anno-

tation of k-clusters using GREAT Tool (McLean et al., 2010)

singled out two clusters reflecting NC regulatory mecha-

nisms—k-clusters 3 and 4 showed specific enrichment of zebra-

fishgeneexpression ontology terms linked toNCandneural plate

development (Bonferroni; **p < 0.01; Figures 4I and S4A).

To quantify the observed difference in ATAC-seq signal, we

adapted a ChIP-Rx method (Orlando et al., 2014) that enables
ebrafish gene expression ontology terms linked to NC and neural plate devel-

ent accessibility defect than at 5–6ss (C >> CC, > 50%), suggesting biological

ity. (K) Lateral and frontal view of embryos injectedwith foxd3-enh6 and sox10-

sox10:BirA-2A-Cherry, respectively. Scale bars correspond to 100 mm. (K0)
foxd3 (lateral view) enhancers. Scale bars correspond to 100 mm.



genome-wide quantitative comparative analysis of histone

modification ChIP signal (ATAC-Rx). To this end, ATAC was per-

formed on mutant (CC) and control (C) foxd3-expressing NC

cells at 5–6ss, spiked with Drosophila melanogaster S2 cells as

a reference exogenous epigenome (Figure 4F). Quantification

after Rx normalization demonstrated a discernible fold-change

difference in accessibility between control (C) and mutant (CC)

elements (Figure 4H), thus further confirming the defect in open-

ing of specific distal cis-regulatory elements in the foxd3-mutant,

previously identified by k-means clustering.

To investigate dynamics of chromatin opening over develop-

mental time, we performed k-means clustering of the 75% epib-

oly and bud stage ATAC data. We found a subset of k-cluster 3

elements was open at 75% epiboly (�20%; 3,565 el. [elements]),

with a more prominent change in enhancer accessibility in foxd3

mutants at this stage (C >> CC; > 50%) as compared to 5–6ss

(Figure 4J), suggesting the defect in foxd3 mutants is compen-

sated over time.

Using an efficient reporter assay in zebrafish, we tested the ac-

tivity of�30 putative regulatory elements from k-clusters 3 and 4.

k-cluster 4 regions were not active at 5–6ss but perhaps are used

at later stages, to maintain NC specifiers that remained downre-

gulated in 14–16ss foxd3mutants. k-cluster 3 elements drove re-

porter expression at 5–6ss with striking NC-specific activity,

recapitulating endogenous expression of their cognate genes

(Figures 4K and 4K0), thus strongly suggesting they act as their

cis-regulatory elements.

Hotspot Enhancers Associated with Downregulated NC
Specification Genes Harbor Specific NC
Regulatory Code
k-cluster 3 included elements involved in both neural and NC

development (Figure 4I). However, foxd3-mutants presented de-

fects only in NC formation, suggesting that neural cis-regulatory

modules may not require foxd3 activity for proper function.

Further k-means clustering of k-cluster 3 revealed two pooled

subgroups that were generated by assembling subclusters that

exhibited similar accessibility characteristics (Figures 5A–5C):

(1) k-cluster 3.1 containing cis-regulatory elements that dis-

played lower accessibility in foxd3 mutants and (2) k-cluster

3.2 containing elements with no accessibility change. GREAT

analysis further functionally segregated these subclusters:

k-cluster 3.2 was associated with ontology terms linked only to

neural plate and tube development while k-cluster 3.1 contained

enhancers implicated in NC specification or neuronal differentia-

tion (Bonferroni; **p < 0.01; Figures 5D and 5F). From henceforth,

we refer to putative elements in k-cluster 3.1 as ‘‘hotspot

enhancers.’’

To link the putative regulatory elements identified in foxd3-

mutant (CC) and control (C) NC cells to their transcriptional pro-

grams, we first assigned all identified non-promoter ATAC-seq

elements to the genes expressed at each corresponding stage

(Figure S4C). To connect the transcriptional and regulatory

foxd3 phenotypes at 5–6ss, we assigned hotspot enhancers

(k-cluster 3.1) and elements from k-cluster 3.2 to the corre-

sponding genes expressed at this stage and ranked those genes

by the number of elements associated (Figures 5B and 5C). Hot-

spot enhancers correlated to the ensemble of NC specification

genes downregulated at 5–6ss with high statistical significance
(****p = 1.12E�60). Moreover, no other k-cluster, including 3.2,

showed significant association to genes either up- or downregu-

lated in the foxd3-mutant at 5–6ss.

A number of NC specifiers that were downregulated in foxd3-

mutants at 5–6ss recovered their expression by 14ss. We

inquired whether k-cluster 3.2 regulatory elements (unaffected

by loss of foxd3) could act instead of hotspot k-cluster 3.1 en-

hancers to rescue cognate gene expression. However, the

genes controlled by both hotspot enhancers and k-cluster 3.2 el-

ements (Figure 5C0) compared to those controlled solely by hot-

spot elements (Figure 5B0) did not recover more efficiently (50%

versus 40% of genes, respectively, were still depleted in foxd3-

mutants at 14ss). Instead, an important fraction (�25%) of down-

regulated NC specifiers harboring 3.2 elements, were, in fact,

upregulated in 14ss foxd3-mutant NC, and such upregulation

was not observed for genes solely controlled by hotspot acti-

vating enhancers. Moreover, genes differentially upregulated at

14ss associated to k-cluster 3.2 with high statistical significance

(p = 4.73E�74), suggesting that k-cluster 3.2 elements, were in

fact linked to foxd3-mediated repression.

In line with their predicted assigned functions, transcription

factor binding site (TFBS) analysis using Homer suite (Heinz

et al., 2010) revealed that k-cluster 3.1 (hotspot enhancers)

and k-cluster 3.2 elements harbored distinct regulatory codes.

Hotspot enhancers presented a canonical neural crest signa-

ture featuring bona fide NC master regulators Sox10 (Sauka-

Spengler and Bronner-Fraser, 2008), TFAP2a, and nuclear

receptor NR2 (Rada-Iglesias et al., 2012) as top enriched bind-

ing motifs (Figure 5E), while k-cluster 3.2 top enriched motifs

were Lhx2/3, a transcription factor involved in neural develop-

ment and cortical neurogenesis (Bery et al., 2016), Oct4-

Sox2, and multiple FoxA motifs (Figure 5G). Interestingly, the

only other k-clusters that were enriched in NC motifs (TFAP2a

and Ets1, but not Sox10) were k-clusters 1, 4, and 8 (Fig-

ure S4B), suggesting that regulatory elements whose opening

is dependent on foxd3 display unifying features of an NC

enhancer. Furthermore, we also found a number (�10%) of hot-

spot and k-cluster 3.2 elements were directly bound by foxd3

at premigratory stages (Figure 5H). Given the paucity of avail-

able zebrafish TFBSs, we also formulated a new approach to

build comprehensive TF binding motif maps for each enhancer

k-cluster to be used in statistical enrichment analyses. Simi-

larly, the majority of NC TF motifs were present in the hotspot

k-cluster 3.1 neural crest enhancers (Figure 5I), while k-cluster

3.2 elements clearly lacked sox10, nr2f, and most pax motifs,

except for a single pax cluster, comprising human TF binding

motifs for Pax3 and Pax7, previously shown to control both

NC, neuronal and mesenchymal derivatives (Manderfield

et al., 2014; Murdoch et al., 2012). Moreover, k-cluster 3.2 en-

hancers harbored the majority of hnf, tcf, klf, zic, and pou mo-

tifs, suggesting these elements could both drive NC derivative

as well as stem cell maintenance programs at later stages of

NC development and mediate repressive activity.

This analysis singled out k-cluster 3.1 as the bona fide NC

enhancer cluster that contained hotspot cis-regulatory modules

driving NC specification genes at premigratory stages. Defects

in the chromatin accessibility of these hotspot enhancers re-

sulted in the decrease of NC specifiers’ expression in foxd3

mutants.
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A B B’ C C’ H

D E F G

I

Figure 5. Characterization of Hotspot Enhancers

(A) Scatterplot showing subclustering of k-cluster 3, one containing elements of lower accessibility in foxd3mutants (k-cluster 3.1; 12,366 el.; RCl3.1 = 0.77) (B) and

the other elements with no change in chromatin accessibility (k-cluster 3.2; 4,754 el.; RCl3.2 = 0.97) (C).

(B and C) Plots representing genes assigned to k-cluster 3.1 (B) and k-cluster 3.2 (C) ranked by the number of associated elements. (B0 andC0) Heatmaps showing

later expression (14ss) of NC genes depleted in 5–6ssmutant NC. Genes controlled solely by 3.1 elements (in blue) are shown in (B0) and those harboring both 3.1

and 3.2 elements (in red) are depicted in (C0). Genes that remain downregulated at 14ss are labeled in light color print, and those overexpressed are shown in bold.

(D and F) Functional annotation by GREAT associates k-cluster 3.1 with neural crest specification or neuronal differentiation (D) and k-cluster 3.2 with neural

plate/tube development (F) (Bonferroni; **p < 0.01).

(E and G) Top transcription factor binding site (TFBS) motifs enriched in 3.1 (E) and 3.2 (G) elements.

(H) Venn diagrams showing a number of elements from k-clusters 3.1 (in green) and 3.2 (in blue) that are directly bound by foxd3 at premigratory NC (pm-NC)

stages (in purple: 75% epiboly, 1–2ss, and 5–6ss ChIP-seq peaks).

(I) Comprehensive TF binding motif map representing significantly enriched TFBS for TF expressed at 5–6ss across different k-clusters.
foxd3 Primes Late Regulatory Elements Used in
Migratory NC
To quantitatively evaluate events of chromatin opening at 5–6ss,

we performed differential accessibility analysis using the

DiffBind package (Stark and Brown, 2011). We identified 900

peaks that were differentially accessible in foxd3-control (C)

versus foxd3-mutant (CC) neural crest (Figures 6A–6C); these el-

ements exhibited low signal at 75%epiboly, only starting to open

at 5–6ss, but were clearly accessible in the NC at 16ss (Fig-

ure 6D). Functional annotation of identified elements revealed

significant enrichment of GO terms for stem cell development

and differentiation, neural crest differentiation and migration,

and mesenchymal cell differentiation (**p < 0.01), as well as glio-

genesis (*p < 0.05), further suggesting these regions may act as

cis-regulatory elements at later stages of NC ontogeny (Fig-
618 Developmental Cell 47, 608–628, December 3, 2018
ure 6E). Interestingly, assigned genes included cell adhesion

and migration factors that were de-repressed in foxd3 mutant

NC at later stages. Conversely, other associated NC regulatory

factors that drive specific NC lineages and are normally highly

expressed at later stages were depleted in the foxd3 mutant at

14ss (Figure 6A). These results clearly suggest that, in addition

to the NC specification program at premigratory NC stages,

foxd3 continues to aid the opening of the cis-regulatory elements

associatedwith NCdifferentiation, while, at the same time, nega-

tively controlling gene expression of cell surface and migration

machinery that ultimately has to be deactivated in order for cells

to settle and differentiate. Importantly, association of stem cell

development/differentiation genes to late NC enhancers further

supports a role for foxd3 in controlling stem cell identity in the

migrating and differentiating NC.
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Figure 6. Differential ATAC-Seq Analysis and Clustering of Enhancers Based on H3K27Ac Profiles

(A) Annotated MA plot depicting late opening enhancers significant by DiffBind analysis (p < 0.05, FDR<0.1) of the ATAC-seq signal at 5–6ss with annotated

associated genes (stem cell genes, blue; cell adhesion/migration cues, green; NC specification and differentiation, red).

(B) Genome browser screenshot exemplifying the type of element isolated by DiffBind (boxed).

(C and D) (C) Heatmap (raw read counts) of all elements and (D) collapsedmerged profiles indicating that identified elements are closed at epiboly and only start to

open at 5–6ss.

(E) Functional annotation of DiffBind-identified enhancers shows association with later roles in NC (**p < 0.01).

(F–H) (F) Heatmap depicting k-means linear enrichment clustering of H3K27Ac signal across non-promoter ATAC-seq peaks in foxd3-mutant (CC, Citrine/Cherry)

and control (C, Citrine) at 5–6ss, (G) associated mean merged profiles for selected clusters, and (H) corresponding ontology enrichment bar plots indicating

functional role of selected clusters.

(legend continued on next page)
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Taken together, our findings demonstrate that foxd3 controls

NC gene activation by acting at a cis-regulatory level both dur-

ing early NC specification and at later migratory NC stages.

This realization contributes to converging evidence that foxd3

plays multiple, sometimes opposing, roles, particularly during

the transition from NC specification to migration/differentiation

stages.

H3K27Ac on NC Enhancers Is Altered in foxd3 Mutants
To examine whether H3K27 acetylation, a hallmark of active en-

hancers, was affected in foxd3-mutant NC at 5–6ss, we carried

out H3K27Ac ChIP using FAC-sorted foxd3-mutant (CC) and

control foxd3-expressing NC cells (C). k-means clustering of

H3K27Ac signal identified 10 clusters with differential patterns

of H3K27 acetylation on putative cis-regulatory elements (Fig-

ures 6F, 6G, and S5). Four clusters (K27Ac_clusters 1, 2, 3,

and 6) contained elements with no change in H3K27 acetylation,

whereas four clusters showed a decrease (K27Ac_Cl5, 7, 9,

and 10) and two an increase (K27Ac_Cl4 and Cl8) in H3K27Ac

signal in foxd3 mutant NC. In K27Ac_Cl5, acetylation in foxd3-

mutants was abrogated below background levels, possibly indi-

cating active removal of the H3K27Ac mark from the enhancers

when they were not primed or bound by NC-specific TFs. Func-

tional annotation of this cluster yielded specific enrichment of ze-

brafish GO terms linked to early (premigratory) NC, as well as

nervous system development (Bonferroni; **p < 0.01; Figure 6H).

The majority of NC genes downregulated in foxd3 mutants at

5–6ss were associated with one or more K27AC_Cl5 elements

(p = 1.59E�05; Figure 6I), suggesting that some of the enhancers

initially opened by foxd3 and used during early NC specification

also depended on this factor for appropriate acetylation. Simi-

larly, H3K27Ac_Cl9 elements, characterized by strong K27Ac

signal in controls and defect in foxd3-mutant cells (Figure 6G),

were mainly associated with factors regulating late NC events

such asmigration and differentiation into derivatives such as cra-

nial skeletal elements (Figure 6H). Interestingly, a number of

these genes were upregulated in foxd3-mutants by 14ss, indi-

cating a supplementary foxd3-linked gene and enhancer regula-

tory mechanism (Figure 6I). The putative role of foxd3 in repres-

sion of these NC genes until post-migratory stages is

reminiscent of the observations made in studies of Foxd3 func-

tion in germ and pluripotent stem cells (Krishnakumar et al.,

2016; Respuela et al., 2016).

In contrast, the increased H3K27 acetylation in foxd3-mutants

suggests foxd3 involvement in active removal of this histone

modification from cluster K27Ac_Cl8 enhancers that control

of Wnt signaling pathway components (Figures 6G and 6H).

Correspondingly, both canonical Wnt signaling ligands

(Wnt1,3,3a,8a/b, 10a/b), receptors (fzd3,8b,10, fzdb, sfrp1a),

signal transduction effectors (apc, axin2, wntless, tcf3a/b,

tcf15), as well as non-canonical Wnt signaling ligands (wnt4a,5b,

7b,11,11r,16) and signal transduction effectors (daam1a/b, rho,
(I) Heatmaps showing expression of NC specification genes (log FPKM) associate

with K27Ac_Cl9 at 14ss in foxd3-mutant (CC) and control cells (C).

(J) Heatmap depicting expression at 14ss of canonical and non-canonical Wnt p

increase in enhancer K27 acetylation in mutants.

(K) TF binding motif map representing significantly enriched TFBS for TF expres

clusters and corresponding ontology enrichment bar plots.
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plc, nfat3b), were differentially upregulated in foxd3-mutants at

14ss (Figure 6J).

Interestingly, DNA motif enrichment patterns identified in

individual K27Ac clusters differed from binding maps of

hotspot k-cluster 3.1 enhancers. For instance, elements from

K27Ac_Cl5 cluster, featuring complete repression in H3K27Ac

signal in foxd3-mutants, lacked enrichment in sox, prdm, or

pax3/7 motifs but harbored motifs for other pax TFs (pax1/9,

pax2/5/8, pax6) and ets (erythroblast transformation specific). In

general, K27Ac clusters containing elements acetylated in a

foxd3-dependent manner (K27Ac_Cl5, 7, 9, and 10; Figures 6F

and 6G) showed enrichment in tfap2, nr2f, and zic motifs, while

elements from clusters K27Ac_Cl4 and 8, which may normally

require foxd3 binding formaintenance of repressive state (Figures

6F and 6G), are enriched in bindingmotifs for neural and stem cell

TF sox2. Regions of low acetylation across ATAC peaks in

K27Ac_Cl3_6 are enriched in CTCF binding motifs (Figure 6K).

These results show that foxd3’s effects on H3K27 acetylation

of enhancers are context dependent. While correlating positively

with H3K27ac deposition on enhancers of early specification

and late fate commitment genes, foxd3-dependent H3K27Ac

is negatively associated with expression of Wnt signaling genes.

Ectopic Expression of foxd3 Modifies the Chromatin
Landscape in Early Embryos
Under some conditions, FoxD3 has been shown to auto-regulate

itself (Hromas et al., 1999; Lister et al., 2006; Pohl and Knochel,

2001). Indeed, here we reveal that in foxd3-mutants, the tran-

scription of truncated foxd3 form was increased at 75% epiboly,

depleted at 5–6ss and again upregulated at 14–16ss, indicating

different feedback loops controlling foxd3 expression at different

stages of development. To investigate the direct action of foxd3-

mediated chromatin priming and subsequent gene activation,

we performed foxd3 overexpression experiments by injecting

foxd3mRNA into heterozygousGt(foxd3-mCherry)ct110 embryos

(Figure 7A). To assess the degree of auto-regulation upon

ectopic foxd3 expression versus control, we first quantified fluo-

rescence intensity and the number of endogenous foxd3-

mCherry cells at 50% epiboly by FACS (Figures 7B and S6A).

While we did not observe an increase in fluorescent cell number,

we noticed an overall increase in the fluorescence intensity when

compared to control non-injected embryos, consistent with sup-

plemental gene activation at the foxd3-mCherry locus. Remark-

ably, cells from foxd3 mRNA-injected embryos failed to exhibit

the highest mCherry fluorescence found in the control cells (Fig-

ure 7B; P5 compartment – black arrow), suggesting also a poten-

tial repression at the foxd3-mCherry locus. Our findings suggest

that foxd3 both activates and represses itself and that its activity

may be dependent on the concentration and spatial position of

the cells within an embryo. Thus, under overexpression condi-

tions, the bimodal action of foxd3 may occur at an even earlier

stage than normal.
d with K27Ac_Cl5 at 5–6ss and NC migration/differentiation genes associated

athway molecules (in log FPKM) associated with K27Ac_Cl8 that displays an

sed at 5–6ss across different K27Ac-clusters. See Figure S5 for other K27Ac
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To probe foxd3’s capability to prematurely prime cis-

regulatory elements, we again overexpressed it but, this

time, dissected the embryos to analyze chromatin acces-

sibility (ATAC-seq) in cells that do not normally express foxd3

endogenously at this stage (‘‘foxd3-naive’’ cells) (Figure 7A).

When comparing datasets from foxd3-injected embryos versus

controls, we failed to detect the opening of de novo genomic re-

gions that were not normally accessible in the foxd3-expressing

cells. This suggests that foxd3 activity remains specific to a

defined set of putative downstream targets. Interestingly, we

observed that ectopic foxd3 activity increased accessibility of

a large number of putative elements directly bound by foxd3

(as uncovered in our ChIP experiments), including a number of

hotspot enhancer elements (Figure 7C). Elements that showed

enhanced accessibility upon ectopic foxd3 expression associ-

ated with genes involved in early neural plate and neural crest

development and in particular with those controlling Wnt and

BMP signaling (Figures S6B and S6B0). Furthermore, within the

foxd3 genomic locus itself, we identified cis-regulatory elements

showing changes in accessibility in both directions upon foxd3

expression (Figure 7B0, purple arrows). Bimodal auto-regulation

of foxd3 (Figures 7B and 7B0) offers an excellent example of

foxd3’s capacity to both activate and repress a gene by priming

or decommissioning different cis-regulatory elements.

In silico Combinatorial Transcription Factor Analysis
Suggests Distinct Gene Regulatory Mechanisms
Underlie the Bimodal Action of foxd3
Because late cis-regulatory regions were not fully opened by

ectopic foxd3 expression, we speculated that foxd3 likely re-

quires in vivo interacting partners to exert its bimodal activity.

To identify putative foxd3 partners, we analyzed the underlying

foxd3 biotin ChIP sequences during either gene activation or

gene repression. The classification of foxd3-bound regulatory el-

ements solely using one of the bimodal actions was based on the

assumption that these roles are temporally distinct, with foxd3

mainly acting as activator during early stages (75% epiboly;

1–2ss; ‘‘early’’ peaks), and as a repressor at later stages of NC
Figure 7. Putative Mechanisms of the Bimodal foxd3-Mediated NC Ge

(A) Experimental strategy for foxd3 overexpression in vivo. Gt(foxd3-mCherry)c

ATAC-seq experiments at 50% epiboly stages. For ATAC-seq, embryos were di

express foxd3. Native and ectopic foxd3 expression is illustrated in dark pink an

(B) FACS graph portraying a number of foxd3-mCherry expressing cells and und

(pink) embryos. P1–P5 – compartments of different fluorescence levels from the

rescence in foxd3mRNA injected embryos versus control. (B0) Genome browser s

site (TSS). Green and pink ATAC-seq tracks represent genome accessibility from c

relative loss or acquisition of chromatin accessibility upon foxd3 overexpression

(C) Mean density maps of merged profiles for k-means clusters featuring elemen

control (in green) 50% epiboly-staged embryos using either foxd3 binding maps

(D) Circle plot showing statistically significant TF motif co-occurrences on the ‘‘e

(E) Circle plot showing different statistically significant TF motif co-occurrences o

(F) De novo TF binding motifs enriched within foxd3-bound elements associated

(G) Nucleosomal occupancy profiles expressed as relative NucleoATAC normaliz

within the regulatory elements in control (C; green) and foxd3-mutant (CC; red) ce

(5–6ss, 14ss in green) results in either nucleosome clearing (G0; permissive role) or

nucleosomal patterns inverted in foxd3-mutant NC (G0 and G00).
(H) Mean density maps of merged profiles of nucleosomal clusters obtained by

mutants (CC; red) and controls (C; green). Both nucleosome-loose clusters of el

some-compact clusters with repressive patterns (epi-repress and 5–6ss-repres

nucleosomal clusters by GREAT (Bonferroni; p < 0.01). Only elements directly bo
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ontogeny (5–6ss; 14ss). Given that at the 5–6ss foxd3 may

mediate both activities, the set of ‘‘late’’ peaks was obtained by

removing peaks already bound at earlier stages, thus focusing

primarily on the foxd3-repressed genomic loci. After de novo TF

binding motif enrichment analysis on early and late foxd3-bound

NC genomic regions, we selected 20 out of 20 identified (early)

and 27 out of 32 identified (late) significantly enriched sequence

motifs to be used for in silico 2-way TF combinatorial analysis.

For visualization purposes, different motifs annotated to the

same TF were pooled (Figures 7D, 7E, S6C, and S6D). Combina-

torial analysis yielded a signature of putative foxd3 co-activators

at early stages (Sox3, SP1, Zic, Hnf1ba, Pou6f1, zinc-finger pro-

tein (ZFP), Zbtb3, and Smad4) (Figure 7D). Conversely, late stage

peakswere enriched for NFY, SP1, Otx2, Sox10, E2F6, Rxr, bZIP,

Nr2c2ap, Foxd3, and other Fox-like TF motif complexes (Fig-

ure 7E). Given that some of the lineage specification factors en-

riched at later stages overlap foxd3 binding genomic coordinates,

we cannot unequivocally discriminate whether these factors co-

operate or compete with foxd3. Surprisingly, we did not observe

an extensive enrichment of fox/foxd3 motifs from our foxd3 biotin

ChIP-seq sets at early NC stages (when foxd3 is mostly playing a

priming role), while fox/foxd3were themost highly enriched out of

all motifs at foxd3-bound DNA sequences at later NC stages

(when foxd3 primarily acts as a repressor) (Figures 7D, 7E, S6C,

andS6D). This is suggestive of differencesbetween foxd3binding

affinities during its priming versus repressive modes and is

consistent with previous studies showing that some co-binding

pioneer transcription factors exhibit only a partial DNA sequence

motif recognition when binding to the nucleosome, but recognize

canonical motifs when binding ‘‘naked’’ DNA (Soufi et al., 2015).

Thus, our findings support the hypothesis that foxd3 is a bimodal

NC regulator, which progressively changes from a co-pioneering

factor toward a repressor during NC ontogeny.

Foxd3 Mediates Gene Repression via Chromatin
Modulation together with Other Factors
To focus on potential factors that may directly co-repress NC

genes at later stages, we scanned foxd3-occupied genomic
ne Regulation
t110 heterozygous embryos were used for FACS and wild-type embryos for

ssected (dashed lines) to only collect ‘‘foxd3-naive’’ cells that do not normally

d lighter pink, respectively.

erlying fluorescence intensities from control (green) and foxd3 mRNA injected

lowest to the highest. Black arrow indicates a loss of highest intensity fluo-

creenshot depicting region�60 kb upstream from the foxd3 transcription start

ontrol and foxd3 overexpressing embryonic cells. Purple arrows indicate either

.

ts with differential accessibility between the foxd3 mRNA injected (in pink) and

or k-cluster 3.1 elements as a reference.

arly NC’’ foxd3-bound activating elements.

n the ‘‘late NC’’ foxd3-bound elements, underlying repressive activity.

with NC genes negatively regulated by foxd3 at 14ss.

ed cross-correlation signals. Profiles show changes in nucleosome positioning

lls. Direct foxd3 binding at either early (epiboly, 1–2ss in magenta) or late stage

nucleosome compaction (G00; repressive role). Both processes are altered and

k-means analysis showing differential nucleosomal patterns between foxd3-

ements with activating patterns (epi-activate and 5–6ss-activate) and nucleo-

s) are identified. (H0) Bubble chart depicting functional annotation of different

und by foxd3 are analyzed.



loci associated with genes significantly upregulated in the 14ss

foxd3-mutant NC for de novo TF binding motifs. Interestingly,

only three significantly enriched motifs were identified: foxd3

(MF0005.1_Forkhead_class/Jaspar(0.813); p = 1E�15), e2f6

(MA0471.1_E2F6/Jaspar(0.722), p = 1E�14), and Esrra

(MA0592.1_ESRRA/Jaspar(0.800), p = 1E�12) (Figure 7F).

E2F6 was found to co-occupy the highest proportion of foxd3-

bound repressive peaks (16.55%) (Figure 7F).

Next, we identified a set of genomic regions accessible early

(75% epiboly; 1–2ss), then bound by foxd3 from 5–6ss and

ultimately closed by 14–16ss, suggesting foxd3-facilitated

compaction. Such regulatory elements (314) were associated

to 293 gene loci, 44% of which were upregulated in foxd3-mu-

tants at 14ss, indicating these were directly regulated by foxd3

via modulation of chromatin accessibility at enhancers. More-

over, GREAT analysis revealed a significant enrichment for

neuronal fate specification terms (Figure S6E0; **p < 0.01),

including genes such as olig2/4, mnx1, fgf8a, gli1, neurog1,

and robo1, confirming our previous observations that foxd3

prevents premature activation of neuronal pathways (Figure 2H).

TF motif enrichment analysis of these 314 elements using the

same initial set of 32 motifs (Figure 7E) yielded 19 significant

co-occurring motifs (12 different TFs) (Figure S6E). We again

noted promiscuous foxd3 binding, as the top five different

fox/foxd3 motifs were enriched on 85% of repressed loci. Inter-

estingly, 98.1% of all repressed loci exhibited the Hnf1b a/b

motif sequence, while other predominantly enriched motifs un-

derlying foxd3-mediated co-repression were otx2 (92.7%),

sox10 (79.9%), two NFY motifs (78.7% and 79.9%), and e2f6

(70.7%). Combinatorial TF analysis showed that fox motif

factors had the highest number of statistically significant co-oc-

currences, followed by foxd3 co-occupation with sp1, zfp-like,

e2f6, otx2, sox3, NFY, znf-irf1, hnf1b a/b, and sox10 motifs

(Figure S6E). Otx2, sox3, and sox10 factors, involved in NC dif-

ferentiation and neural development, may not co-operate with

foxd3 to mediate repression but rather compete for underlying

binding sequences to promote multipotent NC cell differentia-

tion (Beby and Lamonerie, 2013; Carney et al., 2006; Dee

et al., 2008). Conversely, e2f6 factor is known to function as

a transcriptional repressor that associates with Polycomb

repressive complexes (PRC1 and PRC2) (Gaubatz et al.,

1998; Leseva et al., 2013; Trimarchi et al., 2001). We explored

e2f6/foxd3 co-operation in transcriptional repression by scan-

ning four different e2f6 motifs across all foxd3-bound regions

associated with the genes upregulated in 14ss foxd3-mutant

embryos (Figure 3E) and found that 82.3% of them were

significantly enriched for e2f6 binding (chi-square test;

***p < 0.0004). This indicates that e2f6 likely plays an important

role in NC development by co-operating with foxd3 to repress

target genes in order to maintain NC multipotency.

Foxd3 Affects Nucleosomal Positioning on NC
Enhancers
Our analysis suggests that foxd3-mediated chromatin compac-

tion at regulatory elements is one mechanism employed for

specific gene repression. However, the role of foxd3 in

gene activation and maintenance may involve other mecha-

nisms including nucleosomal rearrangements at NC enhancers.

FoxD3 forkhead DNA binding domain, like that of FoxA pro-
teins, is composed of three helices and two large loops

(‘‘wings’’), remarkably similar to the winged-helix structures of

linker histone H1 that avidly binds nucleosomes (Clark et al.,

1993). Such pioneer factors have been suggested to induce

nucleosome repositioning, possibly by recruiting hyperdynamic

histone variants, such as H2A.Z and H3.3 and other chromatin

and DNA modifying proteins, to allow binding of cis-regulatory

elements by transcriptional complexes (Chen and Dent, 2014;

Spitz and Furlong, 2012; Zaret and Carroll, 2011). To assess

whether foxd3 affects nucleosomal positioning on NC en-

hancers, we analyzed nucleosome profiles in foxd3-mutant

and control neural crest cells. To this end, we generated nucle-

osomal occupancy tracks using the NucleoATAC algorithm that

enables calling nucleosome positions using Tn5 footprints

embedded in ATAC-Seq data (Schep et al., 2015). k-means

clustering identified cohesive groups of elements that pre-

sented significant differences in nucleosomal patterns between

foxd3-mutant (CC) and control (C) NC. Interestingly, while no

changes in chromatin architecture at promoters were observed,

nucleosomal clustering at 5–6ss singled out groups with differ-

ential nucleosomal density in foxd3-mutants (Figure S6F). Over-

all, we found that foxd3 influences the nucleosome positioning

at NC regulatory elements in a context-dependent manner, re-

sulting in both ‘‘permissive’’ and ‘‘repressive’’ chromatin orga-

nizations (Figure 7G). We find clear evidence of permissive

foxd3 occupancy resulting either in the removal of the nucleo-

somes from the core enhancer region (early foxd3 binding; 75%

epiboly to 1–2ss) or maintenance of nucleosome-free confor-

mation (later foxd3 binding, from 5–6ss). Both processes

were altered in foxd3-mutants, resulting in compaction of

enhancer cores that are habitually nucleosome-free (Figure 7G0).
Conversely, at other elements, repressive foxd3 binding was

associated with the nucleosomal maintenance and compac-

tion, as absence of functional foxd3 protein in mutant NC re-

sulted in clearing of nucleosomes from enhancer cores

(Figure 7G00).
To analyze genome-wide changes in nucleosomal posi-

tioning at gene regulatory regions upon foxd3 gene perturba-

tion, we performed k-means clustering and identified cohesive

groups of elements showing differential nucleosomal patterns

between foxd3-mutants and controls. At both stages of devel-

opment analyzed (75% epiboly and 5–6ss), we identified clus-

ters of nucleosome-loose elements with activating patterns

and nucleosome-compact clusters with repressive patterns

but displaying opposite nucleosomal positioning in foxd3-mu-

tants (Figure 7H). Functional annotation of foxd3-bound regula-

tory elements belonging to the identified nucleosomal clusters

at early stage suggests foxd3-directed activation of NC and

stem cell development programs, as well as preparation for

neural crest migration (Figure 7H0; epi-activate). Concurrently
foxd3 appears to directly negatively control premature NC

and stem cell differentiation, and formation of derivatives (pe-

ripheral nervous system, melanocytes) (Figure 7H0; epi-

repress). Similarly, in the bona fide premigratory NC cells at

5–6ss, foxd3-mediated rearrangements of nucleosomes

directly control activation of relevant signaling pathways (FGF,

ERK1-ERK2 MAPK, as well as non-canonical Wnt signaling), as

well as the onset of gliogenesis (Figure 7H0; 5–6ss-activate),

while, at the same time, directly repressing late differentiation
Developmental Cell 47, 608–628, December 3, 2018 623



events (pigment cells, axonogenesis) and components of

signaling pathways no longer active in migrating crest (Id,

Notch/Delta) (Figure 7H0; 5–6ss-repress).

DISCUSSION

Gene expression is the product of interplay between proximal

and distal cis-regulatory elements, controlling competence at

the chromatin level (Ong and Corces, 2012; Wang et al., 2015).

Moreover, broad epigenetic changes to the cis-regulatory land-

scape, including histone and DNA demethylation, histone acety-

lation, and loss of heterochromatin characterize different stages

of transition from naive to primed pluripotency (Krishnakumar

and Blelloch, 2013). Several mechanisms explaining how

Foxd3 promotes pluripotency in vitro have been proposed.

FoxD3 can recruit Tle4 to repress differentiation-associated

genes induced by NFAT signaling through regulation of histone

de-acetylation (Zhu et al., 2014). In two recent studies investi-

gating the transition from ESCs to EpiCs, EpiLCs, and PGCKs,

mouse FoxD3 was implicated in the regulation of stem cell plu-

ripotency by associating to different enhancer marks and subse-

quentlymanipulating transcriptional competency of downstream

genes (Liber et al., 2010). The first report showed that FoxD3-

bound enhancers associated with genes primed for expression

upon exit from naive pluripotency, with FoD3 promoting nucleo-

some depletion by recruiting SWI/SNF complex chromatin re-

modeler Brg1, while simultaneously acting as a repressor and

preventing enhancer acetylation by recruiting HDACs (Krishna-

kumar et al., 2016). The other study showed that FoxD3-bound

active enhancers associated with highly expressed genes that

become silenced upon exit from naive pluripotency, where cor-

responding enhancers were decommissioned through recruit-

ment of Lsd1, and a reduction in p300 activity (Respuela et al.,

2016). Surprisingly, the two studies found a minimal overlap

(only �12%) in FoxD3 bound peaks (Plank et al., 2014; Sweet,

2016; Yong et al., 2016). The discrepancies between the different

putative mechanisms of FoxD3 re-enforced the need for in vivo

studies that would characterize the regulatory context within

which FoxD3 mediates different activator and repressor roles

across developmental time.

Foxd3 Is a Pioneering Factor for NC Specification
The studies described above suggest FoxD3 plays an array of

complex independent roles during NC ontogeny, but its role

during NC specification has remained elusive. Although

Foxd3 was thought to act mostly as a transcriptional repressor,

previous reports failed to recover more differentially upregu-

lated versus downregulated genes in foxd3 mutant cells

(Respuela et al., 2016; Yaklichkin et al., 2007). Strikingly, our

analysis showed that foxd3 plays a central activating role in

NC specification, both directly and indirectly controlling the

expression of an entire NC specification module. We present

evidence that foxd3 acts at a global level to prime NC factors

by modulating the accessibility of their cis-regulatory elements.

Thus, much like its relatives, FoxA1 and FoxA2, shown to regu-

late enhancer dynamics for specific gene expression controlling

pluripotent stem cell potential, cell fate transitions, lineage

choice, and differentiation (Adam et al., 2015; Sérandour

et al., 2011; Zaret and Carroll, 2011), foxd3 acts as a pioneer
624 Developmental Cell 47, 608–628, December 3, 2018
factor in the NC. By studying dynamics of chromatin opening

across several stages, we identified a set of hotspot enhancers,

a substantial portion of whose accessibility was dependent on

a direct foxd3 binding. Quantification of accessibility levels us-

ing normalized ATAC assay and statistical differential binding

analysis indicated that defects in foxd3-mutant cells are most

striking at the onset of enhancer opening and affect early genes

at the onset of NC specification, late genes at the onset of

migration and genes involved in the multipotent progenitor

potential maintenance.

Foxd3 Affects H3K27 Acetylation on NC Enhancers
Previous studies suggested that one of the modi operandi of

pioneer factors was the recruitment of H3K27 acetyltransferase

activity, a hallmark histone modification of active enhancers

(Choi et al., 2016; Kerschner et al., 2014). In contrast, a recent

report found that, following FoxA1/A2 activity, accessible nu-

cleosomes in liver-specific enhancers had reduced H3K27Ac,

suggesting that the initial role of pioneer factors in opening

and controlling nucleosome occupancy at enhancers was

temporally uncoupled from the acetylation role (Iwafuchi-Doi

et al., 2016). We found that lack of foxd3 during NC specifica-

tion resulted in differential K27 acetylation, with some NC reg-

ulatory elements showing depletion and others an increase in

H3K27Ac mark in mutant embryos. We show that early NC

specifiers, downregulated in foxd3-mutants, are controlled

positively via this mechanism, as they associated to the

K27Ac-depleted elements with a high statistical significance.

At the same time, we demonstrate that those cis-regulatory el-

ements, which show significant areas of hyperacetylation in

mutants, negatively control essential components of Wnt

signaling pathway. Therefore, in NC cells foxd3 activity both

enables and inhibits H3K27 Acetylation of NC regulatory ele-

ments, thus promoting both the activation of NC specification

genes and the repression of factors that need to be downregu-

lated for the NC migration/differentiation to proceed.

Bimodal Action of foxd3
Here, we present strong evidence that during NC formation

in vivo, in addition to its conventional role as a repressor (Yaklich-

kin et al., 2007), foxd3 acts as a pioneer factor to prime NC gene

expression. In line with recent in vitro studies (Krishnakumar

et al., 2016; Respuela et al., 2016), we demonstrate that foxd3

functions primarily by changing the chromatin landscape of

cis-regulatory elements and sets up a number of hotspot NC

gene enhancers (k-cluster 3.1), as well as later migratory NC

regulatory elements required for the specification of distinct

NC lineages. The foxd3 binding to the NC enhancers that were

associated with the downregulated genes in the absence of

foxd3 is strongly indicative of its direct central role in NC gene

activation via enhancer priming during early steps of NC

ontogeny. On the other hand, later in NC development, foxd3 re-

presses or decommissions a considerable number of active en-

hancers associated with mesenchymal or neuronal genes found

upregulated in foxd3-mutants. This indicates that, in the devel-

oping embryos, foxd3 is capable of modulating the NC chro-

matin regulatory landscape in a bimodal fashion, facilitating

both permissive and repressive states. These mechanisms do

not exhibit sharp temporal boundaries but instead occur



concomitantly, with a gradual shift toward the repressive activity

after NC specification. Whether such bimodal activity of foxd3

could enable early NC fate transitions and maintenance of multi-

potency remains to be investigated in future.

Distinct Regulatory Co-factors Likely Underpin foxd3’s
Dual Mechanisms of Action
Regulation of gene expression is largely determined by co-oper-

ative interactions between different transcription factors that are

dependent on underlying DNA binding motifs (Kato et al., 2004).

For instance, another Fox pioneering factor, FoxA, was shown to

both promote gene expression but also to co-occupy the

enhancers of silenced genes such as cdx2 together with tran-

scriptional repressors such as Rfx and type II nuclear hormone

receptor (Watts et al., 2011). Our combinatorial TF analyses un-

covered a number of novel foxd3 co-factors required for either

gene priming or repression that together control NC induction

and maintain NC multipotency. One of the identified putative

foxd3 co-binding partners required for the pioneering activity,

zbtb3, was previously shown to be critical in the early embryonic

development and stem cell self-renewal by promoting Nanog

expression in mice (Ye et al., 2018). Interestingly, its fly homolog

GAF was shown to influence chromatin organization, including

promoting nucleosome removal by associating with chromatin

remodeling complexes, such as nucleosome remodeling factor

or facilitates chromatin transcription (FACT) (Adkins et al.,

2006). Furthermore, ZFPs were revealed as most likely foxd3

partners during early NC development. Intriguingly, BRG1, a cat-

alytic subunit of chromatin remodeling SWI/SNF complex previ-

ously shown to interact with foxd3 (Krishnakumar et al., 2016), is

known to be attracted to targeted chromatin regions via its N-ter-

minal ZFP-interaction domain (Kadam and Emerson, 2003).

Thus, our results suggest foxd3/ZFP-dependent recruitment of

Brg1 to the associated enhancers that subsequently leads to

nucleosome depletion and enhancer activation. Other known

NC factors, such as zic and tfap2, also seem to be playing a

co-pioneering role together with foxd3 in early NC development

as previously shown using foxd3/tfap2 double mutant analyses

(Wang et al., 2011).

In search of co-repressing partners of foxd3, we identified a pu-

tative novel NC regulator, e2f6, that potentially co-represses NC

differentiation genes together with foxd3. E2F6 exerts its repres-

sive functionality through recruitment of PRC complexes in a DNA

sequence-targeted fashion (Attwooll et al., 2005; Ogawa et al.,

2002; Trimarchi et al., 2001). Notably, a previous study exploiting

a similar strategy to ours to uncover TF motif co-occurrences on

FoxA2 binding sites, which were associated with upregulated

genes in FoxA1/2 mutants, also identified E2F6 as a potential

co-repressor in mouse liver cells (Iwafuchi-Doi et al., 2016).

Here, we present striking evidence that, during NC ontogeny,

foxd3 may switch from permissive to repressive nucleosome/

chromatin organization of NC cis-regulatory elements to inde-

pendently control NC specification and NC differentiation

events. Furthermore, we identified potential distinctive transcrip-

tion co-factors at different stages of NC ontogeny, indicating

possible mechanisms underlying foxd3 bimodality. Thus, our

current data provide a platform for future hypothesis-driven ex-

periments that will be crucial for deciphering the exact mecha-

nism of foxd3 bimodality underlying NC gene regulation in vivo.
The beta version of the interactive ShinyApp associated

with the data produced in this study and Pagoda App (Fan

et al., 2016) presenting single-cell catalogs can be downloaded

from https://github.com/tsslab/foxd3. The live app can also

be accessed here: https://livedataoxford.shinyapps.io/FoxD3-

project-TSS-Lab/.
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Recombinant DNA

BAC clone CH211-196F13 CHORI https://bacpacresources.org CH211-196F13

Software and Algorithms

Sickle Joshi and Fass (2011) https://github.com/najoshi/sickle

STAR 2.4.2a Dobin et al. (2013) https://github.com/alexdobin/STAR

FeatureCounts (v1.4.6-p4) Liao et al. (2014) http://bioinf.wehi.edu.au/featureCounts

R v3.4.2 R Core Team https://www.r-project.org/

DESeq2 (v.1.14.1) Love et al. (2014) https://bioconductor.org/packages/release/bioc/

html/DESeq2.html

edgeR Robinson et al. (2010) https://bioconductor.org/biocLite.R

SCDE Fan et al. (2016) http://hms-dbmi.github.io/scde/index.html

PAGODA Fan et al. (2016) http://hms-dbmi.github.io/scde/index.html

Bowtie (v.1.0.0) Langmead et al. (2009) http://bowtie-bio.sourceforge.net/bowtie2/

index.html

Bedtools (v.2.15.0) Langmead et al. (2009) https://github.com/arq5x/bedtools

MACS2 (v2.1.0) Zhang et al. (2008) https://github.com/taoliu/MACS

HOMER (v.4.4) Heinz et al. (2010) http://homer.ucsd.edu/homer/index.html

SeqMINER Ye et al. (2011) http://seqminer.genomic.codes

(Continued on next page)
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Continued

REAGENT or RESOURCE SOURCE IDENTIFIER

Deeptools (v.2.2.2) Ramı́rez et al. (2016) https://github.com/deeptools/deepTools

MEME suite Bailey et al. (2015) http://meme-suite.org/doc/download.html

Gimmemotifs (v.0.9.0.3) van Heeringen and Veenstra (2011) https://gimmemotifs.readthedocs.io/en/master/

GREAT McLean et al. (2010) http://great.stanford.edu/public/html/

DiffBind Stark and Brown (2011) https://bioconductor.org/packages/release/

bioc/html/DiffBind.html
CONTACT FOR REAGENT AND RESOURCE SHARING

Further information and requests for resources and reagents should be directed to and will be fulfilled by the Lead Contact, Tatjana

Sauka-Spengler (tatjana.sauka-spengler@imm.ox.ac.uk).

EXPERIMENTAL MODEL AND SUBJECT DETAILS

For this study, both females and males of transgenic and wild-type zebrafish strains were used. Animals that were bred were from

3 months old to 2 years old. Zebrafish embryos that were used for the experiments were between 8-16 hours post fertilisation.

Zebrafish Lines
Genetrap line, Gt(foxd3-citrine)ct110 was generated by (Hochgreb-H€agele and Bronner, 2013). Animals were handled in accordance

to procedures authorized by the UK Home Office in accordance with UK law (Animals [Scientific Procedures] Act 1986) and the rec-

ommendations in the Guide for the Care and Use of Laboratory Animals. All vertebrate animal work was performed at the facilities of

Oxford University Biomedical Services. Adult fish were maintained as described previously (Westerfield, 2000). In brief, adult fish

were exposed to 12 hour light – 12 hour dark cycle (8am to 10pm light; 10pm to 8am dark), kept in a closed recirculating systemwater

at 27-28.5�C, fed 3-4 times a day, kept at 5 fish per 1L density. Embryos were staged as described previously (Kimmel et al., 1995). In

brief, embryos were staged using a dissecting stereo-microscope. 75% epiboly stage was identified by observing a distinctively

thicker dorsal side and visible epiblast, hypoblast and evacuation zone. 1-2ss – by observing first/second segment furrow. 5-

6ss – counting 5/6 somites, apparent optical and Kupffer’s vesicles and prominent polster. 14-16ss – counting 14/16 somites,

observing otic placode, v-shaped trunk somites.

METHOD DETAILS

Cell Dissociation and FAC-Sorting
Selected embryos were dissociated with collagenase (20mg/ml in 0.05% trypsin) at 30�C for 10-15mins with intermittent pipetting to

achieve a single cell suspension. Cells were centrifuged at 500g for 10mins and re-suspended in Hanks buffer, passed through a

0.22mm filter and centrifuged at 750g for 10min, pelleted cells were re-suspended in �500ml Hanks buffer. Fluorescent positive cells

were sorted and collected using BD FACS-Aria Fusion.

Bulk RNA Extraction, Library Preparation and Sequencing
FACS sorted cells were washed with PBS and stored at 80�C in lysis buffer. RNA was extracted using Ambion RNAqueous Micro

Total RNA isolation kit (AM1931), checked on Bioanalyser, samples with RIN>7 were used to prepare cDNA using Takara Clontech

SmartSeq2 V4 kit (634889). Sequencing libraries were prepared using Illumina Nextera XT library preparation kit (FC-131-1024). 75%

Epiboly-stage cell libraries (Citrine-expressing, Citrine-Cherry-expressing and cells not expressing FoxD3) were sequenced using

80 bp reads using Illumina Nextseq500 platform. 5-6ss and 8ss cell libraries expressing FoxD3 (Citrine-expressing, Citrine-Cherry-

expressing) were sequenced using 50bp paired-end (PE) reads on IlluminaHiseq2000 platform, and cells not expressing FoxD3 using

80bp PE reads on Illumina Nextseq500 platform. 12ss cell libraries expressing FoxD3 (Citrine-expressing, Citrine-Cherry-expressing)

were sequenced using 100bp PE reads on Illumina Hiseq2000 platform. 14ss cell libraries (Citrine-expressing, Citrine-Cherry-ex-

pressing and cells not expressing FoxD3) were sequenced using 80bp PE reads using Illumina NextSeq500 platform.

Single Cell RNA Preparation Library Preparation and Sequencing
Individual cells were collected by FACS, cDNA was generated and sequencing libraries were prepared as previously described

(Picelli et al., 2014). Briefly, mRNAs were primed with oligo-dT and reverse transcribed using an LNA-containing template switching

oligo. Libraries were generated from amplified cDNA by Tagmentation with Tn5. Libraries were sequenced using 50 bp single end

reads for 96 cells. A 4 x107 dilution of ERCC spike-in control was used.
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In Situ Hybridisation
In situ hybridisation was performed according to standard protocols, as described previously (Hochgreb-H€agele and Bronner, 2013).

Probe synthesis was conductedwith the components of the DIGRNA Labelling Kit (Roche). In brief, the digoxigenin RNA probeswere

of an average length of 100-200 nucleotides. Embryoswere fixed 24 hours in 4%paraformaldehyde 1x PBS,manually dechorionated

and dehydrated overnight in methanol at -20�C. Then the embryos were rehydrated back to 100% PBT (1x PBS, 0.1% Tween 20).

Embryos were treated 10 minutes with proteinase K (10 mg/ml in PBT). The reaction was stopped by rinsing in glycine (2 mg/ml in

PBT). Embryos were postfixed in 4% paraformaldehyde in 1x PBS for 20 minutes and then rinsed in PBT. The embryos were prehy-

bridized at least 1 hour at 70�C in hybridization buffer . The hybridization was done in the same buffer containing 50 ng to 100 ng of

probe overnight at 70�C. Embryos were washed and were incubated overnight at 4�C with the preabsorbed alkalinephosphatase-

coupled anti-digoxigenin antiserum at a 1/5000 dilution in a PBT buffer containing 2 mg/ml BSA, 2% sheep serum. Embryos were

washed 6 times for 15 minutes each in PBT at room temperature. Detection was performed in alkaline phosphatase reaction buffer,

the reaction was stopped in 1x PBS.

Generation of Avi-Tagged foxd3 Transgenic Line
Tol2-mediated BAC transgenesis, as described in (Trinh et al., 2017), was used to generate TgBAC(foxd3- Avi-2A-Citrine)ox161 trans-

genic line. pGEM Avi-2A-Citrine-SV40pA-FRT-Kan-FRT recombination donor construct was generated by amplifying Avi-2A-Citrine

cassette using Pfu polymerase (Pfu UltraII Hoststart PCR Master Mix, Agilent Technologies) and cloning it into the donor plasmid

(#89890, Addgene) using InFusion (InFusion HD Cloning kit, Clontech). The full donor cassette contains a FLAG epitope, a TEV pro-

tease recognition sequence, an in-frame 48bp Avi-Tag, aCitrine reporter followed by a polyA tail and a Kanamycin selection cassette

flanked by flippase recognition target (FRT) sequences. Citrine reporter is separated from the foxd3-Avi gene by a viral linker, 2A,

sequence that mediates ribosome skipping, thus allowing for co-expression of both components from a single transcript (Kim

et al., 2011). Genomic context of the Danio rerio BAC clone CH211-196F13 (203kb) was used for recombineering, as it harbours

the full single exon ORF of the foxd3 gene and the upstream regions (>200kb), thus encompassing not only the foxd3 promoter

but also associated cis-regulatory elements. The foxd3 gene within the BAC was fused to the Avi-tag producing C-terminally Avi-

tagged foxd3 (foxd3-Avi-2A-Citrine) expressed in endogenous-like fashion. NLS-BirA zebrafish transgenic line Tg(ubiq:NLS-BirA-

2A-Cherry)ox114 expresses 3xHA epitope, nuclear localisation signal (NLS) sequence fused to BirA, viral 2A sequence and a Citrine

reporter gene under the control of ubiquitous ubb promoter.

Foxd3 Biotin-ChIP, Library Preparation and Sequencing
Foxd3 Biotin-ChIP was performed on 700 for 75% epiboly, 350 for 1-2ss, 320 5-6ss experimental and BirA-only, 390 for 14ss whole

embryos (�128,000 cells of interest) were used for a corresponding stage foxd3 Biotin-ChIP. Embryosweremanually dechorionated,

cells were dissociated with 20 strokes using pestle A in isotonic nuclei extraction buffer (NEB: 0.5% NP40, 0.25% Triton X,

10 mM Tris-HCl (pH 7.5), 3 mMCaCl2, 0.25 M sucrose, 1mM DTT, 0.2 mM PMSF, 1X Proteinase inhibitor (PI) in a glass homogeniser

and cross-linked using 1% formaldehyde at room temperature for 10 min. Fixation was quenched with 125 mM of glycine for 5min,

cross-linker was washed-out by 3x pellet washes with 1x PBS (with 1X PI, 1 mM DTT and 0.2 mM PMSF) centrifuging at 2000g for

4min at 4�C. Pellets were re-suspended in NEB. Cell nuclei were expulsed with 20 strokes using pestle B in a glass homogeniser,

pelleted and washed with 1 xPBS (with 1X PI, 1 mM DTT and 0.2 mM PMSF). Nuclei were lysed in SDS lysis buffer (0.7% SDS,

10mM EDTA, 50 mM Tris-HCl (pH 7.5), 1x PI). Cross-linked chromatin was sonicated at 12A, 10x (10s ON, 30s OFF) followed by

8A, 4x (30s ON, 30s OFF). Sheared chromatin samples were pre-cleared in pre-blocked Protein G beads (Dynabeads Protein G,

Life Technologies) for 1 hour at 4�C. 1/20 of biotinChIP was collected as an input fraction and stored at -80�C. Pre-cleared chromatin

samples were incubated on pre-blocked streptavidin beads (Dynabeads M-280 streptavidin beads, Invitrogen) o/n at 4�C. Beads
were washed with SDS Wash Buffer (2% SDS, 10mM Tris-HCl (pH 7.5), 1 mM EDTA) at room temperature, followed by 4x RIPA

washes (50 mM Hepes-KOH (pH 8.0), 500 mM LiCl, 1mM EDTA, 1% NP40, 0.7% Na-Deoxycholate, 1x PI) and 1x Na-Cl TE wash

(1x TE, 50mM NaCl) at 4�C. Chromatin was eluted from the beads with SDS ChIP elution buffer (50 mM Tris-HCl (pH 7.5), 10 mM

EDTA, 1% SDS). Cross-linking was reversed o/n at 70�C in the thermomixer at 1300 rpm. Cellular RNA was digested with RNaseA

(0.2 mg/ml) at 37�C for 1 hour, and cellular proteins were removed with Proteinase K (0.4 mg/ml) at 55�C for 2 hours. Chromatin

samples were separated from the streptavidin beads and input and ChIP DNA was extracted using a standard phenol-chloroform

extraction method. Libraries were prepared using MicropPlex Library Preparation v1 or v2 kit (Diagenode) (75% epiboly - 13 cycles,

1-2ss - 12 cycles, 5-6ss - 12 cycles, BirA-only - 10 cycles, 14ss - 10 cycles of amplification) and sequenced using NextSeq� 500/550

High Output Kit v2 (75 cycles) on NextSeq500 sequencing platform.

ATAC, Library Preparation and Sequencing
FACS sorted cells were lysed (10mM Tris-HCl, pH7.4, 10mMNaCl, 3mMMgCl2, 0.1% Igepal) and tagmented using Nextera DNA kit

(Illumina FC-121-1030) for 30mins at 37�C. Tagmented DNA was amplified using NEB Next High-Fidelity 2X PCR Master Mix for 11

cycles. Tagmentation efficiency was assessed using Agilent Tapestation. ATAC-Rx was carried out per ATAC protocol described

above with the addition of 50% extra Drosophila S2 cells as reference chromatin (Orlando et al., 2014). ATAC-seq libraries were

sequenced using 40 bp PE run on Illumina NextSeq500 platform.
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H3K27Ac ChIP, Library Preparation and Sequencing
FACS sorted cells were cross-linked with 1% formaldehyde. Fixation was quenched with 125 mM of glycine for 5min. Cross-linker

was washed-out by 3x pellet washes with 1x PBS (with 1X PI, 1 mM DTT and 0.2 mM PMSF) centrifuging at 2000g for 4min at 4�C.
Pellets were re-suspended in isotonic nuclei extraction buffer (NEB: 0.5% NP40, 0.25% Triton X, 10 mM Tris-HCl-pH 7.5,

3mMCaCl2, 0.25M sucrose, 1mMDTT, 0.2mMPMSF, 1X Proteinase inhibitors (PIs). Cell nuclei were expulsedwith 20 strokes using

pestle B in a glass homogeniser, pelleted and washed with 1 xPBS (with 1X PI, 1 mM DTT and 0.2 mM PMSF). Nuclei were lysed in

SDS lysis buffer (0.7%SDS, 10mMEDTA, 50mMTris-HCl (pH 7.5), 1x PI). Cross-linked chromatin was sonicated at 12A, 10x (10sON

30sOFF) followed by 8A, 4x (30sON 30sOFF) and sonicated into 300-800bp fragments. Pre-blocked Protein A Dynabeadswere pre-

incubated with antibody (Abcam Ab4729) and sonicated DNA-protein complexes were applied to beads o/n at 4�C, IgG antibody

(Millipore 12-370) was used as control and an input sample was taken. Samples were washed 6x with RIPA buffer (50 mM

Hepes-KOH (pH 8.0), 500 mM LiCl, 1mM EDTA, 1% NP40, 0.7% Na-Deoxycholate, 1x PIs) and 1x NaCl TE wash (1x TE,

50mM NaCl) at 4�C. Chromatin was eluted from the beads with SDS ChIP elution buffer (50 mM Tris-HCl (pH 7.5), 10 mM EDTA,

1% SDS). Cross-linking was reversed o/n at 70�C in the thermomixer at 1300 rpm. Cellular RNA was digested with RNaseA

(0.2 mg/ml) at 37�C for 1 hour, and cellular proteins were removed with Proteinase K (0.4 mg/ml) at 55�C for 2 hours. Samples

were purified by standard phenol-chloroform extraction and ethanol precipitation. Libraries were prepared using NEBNext� Ultra

DNAT M library prep kit according to manufacturer’s instructions. Libraries were amplified using (Adli and Bernstein, 2011) protocol

for small-cell-number ChIP. H3K27Ac ChIP libraries were sequenced using 50bp PE reads using Illumina Hiseq2500 platform.

Enhancer Reporter Constructs
All enhancer inserts were generated by PCR using KAPA Long Range HotStart PCR kit (Kapa Biosystems) and cloned into the

E1b:GFP:Ac/Ds vector using the InFusion kit (InFusion HD Cloning kit, Clontech). Fertilised single-cell embryos were injected with

30pg of plasmid DNA and 25pg of AcmRNA. Injected embryoswere imaged on a Zeiss780 LSM inverted confocal microscope equip-

ped with EC Plan-Neofluar 10x/0.30 NA WD=5.2 (Zeiss) objective or using a Zeiss Axio Scope.A1 equipped with 5x/0.15 NA N-Ach-

roplan or 10x/0.3 NA EC Plan-Neofluar objectives (Zeiss) at desired developmental stages.

Foxd3 Ectopic Expression Assay
40pg of foxd3 mRNA was injected into single cell stage heterozygous Gt(foxd3-mCherry)ct110 embryos. Whole embryos were

collected at 50% epiboly for FACS analysis as described above. For the foxd3 overexpression followed by ATAC-seq experiments

40pg of foxd3 mRNA was injected into single cell wild-type fertilised embryos. 50% epiboly embryos were dissected to obtain cells

that do not express foxd3 intrinsically: 12,000 cells were used per each experimental/control sample in triplicates. Cells were disso-

ciated with 0.05% trypsin to a single cell suspension, centrifuged and re-suspended in Hanks buffer. Cells were lysed as above and

tagmented using Nextera DNA kit (Illumina FC-121-1030) for 15 minutes at 37�C, reactions were quenched with 50mM EDTA for

30 minutes at 50�C. Tagmented DNA was amplified using NEB Next High-Fidelity 2X PCR Master Mix for 15 cycles. Tagmentation

efficiency was assessed using Agilent Tapestation and libraries were sequenced using 40bp PE sequencing on Illumina NextSeq500

platform.

Bioinformatic Processing
Bulk RNA-Seq Processing

Reads were trimmed to remove low quality bases using sickle (Joshi and Fass, 2011) when necessary. Read quality was evaluated

using FastQC (Barbaraham). Mapping to GRCz10/danRer10 assembly of the zebrafish genome downloaded from UCSC

Genome Browser was performed using STAR2.4.2a.(2) (Dobin et al., 2013). Read counts were obtained using subread

FeatureCounts(v1.4.6-p4) (Liao et al., 2014) using standard parameters using a gene model gtf derived from Ensembl annotation

downloaded from UCSC genome browser. Gene model for ENSDARG00000095311 (the antisense transcript of FoxD3), was

removed from gene models. Differential Expression analysis was carried out using in DESeq2 (v.1.14.1) or (v.1.18.1).

Analysis of Single-Cell RNA Sequencing

Short reads (51bp) from 96 cells were aligned to the zebrafish genome (GRCz10/danRer10 assembly) and ERCC spike-in controls

using STAR (Dobin et al., 2013) with default parameters. The featureCounts (Liao et al., 2014) was then used to count the number

ofmapped reads to the reference genemodels. Expression valueswere quantified as read per kilobase of transcript length permillion

of mapped reads (RPKM) on the basis of Ensembl gene annotation using the ‘‘rpkm’’ function in edgeR (Robinson et al., 2010). We

used cells with higher than 100,000 mapping reads and 2,000 detected genes (RPKM>1) for the downstream analysis. With these

cut-off criteria, one cell was excluded due to the low sequencing depth. We performed the principal component analysis (PCA) using

the custom R script. We selected top 500 genes with the highest absolute correlation coefficient (PCA component loadings) in one of

the first three components and then performed PCA and T-distributed stochastic neighbour embedding (tSNE) analyses. The heat-

mapwas visualised on selected gene sets based on the log2 of RPKMscale using the ‘‘pheatmap’’ function in R. For purpose of single

cell transcriptional cataloguing, the scRNA-seq data is visualised using SCDE package (http://hms-dbmi.github.io/scde/index.html)

(Fan et al., 2016). Additional analysis was carried out using PAGODA R package (Fan et al., 2016). 50% epiboly demultiplexed

scRNASeq data was kindly provided by R.Satija (Satija et al., 2015), and processed as described above. Only foxd3-expressing cells

from 50% epiboly scRNA-seq dataset were used in analysis.
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De Novo Transcriptome Assembly

Trinity (v.2.3.2) was run with default parameters on RNA-seq reads from 5-6ss Citrine and 5-6ss Citrine-Cherry after read trimming.

FoxD3 ORF truncation was ascertained using blast for a full foxd3 sequence.

ATAC-Seq Processing
Reads were trimmed for quality using sickle when necessary andmapped using Bowtie (v.1.0.0) (Langmead et al., 2009). Bigwig files

were generated using an enhanced Perl script courtesy of Jim Hughes. Peak calling was performed as described previously (Buen-

rostro et al., 2013). Briefly, BAM files were sorted by name and paired end bed files were obtained using bedtools (v.2.15.0) bam-

tobed -bedpe. Reads that were not properly paired were discarded and paired reads were displaced by +4 bp and -5 bp. Reads

were extended to a read length of 100bp. Peak calling was performed using MACS2 callpeak -f BED -shiftsize=100 -nomodel -slocal

1000 parameters (Zhang et al., 2008). To obtain mappable data, a synthetic 40bp-long single end fastq dataset was generated and

mapped using bowtie (v.1.0.0) using –m 1 parameter. Bedgraph files were obtained using bedtools genomeCoverageBed -bg -split

function.

MACS2-called peaks that overlapped with regions which in the mappable did not correspond to read size (40bp) were discarded.

Identification of peaks corresponding to TSS/promoter, intergenic, intronic and TES locations was carried out using Homer (v.4.8)

(Heinz et al., 2010) annotatePeaks.pl script. Only peaks present in both replicates were retained, using bedtools to intersect function

to generate reference ATAC-seq ensembles for each stage. ATAC-Rx-seq was processed similarly with the exception that a com-

bined genome of containing danRer10 and Drosophila melanogaster dm6 genomes was created and all reads were mapped to the

latter. Zebrafish read counts were normalised as described previously (Orlando et al., 2014). K-means clustering of ATAC-seq signal

was carried out using SeqMINER software as described (Ye et al., 2011). In brief, we used non-promoter ATAC-seq peaks form 5-6ss

samples as reference points for clustering using following settings: no auto-turning, wiggle step - 15, k-means enrichment linear clus-

tering to cluster given loci presenting similar read densities within the specified window (1500bp on each side of the reference co-

ordinate). Nucleosome localisation was carried out using nucleoATAC suite using default parameters in peaks called at each stage.

Bedtools was used to generate bigwig files and clustering of nucleoATAC bigwig signal was carried out using deepTools (v.2.2.2)

using k-means clustering with 20 clusters.

For the foxd3 over-expression followed by ATAC-seq: Reads were processed as above. Duplicated reads were removed using

MarkDuplicates (picard-tools/1.83). All samples were randomly down-sampled to the lowest-read containing sample (10,443,726)

using samtools-1.1. Processed experimental BAM files were merged together as well as control BAM files. K-means clustering of

ATAC-seq signal was carried out using SeqMINR software as described above (Ye et al., 2011), using 3.1 enhancer cluster

ATAC-seq peaks and all pulled foxd3 Biotin-ChIP peaks as references for clustering. Averaged ATAC signal plots were generated

using deepTools (v.2.2.2) on the selected k-means clusters.

H3K27Ac-ChIP Processing
Readswere trimmed for quality using sickle when necessary andmapped using bowtie (v.1.0.0). Bigwig fileswere generated using an

enhanced Perl script courtesy of Jim Hughes. MACS2 was used to identify peaks using standard parameters. Only peaks present in

both replicates were retained, using bedtools intersect function. k-means clustering of H3K27Ac signal was carried out using

SeqMINER software as described (Ye et al., 2011).

Foxd3 Biotin-ChIP Processing
Foxd3 Biotin-ChIP Processing Reads were trimmed for quality using sickle when necessary and mapped using bowtie (v.1.0.0). Du-

plicates were removed using MarkDuplicates (picard-tools/1.83). Input reads were normalised to the same number of ChIP reads by

random down-sampling using samtools-1.1 (BirA - 18,545,346, 75% epiboly - 28,663,648, 1-2ss - 15,989,800, 5-6ss - 24,270,738,

14ss - 32,322,010 unique reads). Bigwig files were generated using an enhanced Perl script courtesy of JimHughes. Peak callingwas

performed using Homer (v.4.7) (Heinz et al., 2010) findPeaks script using -size 200-minDist 1500 parameters. Peaks were annotated

to a nearest expressed gene at a given developmental stage in NC cell population. GO analysis was performed on acquired gene lists

in pantherdb.org using statistical overrepresentation binomial test for complete biological processes. Motif discovery and charac-

terisation was performed using Homer screening for de novomotifs within given foxd3 Biotin-ChIP-seq peaks. Significantly enriched

motifs were annotated manually based on Homer results and levels of gene expression in NC at a corresponding developmental

stage. All possible combinations of two motifs were computed using a custom R (v. 3.2.1) script. Homer/4.7 annotatePeaks.pl script

was utilised to screen all de novo motifs in foxd3 Biotin-ChIP-seq peaks co-occurring in windows of 500bp centred around peaks.

A customPython3 script using the Pandas package (courtesy of Ivan Candido-Ferreira) was used to calculate the frequency of 2-way

motif combinations within foxd3-bound ChIP peaks. Combinations enriched at c2 P< 5 x 10�3 with FDR correction for multiple hy-

pothesis (vs testing co-motif enrichment frequencies against randomDNA sequence background) were retained. Two-way networks

were plotted using the ‘Circlize’ package in R.

Transcription Factor Binding Site Identification on ATAC-Seq Peaks
Initial Transcription Factor Binding Site (TFBS) enrichment analysis of known motifs was performed using Homer suite

(findMotifsGenome.pl) (Heinz et al., 2010). The analysis was performed for all k-means clusters, using the default 200bp window

centred on the ATAC-peak, and all non-promoter putative regions were used as background. Due to paucity of available zebrafish
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transcription factor binding sites (TFBS), a clustering approach of known transcription factors sites was utilized. TFBS for each gene

family of interest were downloaded from CIS-BP (http://cisbp.ccbr.utoronto.ca) (Weirauch et al., 2014). Binding sites were clustered

using gimme suite’s cluster option (v. 0.9.0.3) (van Heeringen and Veenstra, 2011). Background values for each of the clustered mo-

tifs were obtained using gimme background function. Cutoff values relative to background sequences were obtained using gimme

threshold function. Binding sites were identified using gimme scan function using threshold values obtained from previous step in

peaks obtained form ATAC-seq processing.

K-Means Clustering
K-means clustering was performed using the R platform (Ye et al., 2011), by applying the linear enrichment clustering approach to the

normalised ATAC-seq datasets and computing the accessibility signal over the non-promoter peaks (+/- 1.5 kb from the centre) using

the ensemble of peaks containing both elements common all C replicates, as well as elements common to all CC replicates as a

reference. Differences in chromatin accessibility for different k-means clusters were quantified by plotting the normalised C and

CCATAC-seq counts for all of putative regulatory elements in cluster and calculating Pearson correlation coefficients. K-means clus-

tering investigating dynamics of chromatin opening at the NC cis-regulatory elements was performed on 75% epiboly and bud stage

ATAC-seq datasets, using called 5-6ss non-promoter ATAC peaks as a reference. Functional annotation of each k-means cluster

was performed using the GREAT Tool (McLean et al., 2010), using whole genome as background. GREAT employs annotations of

putative cis-regulatory elements to nearby genes and their statistical integration to infer their function. Statistical significance of asso-

ciated terms was calculated using binomial and hypergeometric tests and either Bonferroni of False Discovery Rate correction.

Differential Chromatin Accessibility Analysis
The differential chromatin accessibility analysis of ATAC-seq dataset in foxd3-mutant and control conditions was performed using

DiffBind package for differential binding analysis of ChIP-seq (Stark and Brown, 2011). Related plots were generated in R. Signifi-

cantly differentially accessible peaks were identified using the edgeR package, using a reference ATAC-seq peak ensemble.

Benjamini–Hochberg multiple testing correction of the resulting p-values was used to derive false discovery rates (FDRs) and only

differentially accessible elements with an FDR<0.1 were taken in account.

QUANTIFICATION AND STATISTICAL ANALYSIS

Statistical details of experiments can be found in the figure legends, including p-values and FDR cutoffs. Specific p-values are given

in the text where appropriate. Sequencing data, significant differences were defined as an adjusted p-value<0.05, unless otherwise

noted in the appropriate Method Details sub-section. Statistical analyses were performed in Microsoft Excel or R.

DATA AND SOFTWARE AVAILABILITY

The beta version of the ShinyApp associated with the data produced in this study and Pagoda App (Fan et al., 2016) presenting single

cell catalogues can be downloaded from https://github.com/tsslab/foxd3. The live app can be accessed here: https://livedataoxford.

shinyapps.io/FoxD3-project-TSS-Lab/. The accession number for the sequencing data generated and reported in this paper is [GEO:

GSE106676].
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