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Abstract: Current multi-AUV systems are far from being capable of fully autonomously taking
over real-life complex situation-awareness operations. As such operations require advanced
reasoning and decision-making abilities, current designs have to heavily rely on human operators.
The involvement of humans, however, is by no means a guarantee of performance; humans can
easily be over-whelmed by the information overload, fatigue can act detrimentally to their
performance, properly coordinating vehicles actions is hard, and continuous operation is all but
impossible. Within the European funded project NOPTILUS we take the view that an effective
fully-autonomous multi-AUV concept/system, is capable of overcoming these shortcomings, by
replacing human-operated operations by a fully autonomous one. In this paper, we present
a new approach that is able to efficiently and fully-autonomously navigate a team of AUVs
when deployed in exploration of unknown static and dynamic environments towards providing
accurate static/dynamic maps of the environment. Additionally to achieving to efficiently and
fully-autonomously navigate the AUV team, the proposed approach possesses certain advantages
such as its extremely computational simplicity and scalability, and the fact that it can very
straightforwardly embed and type of physical or other constraints and limitations (e.g., obstacle
avoidance, nonlinear sensor noise models, localization fading environments, etc).
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1. INTRODUCTION

Despite the advances made through current multi-AUV
research endeavors, the existing or planned multi-AUV
systems are far from being capable of fully autonomously
taking over real-life complex situation-awareness opera-
tions. Such operations require that the overall system is
equipped with reasoning, situation understanding, plan-
ning, and decision-making abilities attributes that exist-
ing/planned designs are unable to provide. Instead, cur-
rent designs have to heavily rely on human operators who
assign a set of high-level tasks to the AUVs (e.g. a specific
set of locations or paths/targets the AUVs have to visit
or follow, respectively). As soon as the high-level tasks
have been assigned, the existing/planned designs focus on
accomplishing them successfully while taking into account

★ The research leading to these results has received funding from the
European Communities Seventh Framework Programme (FP7/2007-
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constraints and requirements, such as obstacle-avoidance,
energy-consumption, minimum formation error, etc. As
such, existing/planned designs do not provide integrated
AUV systems that are able to (a) automatically assess
and understand the current situation (with regards to
the particular mission the AUVs have been deployed for)
and (b) autonomously assign tasks/navigate the AUVs
so that the overall system accomplishes successfully and
fully autonomously the desired mission. Even worse, and
mostly due to the involvement of human operators, ex-
isting approaches do not provide any guarantees that the
overall multi-AUV mission will be accomplished optimally
(or, at least, nearly-optimally). Instead, there exist many
cases where operator-made decisions are not just far from
being optimal but they may even put the success of the
overall mission at stake. Within the European funded
project NOPTILUS we take the view that an effective
fully-autonomous multi-AUV concept/system, is capable
of overcoming these shortcomings, by replacing human-



operated operations by a fully autonomous one. In this
paper, we present a new approach that is able to efficiently
and fully-autonomously navigate a team of AUVs when
deployed in exploration of unknown static and dynamic
environments towards providing accurate static/dynamic
maps of the environment. Additionally to achieving to ef-
ficiently and fully-autonomously navigate the AUV team,
the proposed approach possesses certain advantages such
as its extremely computational simplicity and scalability,
and the fact that it can very straightforwardly embed
and type of physical or other constraints and limitations
(e.g., obstacle avoidance, nonlinear sensor noise models,
localization fading environments, etc). In the heart of
the proposed approach lies the so-called Cognitive-based
Adaptive Optimization (CAO) algorithm, that has been
successfully applied in real-life to the problem of optimal
surveillance coverage using swarms of flying robots (2; 9).

2. AUTONOMOUS MULTI-AUV NAVIGATION FOR
EXPLORATION OF UKNOWN ENVIRONMENTS

We consider the problem where NR AUVs are deployed
in an underwater environment in order to estimate as
accurately as possible the 3D positions of NL static feature
points (landmarks) as well as the (moving) 3D positions
of NT dynamic targets. Contrary to aerial or ground
robots, the design for exploration using AUVs will have
to take into account the very strict limitations of the
underwater environment the AUVs operate on: very low
bandwidth communications, lack of GPS signals underwa-
ter, and very limited visibility of the AUVs vision and
sonar sensors are some of the limitations that render
multi-AUV autonomous navigation for exploration a very
challenging task. Below, we list all different major limita-
tions/challenges that any strategy for such a problem has
to take into account:

(LocFade) As underwater there is no GPS signal, the
AUVs have to heavily rely on a combination of IMU
signals, DVL, etc for localization. Typically, an EKF (or
similar) algorithm is employed which is initialized on the
surface and – while underwater – it fuses the different
signals coming from the on-board AUV sensors (IMU,
DVL, etc) as well as from signals coming from the other
AUVs. No matter how advanced technologically sensors
and communications are employed, the typical situation
is that localization is fading, i.e., the error between the
actual AUV position and its estimation is diverging. In
cases where the error becomes unacceptably large, one or
more of the AUVs must somehow re-gain localization e.g.,
by re-surfacing or by getting in contact with a surface
vehicle.

(NL-Noise) The typical assumption made in most
robotic applications that the sensor noise is additive Gaus-
sian noise is very restrictive and not realistic in AUV
applications: In AUVs sonar- and vision-based sensors, the
sensor noise affect the sensor measurements in a NonLin-
ear fashion: typically, the noise affecting such sensors is
proportional to the sensor-to-sensing point distance, i.e.,
the larger is the AUV-to-sensing point distance, the large is
the sensor noise. As a result, it is more realistic to assume
a multiplicative sensor noise model that takes the form

y = ℎ(x, q) + d(x, q)� (1)

where y is the sensor measurement, x, q are the positions of
the AUV and the sensing point (landmark/target/another
AUV), respectively, ℎ(x, q) is the sensor model in the noise-
free case, d(x, q) is the distance between x and q and � is
a standard Gaussian noise.

(LimVis) In addition to the (NL-Noise) limitation, the
AUV vision and sonar sensors are of very limited visibility.
As a result, additionally to the nonlinear sensor noise
assumption (1), the sensor model for vision and sonar
sensors should be augmented to count for the limited
visibility constraint. Moreover, the sensor model must be
augmented to count for the case where there is no line-of-
sight between the AUV and the sensing point (e.g., there
is an obstacle in between). As a result, the actual sensor
model becomes:

yx−q =

⎧⎨⎩
undefined if ∥x− q∥ ≥ tℎres

undefined if there is no line-of-
sight between x and q

ℎ(x, q) + d(x, q)� otherwise

(2)

where yx−q denotes the sensor measurement from an AUV
at position x to a sensing point at position q, tℎres denotes
the visibility threshold beyond which the vision or sonar
sensor does not “see” and ∥⋅∥ denotes the Euclidean norm.

(ObsAvoid) As in any real-life robot application, the
AUV navigation system must make sure that the AUVs
avoid obstacles as well as they remain within a pre-
specified operational area. Usually, it is realistic to assume
that the AUVs can detect with accuracy the position of the
obstacles nearby; however, obstacle avoidance may have
catastrophic consequences to the success of the overall nav-
igation/exploration. See next section for such an example.

(Scalable) Finally, a main issue for any multi-AUV nav-
igation algorithm for exploration is scalability. Of course,
scalability is an issue in any multi-robot application. In
the case of multi-AUV applications, the scalability issue
becomes way more significant mainly due to the lim-
ited bandwidth of AUVs communication systems that
allow only a few hundreds of bits/second to be transmit-
ted/received.

Having all these limitations in mind, we now proceed to
present the proposed methodology along with the remarks
on the limitations of existing approaches.

3. PROBLEM DEFINITION

Typically, when a single AUV or a team of AUVs is de-
ployed to map an unknown static or dynamic environment,
the positions of the landmarks, targets as well as the
positions of the AUVs themselves are estimated through
a so-called Simultaneous Localization And Mapping and
Target Tracking (SLAM-TT) algorithm, which employs
an EKF or similar approach to simultaneously estimate
all the above-mentioned quantities, see e.g. (1; 7; 6) and
the references there in. Over the past years, very power-
ful approaches have been developed that can quite effi-
ciently provide the estimates of the landmarks’, targets’
and AUVs’ positions, provided that the trajectories of the
AUVs are efficiently designed. However, efficient design of
the AUV trajectories is not trivial: in most cases an off-
line design of the AUV trajectories is performed. Off-line
design of the AUV trajectories is, of course, by no means



a guarantee of performance as the AUVs may enter into
highly unobservable states, they may spend “too much
time” in areas with no important information for the
exploration task, while they may pass very fast through
very crucial areas for the exploration task, producing thus
a very poor map of these areas, etc.

For this reason, the last few years special attention have
been paid in developing techniques for active exploration
(also known as active SLAM-TT), see e.g., (11; 10): using
the information received so far, the AUV next positions are
decided so they optimize the mapping information of the
SLAM-TT algorithm. Although, there are many different
approaches proposed for doing so, the vast majority of
those approaches are based on the following concept:
check all feasible next AUV positions [e.g., all next AUV
positions that do not violate the (ObsAvoid) constraints
as well as constraints that have to do with the maximum
allowable AUV speed] and find the ones that optimize
some information metric that corresponds to the accuracy
of the SLAM-TT algorithm; then, move to the positions
that optimize this information metric, and so on. Different
types of such information metrics have been proposed,
with the most popular being the trace of the EKF error
covariance matrix, see e.g., (11; 10). In such a case the
AUVs are moving to the next positions that minimize the
average (expected) EKF estimation error.

There two big issues with all the above mentioned ac-
tive exploration algorithms: the first is scalability, since
it computationally not feasible to check all possible com-
binations of next AUVs positions. As a matter of fact, such
algorithms become practically infeasible even in the single
AUV case. There are, of course, many different approaches
that relax the computational requirement of checking all
possible next positions at the expense of sacrificing effi-
ciency. However, even in the unrealistic case where infinite
computing power would be available, as these algorithms
are based on EKF – which, in turn, is based on lin-
earizing the nonlinear multi-AUV/environment dynamics
– the presence of nonlinear constraints (e.g., for obstacle
avoidance or for not leaving a pre-specified area) may be
destructive to the efficiency of the overall active explo-
ration mission. The results of such a case are depicted in
Figure 1: three AUVs have been deployed for estimating
the location of 30 static landmarks and their trajectories
are designed so they minimize the trace of the EKF error
covariance matrix, while they avoid obstacles (landmarks)
and they remain within the cube [−1,+1]3. Although, in
the time-interval [0, 79] the overall algorithm behaves quite
efficiently, it starts diverging as soon as the AUVs “hit”
the boundaries of the area they have to remain within.

In this paper, we propose a totally different approach
to the active exploration problem. In order to describe
the proposed approach we need some preliminaries. Let
P = {x(i)}NR

i=1 denote the configuration of the AUV team,

where x
(i) denotes the position of the i-th AUV. We will

say that a landmark or a target q = (x, y, z) is visible if
there exists at least one AUV so that

∙ the AUV and the point q are connected by a line-of-
sight;

∙ the AUV and the point q are at a distance smaller
than a given threshold value (defined as the maximum
distance the AUVs’ sensor can ”see“).

Given a particular team configuration P , we let V denote
the subset of all visible landmarks and targets, i.e., V
consists of all landmarks and targets q that are visible
from the AUVs.

Also, for any landmark or target q = (x, y, z), let q̂

denote its estimate as produced by e.g., an EKF. We
will say that the landmark or the target q is currently
accurately-estimated, if the normed-error ∥q − q̂∥∣ is be-
low a certain accuracy threshold. We will denote with A
the set of all landmarks and targets that are currently
accurately-estimated. Please note that in case a land-
mark becomes accurately-estimated then it wil remain
accurately-estimated thereafter (i.e., it remains within A
thereafter); however, this is not true for a moving target
which may belong to A at some point and then leave this
subset later.

By using the above definitions, we introduce the follow-
ing 1 active exploration cost criterion:

J(P) =

∫
q∈V,q ∕∈A

min
i∈{1,...,NR}

∥x(i) − q∥2dq

+K

∫
q ∕∈V∪A

dq (3)

where K is a user-defined positive constant. Having the
AUV team minimizing the above criterion, is equivalent
to have the AUVs come as close as possible to those
landmarks/targets that are currently visible and have not
been accurately-estimated [first term in the RHS of (3)]
and, concurrently moving the AUVs so that they “see”
those landmarks/targets that are currently not visible and
not accurately-estimated [second term in the RHS of (3)].
In other words, the first term is responsible for moving the
AUVs closer to the landmarks/targets so that they reduce
the sensor noise effect and they can “see them better”,
while the second term is responsible for moving the AUVs
closer to landmarks/targets that “have not seen before”
(or “have been poorly seen”). The constant K serves as a
weight for giving less or more priority to one of the terms
of the RHS of (3).

Please note that if the AUVs’ trajectories achieve to
render the value of J zero (or sufficiently small), then the
overall active exploration mission has been successfully
accomplished provided that the position of all AUVs is
accurately known. However, as the position of the AUVs
[see limitation (LocFade)] is by no means accurately known
in AUV missions, the active exploration criterion (3) must

1 Please note that the subset A cannot be calculated in real-life
as its calculation requires knowledge of the true landmark/target
positions. However, in practice the subset A can be estimated with
high accuracy from e.g., the EKF error covariance matrix (e.g.,
if all three elements of the diagonal of the EKF error covariance
matrix that correspond to a particular landmark/target are below
a certain accuracy threshold, then this landmark/target belongs to
A). Similarly the term

∫
q ∕∈V∪A

dq cannot be computed in practice as

this term involves those landmarks/targets that are invisible. This
problem can be overcome by noticing that

∫
q ∕∈V∪A

dq =
∫
q
dq −∫

q∈V∪A
dq and the integral

∫
q
dq is constant.
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Fig. 1. Autonomous exploration by moving towards minimizing the trace of EKF error covariance matrix: NR =
3, NL = 30, NT = 0, (LimVis), (LocFade) and (Scalable), i.e., by assuming unlimited visibility, perfect localization
and infinite computing power. The estimation error starts diverging as soon as the AUVs hit the boundary of the
cube [−1,+1]3 the AUVs are constrained to remain within. Remark: In figures 1, 2 and 5 of this paper, the
value 1 in the z-axis corresponds to the sea-surface and the value −1 corresponds to the maximum
allowable AUV depth.

be modified so as to account for this problem. Although
there are many different ways to tackle such a problem, one
possible way – and this is the one adopted in the simulation
experiments to be reported later in this paper – is by
assuming the existence of an additional “fictitious” target.
The position of this “fictitious” target along the z-axis is
always on the sea-surface and its x- and y-positions are
the same with the AUV that is currently closer to the sea-
surface. Furthermore, it is assumed that this “fictitious”
target remains accurately-estimated as long as the AUVs
are sufficiently localized: whenever the AUVs’ localization
accuracy exceeds a certain threshold then the ‘fictitious”
target becomes non-accurately-estimated (but visible) and
as a result one of the AUVs is re-surfacing in its attempt
to come close to the “fictitious” target [i.e., it attempts to
minimize the first term in the RHS of (3)]. A large weight
in term of (3) that corresponds to the distance between the
“fictitious” target and its closest AUV may be also added
in order to make sure that the criterion J gives priority to
re-surfacing one of the AUVs in cases of poor localization.

4. THE COGNITIVE-BASED ADAPTIVE
OPTIMIZATION APPROACH

Having defined the active exploration criterion, we will
now proceed on presenting the proposed algorithm for
autonomously navigating the AUVs towards minimizing

such a criterion. The algorithm to be used is based on the
so called Cognitive-based Adaptive Optimization (CAO)
approach originated in the referebces (3; 4; 5), The version
of the CAO algorithm used within the proposed approach
takes the same form as the one of (2; 9) and is a an
extension of the original CAO version of presented and
analyzed in (4; 5). The main difference is that the work
of (2; 9) extended the CAO approach of (4; 5) so that
it efficiently takes care of the various constraints of the
type (ObsAvoid). Below, we provide the main details of
the CAO algorithm as employed in the framework of the
active exploration problem.

We start by noticing that the active exploration criterion
(3) is a function of the AUVs positions, i.e.,

Jk = J
(
x
(1)
k

, . . . , x
(NR)
k

)
(4)

where k = 0, 1, 2, . . . denotes the time-index, Jk denotes
the value of the active exploration criterion at the k-th

time-step, x
(1)
k

, . . . , x
(NR)
k

denote the position vectors of
the AUVs 1, . . . , NR, respectively, and J is a nonlinear
function which depends – apart from the AUVs positions
– on the particular environment where the AUVs live (e.g.,
position of landmarks/targets).

Due to the dependence of the function J on the particular
environment characteristics, the explicit form of the func-
tion J is not known in practical situations; as a result,



standard optimization algorithms (e.g., steepest descent)
are not applicable to the problem in hand. However, in
most practical cases, like the one treated in this paper,
the current value of the active exploration criterion can be
estimated from the AUVs sensor measurements. In other
words, at each time-step k, an estimate of Jk is available
through AUVs sensor measurements,

J
n

k
= J

(
x
(1)
k

, . . . , x
(NR)
k

)
+ �k (5)

where J
n

k
denotes the estimate of Jk and �k denotes

the noise introduced in the estimation of Jk due to the
presence of noise in the AUVs sensors. Please note that,
although it is natural to assume that the noise sequence
�k is a stochastic zero-mean signal, it is not realistic to
assume that it satisfies the typical Additive White Noise
Gaussian (AWNG) property even if the AUVs sensor noise
is AWNG: as J is a nonlinear function of the AUVs
positions (and thus of the AUVs sensor measurements),
the AWNG property is typically lost.

Apart from the problem of dealing with a criterion for
which an explicit form is not known but only its noisy
measurements are available at each time, efficient AUV
navigation algorithms have additionally to deal with the
problem of restricting the AUVs positions so that obstacle
avoidance constraints are met. In other words, at each

time-instant k, the vectors x
(i)
k
, i = 1, . . . , NR should

satisfy a set of constraints which, in general, can be
represented as follows:

C
(
x
(1)
k

, . . . , x
(NR)
k

)
≤ 0 (6)

where C is a set of nonlinear functions of the AUVs
positions. As in the case of J , the function C depends on
the particular environment characteristics (e.g., location
of obstacles, terrain morphology) and an explicit form
of this function may be not known in many practical
situations; however, it is natural to assume that the
active exploration algorithm is provided with information
whether a particular selection of AUVs positions satisfies
or violates the set of constraints (6).

Given the mathematical description presented above, the
active exploration problem can be mathematically de-

scribed as the problem of moving x
(1)
k

, . . . , x
(NR)
k

to a set
of positions that solves the following constrained optimiza-
tion problem:

minimize (4)
subject to (6) .

(7)

As already noticed, the difficulty in solving, in real-time
and in real-life situations, the constrained optimization
problem (7) lies in the fact that explicit forms for the
functions J and C are not available. To circumvent this
difficulty, the CAO approach, appropriately modified to
be applicable to the problem in hand, is adopted. Indeed
this algorithm is capable of efficiently dealing with opti-
mization problems for which the explicit forms of the ob-
jective function and constraints are not known, but noisy
measurements/estimates of these functions are available
at each time-step. In the following, we describe the CAO
approach as applied to the multi-robot coverage problem
described above.

As a first step, the CAO approach makes use of function
approximators for the estimation of the unknown objective

function J at each time-instant k according to

Ĵk

(
x
(1)
k

, . . . , x
(NR)
k

)
= #

�

k
�

(
x
(1)
k

, . . . , x
(NR)
k

)
. (8)

Here Ĵk

(
x
(1)
k

, . . . , x
(NR)
k

)
denotes the approximation/ es-

timation of J generated at the k-th time-step, � denotes
the nonlinear vector of L regressor terms, #k denotes the
vector of parameter estimates calculated at the k-th time-
instant and L is a positive user-defined integer denoting
the size of the function approximator (8). The vector �

of regressor terms must be chosen so that it is a univeral
approximator, such as polynomial approximators, radial
basis functions, kernel-based approximators, etc.

The parameter estimation vector #k is calculated accord-
ing to

#k = argmin
#

1

2

k−1∑
ℓ=ℓk

(
J
n

ℓ
− #

�
�

(
x
(1)
ℓ

, . . . , x
(NR)
ℓ

))2

(9)

where ℓk = max{0, k−L−Tℎ} with Tℎ being a user-defined
nonnegative integer. Standard least-squares optimization
algorithms can be used for the solution of (9).

As soon as the estimator Ĵk is constructed according to (8),
(9), the set of new AUVs positions is selected as follows:
firstly, a set of N candidate AUVs positions is constructed
according to 2

x
i,j

k
= x

(i)
k

+�k�
i,j

k
, i ∈ {1, . . . , NR}, j ∈ {1, . . . , N} , (10)

where �
i,j

k
is a zero-mean, unity-variance random vector

with dimension equal to the dimension of x
(i)
k

and �k is a
positive real sequence which satisfies the conditions:

lim
k→∞

�k = 0,

∞∑
k=1

�k = ∞,

∞∑
k=1

�
2
k
< ∞ . (11)

Among all N candidate new positions x1,j
k

, . . . , x
NR,j

k
, the

ones that correspond to non-feasible positions – i.e., the
ones that violate the constraints (6) – are neglected and
then the new AUVs positions are calculated as follows:[
x
(1)
k+1, . . . , x

(NR)
k+1

]
= argmin

j ∈ {1, . . . , N}

x
i,j

k
not neglected

Ĵk

(
x
1,j
k

, . . . , x
NR,j

k

)

The idea behind the above logic is simple: at each time-
instant a set of many candidate new AUVs positions is
generated. The candidate, among all feasible ones, that
provides the best estimated value Ĵk of the coverage
criterion is selected as the new set of AUVs positions.
The random choice for the candidates is essential and
crucial for the efficiency of the algorithm, as such a choice
guarantees that Ĵk is a reliable and accurate estimate for
the unknown function J ; see (4; 5) for more details. On the
other hand, the choice of a slowly decaying sequence �k, a
typical choice of adaptive gains in stochastic optimization
algorithms is essential for filtering out the effects of the
noise term �k [cf. (5)]. The next theorem summarizes the

2 According to (4; 5) it suffices to choose N to be any positive integer
larger or equal to 2×[the number of variables being optimized by
CAO]. In our case the variables optimized are the robot positions

x
(1)

k
, . . . , x

(NR)

k
and thus it suffices for N to satisfy N ≥ 2NR ×

dim

(
x
(i)

k

)
.



properties of the CAO algorithm described above; the
proof can be found in (9).

Theorem 1. Let x(1∗)
, . . . , x

(N∗

R
) denote any – local – min-

imum of the constrained optimization problem (7). Let

N ≥ 2NR×dim
(
x
(i)
k

)
and, moreover, the vector � satisfy

the Universal Approximation Property. Assume also that
the functions J , C are either continuous or discontinuous
with a finite number of discontinuities. Then, the CAO-
based multi-robot coverage algorithm as described above

guarantees that the AUVs positions x
(1)
k

, . . . , x
(NR)
k

will

converge to one of the local minima x(1∗)
, . . . , x

(N∗

R
) almost

surely, provided that the size L of the regressor vector �

is larger than a lower bound L̄.

5. SIMULATION EXPERIMENTS

In order to test the efficiency of the proposed approach,
extensive simulation experiments have been performed.
The details of the simulation environment are as follows:

∙ The number of AUVs, landmarks and targets were
chosen according to NR = 3, NT = 2, NL = 300
(please note that the actual algorithm assumes an
extra “fictitious” target for re-surfacing purposes; see
section 3). The AUVs are restricted to lie in the cube
[−1,+1]3; the landmarks are spread randomly in the
bottom half of the cube [−1,+1]3 and the target
trajectories are generated using a zero-acceleration
model (11).

∙ The AUV-to-landmark and AUV-to-target sensors
were assumed to be range sensors concatenated by
multiplicative noise as follows:

yx−q =

⎧⎨⎩
undefined if ∥x− q∥ ≥ tℎres

undefined if there is no line-of-
sight between x and q

d(x, q) + d(x, q)� otherwise
(12)

where � is a Gaussian noise of variance 0.01. The
visibility thresholds were set equal to 0.4 for the AUV-
to-landmark sensors and infinite for the AUV-to-
target sensors. Also, a line-of-site between the AUV
and a landmark/target/another AUV was assumed in
case there is no landmark/target or another AUV in
a distance less than 0.1 from the line connecting the
AUV with the landmark/target/another AUV.

∙ All AUVs were assumed to have constant orienta-
tion which, moreover, does not have any effect on
the sensing capabilities or the sensor model (12).
Moreover and for simplicity a simple linear model for
the AUV dynamics was assumed, and no effect from
external disturbances (e.g., currents or turbulences)
was considered.

∙ Finally, a simple model for the GPS-related localiza-
tion fading was considered. More precisely, it was
assumed that the position accuracy of the AUVs
decreases proportionally to the total distance traveled
by the AUVs; moreover, as soon as one of the AUVs
re-surfaces then all of them get perfectly localized.
Such an assumption, although over-simplistic, was
sufficient in order to test the capabilities of the pro-
posed algorithm to re-surface the AUVs.
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Fig. 3. Autonomous exploration using CAO: NR =
3, NL = 30, NT = 2 and by incorporating all of the
limitations listed in section 3: Norm of Landmark
Estimation Error

Figure 2 exhibits some snapshots of a particular simulation
experiment. As it is seen, the CAO-based multi-AUV
exploration achieves to estimate accurately most of the
landmarks (the black landmarks correspond to the ones
that are accurately estimated and the cyan ones to the ones
that are non-accurately estimated). Figure 3 exhibits the
time-history of the norm of the landmark estimation error
for the same experiment. What is really very interesting
regarding the behavior of the proposed algorithm can
be seen in Figures 4 and 5, respectively: whenever one
of the target (resp. the AUVs) becomes non-accurately-
estimated (resp. become poorly localized), the CAO-based
algorithm navigates one or more of the AUVs closer to the
targets (resp. it resurfaces one of the AUVs) so the target
becomes accurately-estimated again (resp. the AUV team
becomes accurately localized again).

We close this section, be referring to Figure 6 where the
proposed algorithm is compared against the case of a
purely random algorithm (i.e., the AUV are randomly
choose by making sure that the trajectories do not vio-
late any of the obstacle avoidance, maximum speed, etc,
constraints). As a random trajectory motion cannot han-
dle efficiently the cases of target tracking as well as the
problem of AUV re-surfacing, in the comparison the AUVs
were assumed perfectly localized and there was no target
to track (i.e., the AUVs were deployed to perform a pure
landmark estimation task). 20 different sets of simulation
experiments (random choices for the locations of the land-
marks) were executed and Figure 6, clearly exhibits the
superiority of the proposed approach.

6. CONCLUSIONS

Current multi-AUV systems are far from being capable of
fully autonomously taking over real-life complex situation-
awareness operations. As such operations require advanced
reasoning and decision-making abilities, current designs
have to heavily rely on human operators. In this paper,
we presented a new approach that is capable to efficiently
and fully-autonomously navigate a team of AUVs when
deployed in exploration of unknown static and dynamic
environments towards providing accurate static/dynamic
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Fig. 2. Autonomous exploration using CAO: NR = 3, NL = 30, NT = 2 and by incorporating all of the limitations listed
in section 3: AUV trajectories (blue curves), accurately-estimated landmarks (black), non-accurately-estimated
landmarks (cyan), non-accurately-estimated landmarks that are currently visible (green) and target trajectories
(magenta) at different time-instances of the CAO-based fully-automated multi-AUV exploration.
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Fig. 4. Autonomous exploration using CAO: NR =
3, NL = 30, NT = 2 and by incorporating all of the
limitations listed in section 3: Distances between the
targets and its closest AUV.

maps of the environment. Realistic simulation experiments
exhibited the efficiency of the proposed approach.
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