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ABSTRACT 1 

The maximum one-direction section passenger flow within peak hour is an important 2 

indicator for planning and design of urban rail transit. To determine it, it is necessary 3 

to forecast passengers’ departure time and route choice during peak period. As the 4 

basis of this process, the peak-period station-to-station origin-destination (OD) matrix 5 

reflects the passengers’ travel needs. This paper tests traditional gravity models in 6 

forecasting the peak-period station-to-station OD matrix in urban rail transit with a 7 

real-world case study of Chongqing, China. To solve its over-estimation when 8 

deterrence between two stations is too little, the gravity-model-based Peak Period 9 

Coefficient (PPC) model is introduced. Comparing results show that with the same 10 

dataset, the PPC model is superior to the gravity model. Its standard deviation is only 11 

12.90 passengers, reduced by 56.02%. 12 

 13 

 14 

 15 

 16 

Keywords: Urban rail transit, Station-to-station ridership, Gravity model, Peak period 17 

coefficient, Deterrence function  18 
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INTRODUCTION 1 

With its rapid growth, urban rail transit is now playing a more important role in 2 

supporting and promoting city development. By the end of 2016, there are 133 3 

operating lines of 30 cities in mainland of China, reaching the total length of 4152.8 4 

km. The annual patronage reaches 16.1 billion passengers, increasing 16.6% than the 5 

year of 2015. There are 5636.5 km of lines under construction in 48 cities.   6 

The planning and design of urban rail transit need foresight because of its high 7 

construction cost and big difficulty to modify after construction. As a key indicator in 8 

planning and design phase, the maximum one-direction section passenger flow 9 

(MSPF) within peak hour directly influences the determination of vehicle selection 10 

and train formation. It is accumulated by the passengers who depart from different 11 

stations before this section and pass through it during peak hour, whose departure time 12 

should be before or during peak hour. Conventionally, this indicator is forecasted 13 

through multiplying all-day passenger flow of this section by a peak hour coefficient, 14 

which depends on the line attribute. However, this method hasn’t taken the forming 15 

mechanism of MSPF within peak hour into account, so it cannot reflect the complex 16 

process.  17 

In order to overcome this shortcoming, it is necessary to extend the time range 18 

from peak hour to peak period, and forecast passengers’ departure time and route 19 

choice during this time range. For this dynamic passenger assignment process, 20 

time-varying peak-period station-to-station origin-destination (OD) matrices are 21 

critical inputs, because they represent the travel needs of passengers at different 22 

moments. However, most of previous studies on passenger assignment model for 23 

urban rail transit assumed that time-varying peak-period station-to-station OD 24 

matrices were given (1-3).This becomes invalid at the planning and design stage, 25 

because the actual operational data hasn’t generated. To forecast time-varying 26 

peak-period station-to-station OD matrices, the first step is forecasting the 27 

peak-period station-to-station OD matrix, which is of fundamental importance. Errors 28 

in it are transferred onto time-varying peak-period station-to-station OD matrices, 29 

leading to errors in MSPF within peak hour ultimately. 30 

There is little research on the forecasting of the peak-period station-to-station 31 

OD matrix at present. Multiplicative models are adopted by (4) and (5). The former 32 

model chose 32 factors, which can be categorized into 4 areas: built-environment, 33 

travel impedance, intermodal connection and other variables. The model was 34 

calibrated with the data of Seoul Metro in Korea. Meanwhile, the latter one selected 35 

22 variables which can be divided into 4 areas: land use, intermodal connection, 36 

station context and travel impedance, estimated with data of Metro system in Nanjing, 37 

China. Although this kind of models performs well according to regression results, 38 

they are totally different from traditional trip distribution models. The theoretical 39 

foundation is relatively weak, which makes production and attraction constraints 40 

cannot be guaranteed. In addition, it is difficult to acquire some data (such as several 41 

intermodal connection variables) at the planning and design stage. 42 
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Traditional trip distribution models concentrate on trips between traffic 1 

analyses zones (TAZs) of all modes, whose time range is a whole day. One of the 2 

most important models is the gravity model (6,7), which is widely used because it is 3 

simple in concept and has been well documented. Nevertheless, it has several 4 

drawbacks such as it may overestimate when the distance between origin and 5 

destination is too short. It still needs to be verified whether the gravity model is 6 

suitable for the forecasting of the peak-period station-to-station OD matrix in urban 7 

rail transit. Apart from traditional trip distribution models, disaggregate destination 8 

choice models based on utility-maximization theory have been proposed by some 9 

scholars in recent years to forecast OD matrix of all modes (8-11). This kind of 10 

models has a good performance; however, the data requirement is too high for 11 

forecasting OD matrix in urban rail transit. It cannot be clear who will choose urban 12 

rail transit at the planning and design stage, let alone the investigation of their 13 

information such as socio-economic characteristics and travel characteristics. So these 14 

models are not taken into consideration. In summary, the forecasting of urban rail 15 

transit peak-period station-to-station OD matrix still needs more in-depth study.  16 

A long-term all-day station-to-station OD matrix with relatively high accuracy 17 

can be forecasted by planners through traditional four-step procedure, which is not 18 

time-dependent. So it is assumed that the all-day station-to-station OD matrix is given. 19 

Based on this assumption, the paper tests traditional gravity models in forecasting the 20 

peak-period station-to-station OD matrix in urban rail transit with a real-world case 21 

study of Chongqing, China, and analyzes their merits and demerits. To solve the 22 

drawbacks, an improved forecasting model called Peak Period Coefficient (PPC) 23 

model is proposed. According to this model, the peak-period station-to-station OD 24 

matrix is obtained by multiplying the given all-day station-to-station OD matrix by 25 

forecasting PPC, whose expression is deduced from the gravity model. Models with 26 

different configurations are estimated with the same dataset, and their performance is 27 

compared with the ones of gravity models. 28 

The rest of this paper is organized as follows: Section 2 describes the data of 29 

Chongqing rail transit. Section 3 presents the performance of gravity models and the 30 

proposal of the improved model. Section 4 compares the results of these models. 31 

Section 5 provides conclusions.  32 

 33 

DATA AND SCOPE 34 

 35 

Case Study Object  36 

Chongqing is located in the southwest part of China, covering an area of 82400 km2, 37 

650 km2 of which is the built area of the main city. The registered population of 38 

Chongqing is 33.752 million while the permanent resident is 29.914 million, 818.98 39 

million of which belongs to the main city.  40 

By the end of 2016, the urban rail transit network of Chongqing consists of 4 41 

rail transit lines. Line 1 and Line 6 are metro systems, while Line 2 and Line 3 are 42 
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monorail systems. All lines are located in the main city, the total operating mileage of 1 

which reaches 202 km, with 120 stations included (Figure 1). After removing the 2 

stations with zero ridership and merging interchange stations, 110 stations are left. 3 

Due to the significant changes in land use around Guangdianyuan station and a high 4 

proportion of undeveloped land around Jiuquhe station, 108 stations are left on the list 5 

of study objects eventually. 6 

 7 

 8 

 9 

FIGURE 1 Chongqing rail transit stations. 10 

 11 

Data Source 12 

To compare the performance of different models in forecasting the peak-period 13 

station-to-station OD matrix, the same dataset is used in this study. It mainly includes 14 

3 parts. 15 
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1. Prerequisites: The all-day station-to-station OD matrix of the study 1 

objects; 2 

2. Dependent variable: The peak-period station-to-station OD matrix of the 3 

study objects; 4 

3. Independent variables: The ridership of study objects in different periods, 5 

the time shortest path between any two stations and its interchange times. 6 

According to the automated fare collection (AFC) data of August 26, 2015 7 

provided by Chongqing Rail Transit (Group) Co., Ltd., the station-to-station OD 8 

matrices within all-day and peak period as well as the ridership of study objects are 9 

counted. It is worth noting that in order to ensure the consistency of data, one trip is 10 

classified into different periods according to its boarding time, no matter when it ends. 11 

Statistic shows that there are 8669 pairs of OD stations with ridership larger than 0 12 

during the peak period. 13 

The time shortest path is calculated by Dijkstra algorithm, according to the 14 

network information about Chongqing Rail Transit, including the information about 15 

lines, stations, travel time between stations, stop time, interchange time and so on. 16 

 17 

Temporal Scope: Peak Period 18 

Urban rail transit system has the advantages of fast speed, punctuality and large 19 

capacity. Owing to these, it undertakes a lot of long- and moderate-distance trips. 20 

Their aims are mainly commuting and going to school. This type of passengers has 21 

rigid travel demands. Their specified arrival time (SAT) of destination is fixed and 22 

relatively close, so that the peak hour of urban rail transit system is usually within the 23 

morning peak period. This situation is also applicable for Chongqing Rail Transit 24 

(Figure 2). All 4 lines reach MSPF during all day between 8 a.m. and 9 a.m.  25 

 26 

 27 

 28 

FIGURE 2 MSPF of lines in Chongqing rail transit on one weekday. 29 
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The same trip may be divided into different periods according to various 1 

criteria of the classification. Here, one trip is divided into different periods according 2 

to its boarding time. Because MSPF within peak hour is accumulated by the 3 

passengers departing from different stations before or during the peak hour, so the 4 

staring time of peak period should be earlier than that of peak hour. The paper 5 

provides that peak period is from 6 a.m. to 9 a.m. 6 

 7 

METHODOLOGY 8 

 9 

Deterrence Function 10 

Deterrence function is one of the most important influence factors of station-to-station 11 

OD matrix; its mathematical form and components directly affect the final estimation 12 

results. Currently, there are 3 commonly used mathematical forms, which is power 13 

function, exponential function and the combination of both. These formulations are 14 

written as equation (1)-(3) when applied in urban rail transit system. 15 

Form 1: Power function   16 

( ) ( )ij ij ijf c f d d       (1) 17 

Form 2: Exponential function 18 

( ) ( ) exp( )ij ij ijf c f d d        (2) 19 

Form 3: The combination of power function and exponential function 20 

( ) ( ) exp( )ij ij ij ijf c f d d d           (3) 21 

In these formulations, ijc = the generalized travel cost between station i and 22 

station j; 
ijd = the travel time between station i and station j; and  , = parameters to 23 

be estimated. 24 

One essential difference between urban rail transit and road traffic as well as 25 

bus transit is that its passengers can only change between various lines through 26 

interchange stations. This difference brings about the result that when measuring the 27 

generalized travel cost between two stations, interchange times is a key factor except 28 

the travel time. Since when the exponent of a power function is negative, the base 29 

mustn’t be 0, and the interchange times between two stations are non-negative 30 

integers, so it is not appropriate to introduce interchange times into a deterrence 31 

function in the form of power function. This paper introduces it in the form of 32 

exponential function. 33 

Form 4: Power function  34 

( ) ( , ) exp( )ij ij ij ij ijf c f d n d n         (4) 35 

Form5: Exponential function 36 

( ) ( , ) exp( )ij ij ij ij ijf c f d n d n          (5) 37 
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Form 6: The combination of power function and exponential function 1 

( ) ( , ) exp( )ij ij ij ij ij ijf c f d n d n d             (6) 2 

In these formulations, ijn = the interchange times between station i and station 3 

j and  = a parameter to be estimated. 4 

With the expansion of urban rail transit network, there may be several routes 5 

between origin and destination stations for passengers to choose. To ensure the data 6 

consistency of the study, the travel time and interchange times are the corresponding 7 

values of the time shortest path between them. Models with these deterrence functions 8 

will be estimated subsequently. Their performance would be compared to support the 9 

analysis of the influence of deterrence function on the peak-period station-to-station 10 

OD matrix.  11 

 12 

Gravity Model 13 

 14 

Modeling 15 

The gravity model is similar to Newton’s law of gravity. According to this model, in 16 

urban rail transit system, the ridership between an origin station and a destination 17 

station depends directly on the total boardings of the origin station, the total alightings 18 

of the destination station, and depends inversely on the deterrence between two 19 

stations. The peak-period ridership between two stations can be expressed as an 20 

unconstrained gravity model (7), given in equation (7) 21 

    )p p p p

ij i j ijt k O D f(c
 

    (7) 22 

where 
p

ijt = the ridership between station i and station j during peak period; 
p

iO =the 23 

boardings of station i during peak period; 
p

jD = the sum of passengers who depart 24 

from other stations during peak period and alight on station j ; )p

ijf(c = the deterrence 25 

function of station i and j; and k , ,  = parameters to be estimated. 26 

On this basis, if the total boardings of origin stations are known, a production 27 

-constrained gravity model can be developed, given in equation (8) 28 

   ) / )
j j

p p p p p p

ij i ij ij

j

t O D f(c D f(c
         

    (8) 29 

where  = a parameter to be estimated; and the meanings of other symbols are as 30 

same as the ones in the unconstrained gravity model. 31 

 32 

Estimation 33 

For an unconstrained gravity model, since it is non-linear, the authors take logarithms 34 

of equation (7) as follows 35 

ln ln ln ln ln )p p p p

ij i j ijt k O D f(c        (9) 36 

where ln )p

ijf(c  varies with the deterrence function, and it is always a linear 37 

combination of ln p

ijd ,
p

ijd and
p

ijn .According to equation (9), the parameters can be 38 
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estimated by Ordinary Least Squares (OLS).  1 

For a production-constrained gravity model, (12) proposed the estimation 2 

method. The linear equations to be estimated are summarized in equation (10)-(13) 3 

     ln / ln / ln ) / )
p p

p p p p
iij j ij ijr r D D f(c f(c     (10) 4 

1/

1

J
J

p
p

i ij

j

r r


 
  
 
    (11) 5 

1/

1

J
J

p
p

j

j

D D


 
  
 
    (12) 6 

1/

1

) )

J
J

p p

ij ij

j

f(c f(c


 
  
 
    (13) 7 

where  ln ) / )p p

ij ijf(c f(c  varies with the deterrence function, and it is always a linear 8 

combination of  ln /
p

p
iijd d ,

1

1 J
p p

ij ij

j

d d
J 

  and
1

1 J
p p

ij ij

j

n n
J 

  . 
p

id  is calculated by 9 

equation(14). 10 

1/

1

J
J

p
p

i ij

j

d d


 
  
 
    (14) 11 

 12 

TABLE 1 Bivariate Correlation Analysis of Gravity Models 13 

 14 

Unconstrained Gravity Models 

Variables ln p

ijt  ln p

iO  ln p

jD  ln p

ijd  p

ijd  p

ijn  

Asymptotic significance 

of K-S test 
0.000 0.000 0.000 0.000 0.000 0.000 

Correlation coefficient 1.000 0.390** 0.495** -0.497** -0.497** -0.404** 

Production-constrained gravity models 

Variables  ln /
p

p
iijr r   ln /

p
p

jD D   ln /
p

p
iijd d  

1

1 J
p p

ij ij

j

d d
J 

   
1

1 J
p p

ij ij

j

n n
J 

   

Asymptotic significance 

of K-S test 
0.000 0.000 0.000 0.000 0.000 

Correlation coefficient 1.000 0.610** -0.571** -0.579** -0.480** 

Note: ** Correlation is significant at the 0.01 level (2-tailed). 15 

 16 

The result of Kolmogorov–Smirnov test shows the asymptotic significances of 17 

variables’ distributions mentioned above are all less than 0.050, which means none of 18 

them follows a normal distribution. Bivariate correlations among variables in different 19 

kinds of gravity models are calculated through Spearman correlation analysis. It has 20 

proven that no matter in which kind of gravity models, the independent variables are 21 
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significantly correlated with the dependent variable, and the value is relatively high. 1 

The signs of correlation coefficients are in accordance with the inference of models. 2 

The values of correlation coefficients among variables in the production-constrained 3 

gravity model are comparatively higher (Table 1). 4 

There are 12 unconstrained gravity models and 6 production-constrained 5 

gravity models to be estimated. The main differences among unconstrained gravity 6 

models are whether k is equal to one and deterrence functions. For 7 

production-constrained gravity models, because there is no constant to be estimated, 8 

so the main difference is their deterrence functions.  9 

The forecast peak-period station-to-station OD matrices are iterated by Fratar 10 

Method (13) to ensure the satisfaction of production and attraction constraints, which 11 

is represented by equation (15)-(16). 12 

   (15) 13 

   (16) 14 

As a measurement of model performance, the standard deviation, which is also 15 

called root-mean-square deviation (RMSD), is taken as the comparison standard. In 16 

this study, it is calculated by equation (17) 17 

1/2
2 2 2 2

1 2( ) /l n n           
   (17) 18 

where = the difference between predicted ridership and observed ridership between 19 

the lth pair of OD stations; and n=the number of station pairs whose peak-period 20 

ridership is larger than 0.  21 

 22 

Note: The slash-filled model fails t-test. 23 

 24 

FIGURE 3 The standard deviation of gravity models. 25 
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Figure 3 indicates that: 1 

1. Some models’ variables fail t-test, because there are two variables related 2 

to travel time included in deterrence functions. When the influence of travel time is 3 

mainly reflected by one of them, the other one cannot pass the significant test; 4 

2. The models with deterrence functions including interchange times have 5 

better performance. The obvious decrease of standard deviation proves that it is 6 

necessary to consider the influence of interchange times on deterrence in urban rail 7 

transit system; 8 

3. The optimal model in the framework is the unconstrained gravity model 9 

with a deterrence function in Form 5 and k=1, the standard deviation of which is 10 

29.33 passengers. 11 

 12 

Analysis 13 

Although gravity model is widely used, the following drawbacks still exist: (1) it 14 

hasn’t taken human behavior into consideration basically; (2) it may overestimate 15 

when the distance between origin and destination is too short; (3) the trips within one 16 

TAZ is hard to be forecasted; (4) trip distance in one TAZ is not a fixed value; (5) 17 

deterrence between TAZs varies significantly according to traffic modes. 18 

In urban rail transit system, passengers move between stations instead of TAZs. 19 

Thanks to this change, drawback (3)-(5) of gravity model can be avoided. For (3), 20 

there is no passenger travelling from a station to its own in one trip; for (4), when 21 

origin and destination stations are determined, trip distance is fixed because of the 22 

infrastructure characteristics of urban rail transit; and for (5), the deterrence between 23 

stations is not influenced by traffic modes because there is only one mode. But 24 

drawback (2) is further aggravated with travel modes reducing from all modes to 25 

urban mass transit alone. When the deterrence is too little, the passengers travelling 26 

between two stations are more likely to choose bus transit and non-motorized 27 

transportation due to travel cost. This phenomenon makes the ridership between OD 28 

stations decline. But traditional gravity models are strictly in accordance with the 29 

trend that with the decrease of deterrence, the ridership between two stations increases, 30 

which doesn’t conform to the fact.  31 

 32 

Peak Period Coefficient (PPC) Model 33 

 34 

Modeling 35 

The Peak Period Coefficient (PPC) model is proposed to solve the over-estimation 36 

caused by the gravity model. According to this model, the peak-period 37 

station-to-station OD matrix is obtained by multiplying the given all-day 38 

station-to-station OD matrix by forecasting PPC. 39 

The PPC of station-to-station ridership is the proportion of station-to-station 40 

ridership during peak-period to the one within all day. The trip purposes of passengers 41 

who travel during various periods are quite different. For passengers travelling during 42 
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the morning peak period, their main purpose is commuting and going to school, so the 1 

ridership between residential-land-based origin stations and destination stations whose 2 

surrounding land is mainly related to jobs and schools is tend to be high. When the 3 

time range is extended to all day, the composition of passengers is more complex, 4 

with three parts included. The first one is the morning-peak-period passengers as 5 

mentioned above. The second part is the off-peak-period passengers living around the 6 

station with flexible travel demands. And the last part is the evening-peak-period 7 

passengers working around the station, whose trip purpose is going home. Because of 8 

the difference and the diversification of land use around urban rail transit stations, it is 9 

not recommended to multiply the all-day station-to-station OD matrix by an identical 10 

PPC to obtain the peak-period station-to-station OD matrix. This simple conversion 11 

hasn’t considered the properties of origin and destination stations. 12 

Based on the hypothesis that the station-to-station ridership follows an 13 

unconstrained gravity model, the PPC is calculated as follows 14 

       1 1 2 2

1 2/ ( ) / ( )p d p p p d d d

ij ij ij i j ij i j ijP t t k O D f c k O D f c
             

      
  (18) 15 

where 
ijP = the PPC of ridership between station i and station j; p

ijt , d

ijt =the ridership 16 

between station i and station j during peak period and all day, respectively; p

iO , d

iO = 17 

the boardings of station i during peak period and all day, respectively; p

jD = the sum 18 

of passengers who depart from other stations during peak period and alight on station 19 

j , d

jD = the alightings of station j during all day; and ( )p

ijf c , ( )d

ijf c =the deterrence 20 

function of station i and station j during peak period and all day, respectively. 21 

Equation (19) can be obtained by dividing the numerator and the dominator of 22 

ijP  by    1 1d d

i jO D
 

  simultaneously, which is represented by 23 

         1 1 2 1 2 1

1 2/ ( ) / ( ) / / /p d p d p d d d

ij ij ij i i j j i jP k k f c f c O O D D O D
                      

 (19) 24 

After substituting /
i

p d

O i iP O O  and /
j

p d

D j jP D D  into equation (20), it can be 25 

written as follows  26 

         
11 2 1 2 1

1 2/ ( ) / ( ) /
i j

p d d d

ij ij ij O D i jP k k f c f c P P O D
                    

  (20) 27 

       
11 ' '

' ( ) / ( ) /
i j

p d d d

ij ij ij O D i jP k f c f c P P O D
                 

 (21) 28 

where 
iOP = the proportion of peak-period boardings of station i; 

jDP = the proportion 29 

of peak-period alightings of station j; and 'k ,
1 , 

1 , ' , ' = parameters to be 30 

estimated, where 
1 2' /k k k ;

2 1'     and
2 1'    . 31 

Equation (20) shows that
iOP ,

jDP , d

iO , d

jD  and deterrence between two stations 32 

are the main influence factors of PPC. The former two factors need to be forecasted 33 

according to land use characteristics around stations, while the other four factors can 34 

be calculated from given data.  35 

Based on equation (20), the PPC model is written in equation (21) 36 
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       
11 ' '

' ( ) / ( ) /
i j

p d p d d d d

ij ij ij ij ij O D i j ijt P t k f c f c P P O D t
               

 (21) 1 

The model can be further simplified with the following assumptions. 2 

Assumption (1): The station-to-station OD matrices during different time 3 

periods are only affected by the boardings of origin station, the alightings of 4 

destination station and deterrence between two stations. 5 

In an unconstrained gravity model, the parameter k is regarded as a 6 

comprehensive correction coefficient caused by other influence factors except the 7 

three influence factors mentioned in Assumption (1). If Assumption (1) holds then 8 

1 2k k , that is to say, ' 1k  . Equation (21) can be simplified as shown in equation 9 

(22). 10 

       
11 ' '

( ) / ( ) /
i j

p p d d d d

ij ij ij O D i j ijt f c f c P P O D t
            

  (22) 11 

Assumption (2): The deterrence between origin and destination stations 12 

during different time periods keep consistent. 13 

Usually, the deterrence function is a function of the travel time between origin 14 

and destination stations as well as interchange times. The characteristic of urban rail 15 

transit system leads to the result that once the lines and stations construction is 16 

complete, these two independent variables have little changes during different time 17 

periods. If Assumption (2) holds then ( ) ( )p d

ij ijf c f c , simplifying the model to 18 

equation(23). 19 

       
11 ' '

' /
i j

p d d d

ij O D i j ijt k P P O D t
       

  
   (23) 20 

Whether these two assumptions are valid or not in the model still needs more 21 

analysis. 22 

 23 

Estimation 24 

Since the all-day station-to-station OD matrix is given, the forecasting part is the PPC. 25 

The logarithms of PPC model is shown in equation (24) 26 

1 1ln ln ' ln ln 'ln 'ln ln ( ) ln ( )
i j

d d p d

ij O D i j ij ijP k P P O D f c f c            (24) 27 

The parameters can be estimated by Ordinary Least Squares (OLS) since the 28 

equation is linear. It should be noted that to prevent the inaccuracy of forecast iOP  29 

and jDP  influencing the performance of the PPC model, here the actual values of 30 

both variables are used for estimation. 31 

Table 2 shows that the signs of correlation coefficients are consistent with the 32 

inference of PPC model. All variables are significantly correlated. The coefficients of 33 

ln
iOP and ln

jDP are higher than the ones of ln d

iO and ln d

jD , while the ones of 
p

ijd , ln p

ijd34 

and 
p

ijn  are a little lower. Compared with the traditional gravity model, the 35 

correlation coefficients of 
p

ijd , ln p

ijd and 
p

ijn  in the PPC model decline markedly, 36 
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proving that the influence of these variables on the PPC model gets weaken. 1 

 2 

TABLE 2 Bivariate Correlation Analysis of PPC Models 3 

 4 

Variables ln ijP  ln
iOP  ln

jDP  ln d

iO  ln d

jD  ln p

ijd  p

ijd  p

ijn  

Asymptotic 

significance of K-S test 
0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 

Correlation coefficient 1.000 0.498** 0.516** -0.241** -0.162** -0.044* -0.044* 0.022* 

Note: ** Correlation is significant at the 0.01 level (2-tailed);* Correlation is significant at the 0.05 5 

level (2-tailed); , . 6 

 7 

 8 

Note: The slash-filled model fails t-test. 9 

 10 

FIGURE 4 The standard deviation of PPC models. 11 

 12 

The combination of two assumptions and different deterrence functions forms 13 

14 PPC models to be estimated. Similarly, the forecast peak-period station-to-station 14 

OD matrices are iterated by Fratar Method (13) to ensure the satisfaction of 15 

production and attraction constraints. 16 

Excluding the models with variables failing t-test (Figure 4), the optimal 17 

model in the PPC model framework is the one with a deterrence function in Form 3, 18 

whose k≠1. Its standard deviation is 12.90 passengers. In the model, there is a 19 

difference between the deterrence during peak period and all day, which means the 20 

perceived travel time during peak period is longer than the one during other periods 21 

even though the actual travel time is totally the same. This is caused by the crowding 22 

discomfort in trains during the peak period.  23 

For Assumption (1), the estimation results show that the standard deviation 24 

differences between models whose k=1 and k≠1 are less than 1 passenger, except the 25 

p d
ij ijd d p d

ij ijn n
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models with deterrence function in the form of a combination of power function and 1 

exponential function. So when the difference between these two kinds of models is 2 

acceptable, it is assumed to be valid. For Assumption (2), whether it is valid is 3 

supported by the proofs from two aspects. On one hand, 
p

ijn  and 
p

ijd  fail t-tests in 4 

some models (Table 3). The failure of 
p

ijn  is owing to that it doesn’t change through 5 

all day, so its impact on the PPC is negligible. Meanwhile, both 
p

ijd  and ln p

ijd  are 6 

proxies for travel time. When only one of them is used to represent the deterrence, the 7 

modulus of regression coefficient is little or the variable fails the t-test; when both of 8 

them are in the function, the signs of their regression coefficients are opposite. So the 9 

influence of travel time is balanced. On the other hand, it is easy to find from Figure 4 10 

that there is no big difference among models with various deterrence functions and the 11 

one without a deterrence function. The standard deviation of the model without a 12 

deterrence function is 13.30 passengers, which is 0.40 higher than the one of the 13 

optimal PPC model, but still lower than most of other models. So Assumption (2) is 14 

regarded to be valid when the difference of standard deviation is tolerable or the 15 

network is not very crowded during peak period. 16 

 17 

TABLE 3 The Parameters of PPC Models 18 

 19 

PPC Models         

1 2.952  0.818  0.853  -0.124  -0.089  - - - 

2 3.088  0.819  0.849  -0.126  -0.091  -0.031  - - 

3 3.140  0.820  0.841  -0.130  -0.096  - -0.003 - 

4 2.812  0.817  0.836  -0.132  -0.098  -0.009  0.170 - 

5 3.086  0.819  0.850  -0.126  -0.091  -0.030  - -0.002 

6 3.143  0.818  0.840  -0.131  -0.096  - -0.003 0.011 

7 2.803  0.818  0.836  -0.132  -0.097  -0.009  0.173 -0.008 

8 - 0.790  0.778  0.044  0.049  - - - 

9 - 0.789  0.797  0.029  0.039  0.078  - - 

10 - 0.789  0.780  0.044  0.049  - 0.000 - 

11 - 0.790  0.782  -0.004 0.010  -0.014  0.391  - 

12 - 0.795  0.800  0.030  0.039  0.090  - -0.038 

13 - 0.789  0.780  0.044  0.049  - 0.000 0.000 

14 - 0.796  0.786  -0.004 0.009 -0.014  0.406  -0.042  

Note: The variable with the coefficient in underlined and bold style fails t-test. 20 

 21 

RESULT AND DISCUSSION 22 

The optimal models in two frameworks are given in equation (25)-(26) 23 

The gravity model  24 

     
0.210 0.314

exp 0.033 0.730p p p p p

ij i j ij ijt O D d n      (25) 25 

The PPC model 26 

 
0.170

0.817 0.836 0.132 0.098( ) ( ) ( )16.64 / exp( .009) 0( )d d p p

Oi Dj i j ij ij

p d

ij ijt d tP P O D d   
  

  (26) 27 

ln 'k ln
iOP ln

jDP ln d
iO ln d

jD ln p

ijd p

ijd p

ijn
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 1 

(a) The gravity model 2 

 3 

(b) The PPC model 4 

 5 

FIGURE 5 The forecast deviation of the optimal model. 6 

 7 

TABLE 4 Statistics of Model Deviations 8 

 9 

Statistics Gravity model PPC model 

Median 1.00 0.00 

Standard deviation 29.33 12.90 

Variance 860.26 166.51 

Minimum -684.00 -237.00 

Maximum 384.00 199.00 

Percentile 25 -2.00 -1.00 

50 1.00 0.00 

75 5.00 3.00 

Average deviation of 

little-deterrence OD stations 
29.95 -0.54 

 10 
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Figure 5 shows the deviation between actual value and the results forecasted 1 

by the optimal gravity model and PPC model and iterated by Fratar method. In Figure 2 

5 (a), the deviation near the 45° diagonal is relatively high, because the deterrence of 3 

these OD stations is little. But this problem doesn’t exist in Figure5 (b). The 4 

origin-destination stations with travel time between them less than 5 min and no 5 

interchange are defined as little-deterrence OD stations. Table 4 shows that the 6 

average deviation of little-deterrence OD stations of Model I is as much as 29.95 7 

passengers, while the one of Model II is only -0.54 passengers. It is proved that the 8 

over-estimation is weakened effectively in the PPC model. 9 

From the figure and table, it also can be seen that the PPC model is obviously 10 

superior to the gravity model in terms of overall performance or case result. The 11 

standard deviation of the PPC model is 16.43 passengers less than the one of the 12 

gravity model, reduced by 56.02%. 13 

 14 

CONCLUSIONS 15 

With the case study of Chongqing, China, this study proposes a gravity-model-based 16 

Peak Period Coefficient (PPC) model. According to this model, the peak-period 17 

station-to-station OD matrix in urban rail transit is forecasted by multiplying the given 18 

all-day station-to-station OD matrix by the forecasting PPC. Results show that: 19 

1. When adopting traditional gravity models in forecasting the peak-period 20 

station-to-station OD matrix in urban rail transit, several drawbacks of these 21 

models can be avoided. But the drawback of over-estimation is further 22 

aggravated with travel modes reducing from all modes to urban mass transit 23 

alone. 24 

2. The PPC model can effectively weaken the over-estimation when the 25 

deterrence between OD stations is too little. Its performance is much better 26 

than the traditional gravity model, with standard deviation reduced by 56.02%. 27 

3. In the PPC model, interchange times isn’t the main influence factor any 28 

longer. And there is no big difference in the performance among models with 29 

various deterrence functions and the one without a deterrence function. This 30 

result means there may be some difference among the deterrence during 31 

various periods, but the influence of the difference on the PPC is not obvious. 32 

When applying the PPC model in planning and design phase, the proportion of 33 

peak-period boardings of the origin station and the proportion of peak-period 34 

alightings of the destination station can be forecasted based on the socio-economic 35 

and land use characteristics around stations. 36 

  37 



Cheng, Ye, Zhou  18 

REFERENCES 1 

1. Poon, M. H., S. C. Wong and C. O. Tong. A dynamic schedule-based model 2 

for congested transit networks. Transportation Research Part B: 3 

Methodological, Vol.38, No.4, 2004, pp. 343-368. 4 

2. Liu, X. Research on the Dynamic Flow Assignment Model Based on Train 5 

Schedule for Urban Subway Network, Chang'an University. Xi'an, 2013. 6 

3. Yang, D. Research on Schedule-based Rail Transit Passenger Flow 7 

Assignment, Beijing Jiaotong University, 2013. 8 

4. Choi, J., Y. J. Lee, T. Kim and K. Sohn. An analysis of Metro ridership at the 9 

station-to-station level in Seoul. Transportation, Vol.39, No.3, 2012, pp. 10 

705-722. 11 

5. Zhao, J., W. Deng, Y. Song and Y. Zhu. Analysis of Metro ridership at station 12 

level and station-to-station level in Nanjing: an approach based on direct 13 

demand models. Transportation, Vol.41, No.1, 2014, pp. 133-155. 14 

6. Wilson, A. G. A family of spatial interaction models, and associated 15 

developments. Environment and Planning A, Vol.3, No.1, 1971, pp. 1-32. 16 

7. Shao, C.Traffic Planning, China Railway Publishing House. Beijing, China, 17 

2004. 18 

8. Southworth, F. A Disaggregated Trip Distribution Model with Elastic 19 

Frequencies and Expenditures. Journal of Transport Economics and Policy, 20 

Vol.13, No.2, 1979, pp. 209-224. 21 

9. Ben-Akiba, M., H. F. Gunn and L. A. Silman. Disaggregate trip distribution 22 

models. Proceeding of Japan Society of Civil Engineers, No.347, 1984, pp. 23 

1-17. 24 

10. Lam, W. H., Z. X. Wu and K. S. Chan. Estimation of transit origin–25 

destination matrices from passenger counts using a frequency-based approach. 26 

Journal of Mathematical Modelling and Algorithms, Vol.2, No.4, 2003, pp. 27 

329-348. 28 

11. Bekhor, S. and J. N. Prashker. GEV-based destination choice models that 29 

account for unobserved similarities among alternatives. Transportation 30 

Research Part B: Methodological, Vol.42, No.3, 2008, pp. 243-262. 31 

12. Nakanishi, M. and L. G. Cooper. Parameter estimation for a multiplicative 32 

competitive interaction model: least squares approach. Journal of Marketing 33 

Research, 1974, pp. 303-311. 34 

13. Fratar, T. Vehicular trip distribution by successive approximations. Traffic 35 

Quarterly, Vol.8, No.1, 1954, pp. 53-56. 36 


