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Abstract 26 

Distinct populations of hepatocytes infected with HBV or only harboring HBV-DNA 27 

integrations coexist within an HBV chronically infected liver. These hepatocytes express 28 

HBV antigens at different levels and with different intracellular localizations but it is not 29 

known whether this heterogeneity of viral antigen expression could result in an uneven 30 

hepatic presentation of distinct HBV epitopes/HLA class-I complexes triggering different 31 

level of activation of HBV-specific CD8+ T cells.  32 

Using antibodies specific to two distinct HLA–A*02:01/HBV epitope complexes of HBV 33 

nucleocapsid and envelope proteins, we mapped their topological distribution in liver 34 

biopsies of two anti-HBe+ chronic HBV (CHB) patients. We demonstrated that the core 35 

and envelope CD8+T cell epitopes were not uniformly distributed in the liver 36 

parenchyma but preferentially located in distinct and sometimes mutually exclusive 37 

hepatic zones. The efficiency of HBV epitope presentation was then tested in vitro 38 

utilizing HLA-A*02:01/HBV epitope-specific antibodies and the corresponding CD8+ T 39 

cells, in primary human hepatocyte and hepatoma cell lines either infected with HBV or 40 

harboring HBV-DNA integration. We confirmed the existence of a marked variability in 41 

the efficiency of HLA-class I/HBV epitope presentation among the different targets that 42 

was influenced by presence of IFN-γ and availability of newly-translated viral antigens. 43 

In conclusion, HBV antigen presentation can be heterogeneous within an HBV-infected 44 

liver. As a consequence, CD8+ T cells of different HBV specificities might have different 45 

antiviral efficacy. 46 

 47 

 48 
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Importance 50 

The inability of patients with chronic HBV infection to clear HBV is associated with 51 

defective HBV-specific CD8+ T cells. Hence, the majority of immunotherapy 52 

developments focus on HBV specific T cell function restoration. However, knowledge of 53 

whether distinct HBV-specific T cells can equally target all the HBV-infected hepatocytes 54 

of a chronically infected liver are lacking. In this work, analysis of CHB patient liver 55 

parenchyma and in vitro HBV infection models shows a non-uniform distribution of HBV 56 

CD8+ T cells epitopes that is influenced by presence of IFN-γ and availability of newly-57 

translated viral antigens. These results suggest that CD8+ T cells recognizing  different 58 

HBV epitopes can be necessary for efficient immune therapeutic control of chronic HBV 59 

infection. 60 

61 
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Introduction 62 

CD8+ T cells play an important role in protecting the host against viral infections. Using 63 

their specific T cell receptors (TCR), CD8+ T cells recognize and subsequently lyse 64 

virus-infected cells expressing HLA class-I/viral peptide complexes on their surface (1). 65 

The efficiency of HLA class-I/viral peptide complex formation is essential for the 66 

recognition of virus-infected cells by CD8+ T cells (2); viruses that can establish chronic 67 

infection such as HCMV and HIV have evolved strategies to modulate either processing 68 

or presentation of these complexes (3). 69 

The ability of CD8+ T cells to recognize HBV-infected hepatocytes has been studied in 70 

chimpanzees (4) and humanized chimeric mouse models (5). However, due to the 71 

technical difficulties in establishing HBV infection in primary human hepatocyte (PHH) in 72 

vitro (6), the efficiency of HBV epitope presentation after infection has never been 73 

analyzed in details. Most studies on CD8+ T cell recognition of HBV-infected targets 74 

employed  experimental systems in which HBV antigen expression was driven by either 75 

viral vector transfections (EBO, Vaccinia, Adeno)(7-9) or HBV-DNA integration into the 76 

host genome (HepG2.2.15 or HBV transgenic mice)(10-12). Only following the recent 77 

characterization of the HBV entry receptor human sodium taurocholate co-transporting 78 

polypeptide (hNTCP) (13), a robust HBV infection system has been established in 79 

HepG2-hNTCP-A3 cells (14) allowing the study of human HBV core-specific CD8+ T cell 80 

recognition of HBV-infected targets in vitro (15). However, whether distinctive epitopes 81 

originating from different HBV proteins are differently presented during infection is not 82 

known. Equally, the ability of HepG2-hNTCP-A3 to process and present viral antigens 83 

may differ from that of normal hepatocytes since defects in antigen presentation have 84 

been suggested to occur in HCC cells(16). 85 

Similarly, although HLA class-I/HBV peptide complexes can be directly visualized on 86 
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 5 

liver biopsies of chronically infected patients (17, 18), knowledge related to the efficiency 87 

and kinetics of the generation of HLA class-I/HBV peptide complexes in CHB infected 88 

livers is limited (19, 20). Studies investigating the localization of HBV-infected 89 

hepatocytes in the liver of patients with chronic hepatitis B showed a complex mosaic of 90 

cells expressing HBV antigens at different levels and localizations (21, 22) and with 91 

broad differences in the ratio between HBsAg and cccDNA levels (23-25). This 92 

differential antigenic expression is likely caused by the concomitant presence of 93 

hepatocytes infected with HBV for different durations and/or the production of HBV 94 

antigens from either integrated HBV-DNA or cccDNA (25  26). 95 

Overall, whether HBV-specific CD8+ T cells are able to distinguish distinct populations 96 

of HBV antigen-expressing hepatocytes is unknown. Investigations of HBV-specific T 97 

cells during natural infection have focused exclusively on their quantity (7, 27, 28), 98 

function (29) and localization (28, 30), whilst the ability of hepatocytes to present HBV 99 

epitopes to their cognate HBV-specific CD8+T cells has been neglected. To fill this 100 

knowledge gap, we first utilized T cell receptor like antibodies (TCRL-Ab) specific for two 101 

distinct HBV epitopes derived from envelope and nucleocapsid antigen and presented 102 

by HLA-A*02:01 to analyze their distribution in the liver of CHB patients. 103 

We then compared the in vitro efficiency of presentation of different HLA class-I/HBV 104 

epitopes in HBV-infected PHH and in hepatocyte-like cell lines (HepG2-hNTCP-A3, 105 

HepG2.2.15, HepG2-Env, PLC/PRF5/HLA-A2+) infected by HBV or expressing HBV 106 

antigens from HBV-DNA integration. We demonstrated that distinct epitopes are 107 

presented with differing efficiency and that the presence of IFN-γ and availability of 108 

newly-translated viral antigens modulate the quantity of HBV epitope presentation. 109 

 110 

 111 
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Results  112 

Heterogeneous distribution of CD8+ T cell core and envelope epitopes in chronic 113 

HBV-infected human liver 114 

We first performed a comparative analysis of the distribution of two HBV epitope/HLA 115 

class-I complexes within HBV-infected livers. We utilized antibodies that have been 116 

already demonstrated to specifically recognize respectively the HLA-A*02:01/HBc18-27 117 

(defined as Ab A2-HBc18) and the HLA-A*02:01/HBs183-191 (defined as Ab A2-118 

HBs183) complexes in HBV-infected cells and in biopsies of HLA-A*0201+ patients with 119 

CHB (17, 18). 120 

Liver biopsies of 8 HLA-A*0201+ CHB patients (Table 1) were stained with above 121 

mentioned antibodies and analyzed with TissueFAXS immunofluorescent microscopy to 122 

create high-resolution images of whole biopsies. Note that, since both Ab A2-HBc18and 123 

Ab A2-HBs183 antibodies are raised in mouse and not directly conjugated with 124 

fluorochrome, this comparative analysis of the different localization of the A2-HBc18 and 125 

A2-HBs183 complexes had to be done by staining individual tissue slides corresponding 126 

to two consecutive sections. Table 1 shows that only 3 out of 8 HLA-A*02:01+ liver 127 

biopsies showed positive staining. Interestingly, all 3 positive biopsies are CHB patients 128 

of Caucasian ethnicity and infected with genotype D (Fig1a -d), while 5 of negative 129 

biopsies derived from CHB patients of Chinese ethnicity infected with genotype B and C 130 

(Fig 1e). This is likely to be caused by the natural amino acid substitutions present within 131 

the HBc18-27 and HBs183-91 sequences present in HBV genotype B and C while both 132 

antibodies were raised utilizing epitopes sequences of HBV genotype D (31). 133 

The staining of the two antibodies was not uniformly distributed among the hepatic 134 

parenchyma but varied in intensity and localization. Figure 1a and c show a 135 

representative image of two anti-HBe+ CHB patients. A2-HBc18 and A2-HBs183 136 

 on D
ecem

ber 18, 2018 by guest
http://jvi.asm

.org/
D

ow
nloaded from

 

http://jvi.asm.org/


 7 

complexes were visualized only in the hepatic parenchyma (Fig 1a, c) and not in the 137 

fibrotic portal tracts (Fig 1a,c), further confirming the specificity of our antibodies. 138 

Furthermore, not only was there a non-uniform distribution of both epitopes within the 139 

hepatic tissue, but the two different HLA-class I/HBV-epitopes can be detected in distinct 140 

anatomical regions. For example, in region B (schematic in Fig1a), there was a robust 141 

detection of A2-HBc18 complexes, whereas A2-HBs183 complex detection was 142 

negligible (Fig 1a). On the other hand, region C had a predominant expression of A2-143 

HBs183 complexes with low or absent A2-HBc18 complex detection (Fig 1a). Analysis 144 

of HBV antigens (HBcAg and HBsAg) expression was performed in these two CHB 145 

patients. Figure1 b and d show that the region of higher A2-HBs183 complex detection 146 

were topologically correlated with HBsAg expression. Unfortunately, technical problems 147 

hamper a detection of HBcAg localization in these two biopsies preventing the parallel 148 

analysis of A2-HBc18 and HBcAg expression.  149 

 Finally, detection of these two HLA-A*02:01/HBV epitopes was completely negative in 150 

other hepatic parenchymal regions (Region D). Similar results were observed in the 151 

biopsy of second CHB patient (anti-HBe+) which stained positive with both antibodies 152 

(Fig 1c and d). Therefore, this analysis shows that at least in anti-HBe+ CHB patients 153 

expression of distinct HBV epitopes have a mosaic pattern of distribution. 154 

Establishing an in vitro system of HBV infection 155 

In order to study the regulation of HBV derived epitope presentation in a more controlled 156 

in vitro system, we established an infection system to mimic acute HBV infection 157 

(arbitrarily defined as events occurring 12hrs to 7 days post-infection (p.i)) using PHH 158 

and HepG2-hNTCP-A3 (Fig 2a) The HLA-class I compatibility between target and our 159 

reagents (HLA-A*02:01-restricted HBc18-27 and HBs183-91-specific CD8+ T cell clones 160 

and the two TCR-like antibodies (Ab A2-HBc18 and Ab-A2-HBs183 ) was retained by 161 
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 8 

using HLA-A*02:01+ PHH while HepG2-hNTCP-A3 cells are HLA-A*02:01+. Both PHH 162 

and HepG2-hNTCP-A3 cells were infected at multiplicities of genome equivalent (GEV) 163 

of 3000/cell, as shown in schematic (Fig 2a). Establishment of productive HBV 164 

replication upon infection was confirmed by measuring HBV 3.5 Kb mRNA (pre-genomic 165 

RNA/pgRNA) using nanostring technology while expression of HBcAg and HBsAg was 166 

quantified by flow cytometry using anti-HBs and anti-HBc specific antibodies at 12 167 

hours, 18 hours, days 1, 3 and 7 p.i Nanostring probe design is shown in figure 2b.The 168 

specificity of probes (results related to HBV S mRNA and HBV 3.5 kb mRNA is shown) 169 

is tested in cells overexpressing individual HBV peptide (HepG2-Env) or harboring full 170 

HBV genome integration (HepG2.2.15), as shown in figure 2c and d.  171 

In both PHH and HepG2-hNTCP-A3 cells (Fig 2e), pre-genomic RNA was already 172 

detectable at 18 hours p.i and progressively increased until day 7. HBcAg and HBsAg 173 

detection also increased gradually from 18 hours to day 7 p.i in both PHH and HepG2-174 

hNTCP-A3 cells. The frequency of positive cells for HBV antigens in HBV-infected cells 175 

was higher in hepatocytes (> 60% positive cells for HBV antigens at day 3 p.i, Fig 2f) 176 

than HepG2-hNTCP-A3 (~ 40 to 50 % at day 7 p.i, Figure 2f). Interestingly, the 177 

frequency of HBsAg expressing hepatocytes was slightly higher than that of core 178 

expressing ones, while this trend was opposite in HBV-infected HepG2-hNTCP-A3. 179 

Having established two in vitro HBV infection systems, we analyzed the hierarchy of 180 

HBV epitope presentation in both HBV-infected hepatocytes and HepG2-hNTCP-A3 181 

(schematic figure 3a). First, we tested whether the level of HLA-class I expression was 182 

modified by HBV infection. In line with different evidence showing that HBV can replicate 183 

within hepatocytes without being sensed by innate immunity sensors (32), we did not 184 

detect variations either in HLA-class I mRNA (data not shown) or protein expression 185 

upon infection in both systems (Fig 2g). 186 
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We then analyzed the surface expression of HLA-A*02:01/HBV epitopes complexes. 187 

HBV-infected hepatocytes and HepG2-hNTCP-A3 cells were stained with anti-HBcAg 188 

antibodies and with the two TCR-like antibodies (17) over the duration of infection. The 189 

expression of two HBV epitopes was analyzed after gating on cells which were 190 

productively synthesizing HBcAg (gating strategy shown in Fig 3b). The quantity of the 191 

core and envelope derived epitopes did not increase in HBcAg-expressing targets over 192 

time. However, the presentation of both core and envelope epitopes was more efficient 193 

in PHH than HepG2-hNTCP-A3 and the A2-HBc18 complexes were presented more 194 

efficiently than the A2-HBs183 complexes both in hepatocytes and HepG2-hNTCP-A3. 195 

In contrast to peptide-pulsed targets (HepG2-pulsed with 1uM of peptide),the surface 196 

distribution of the HLA/HBV epitope complex on HBV-infected HepG2-hNTCP-A3 cells 197 

was in discrete cluster (Figure 3c). 198 

We then tested the ability of HBc18-27 and HBs183-91 specific CD8+ T cells to 199 

recognize HBV-infected targets. By day 1 after HBV infection hepatocytes  activated 200 

both HBc18-27 and HBs183-91 specific CD8+ T cells (Fig 3d) . CD8+T cell activation 201 

(tested as CD107a and IFN-γ/TNF- expression -Fig 3d) progressively increased from 202 

day 1 to day 7, as a likely result of the increased quantity of hepatocytes expressing the 203 

two different epitopes. Furthermore, HBs183-91 CD8+ T cells were activated more 204 

efficiently by PHH than HepG2-hNTCP-A3 infected cells (Fig 3d) in line with the superior 205 

presentation ability of PHH detected by TCR-like antibody staining.  206 

Effect of IFN-γ on HBV CD8+ T cell epitope presentation 207 

Efficient generation of viral epitopes in infected cells can be modulated by the presence 208 

of cytokines and particularly by IFN-γ, which is known to activate cellular 209 

immunoproteasomes(33). We tested the effect of IFN-γ treatment (at 100IU/ml for 48 210 

hours) on HBV-infected hepatocytes and HepG2-hNTCP-A3 (schematic figure 4a). As 211 
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 10 

expected (33), IFN-γ treatment increased the surface expression of HLA-class I 212 

molecules, as well as the mRNA expression level of the immunoproteasome subunit, 213 

PSMB8 and PSMB9 (data not shown). 214 

We then directly measured the quantity of HLA-A*02:01/HBV epitope complexes with 215 

TCR-like antibodies in HBcAg + and HBcAg- populations of infected targets (Figure 4b). 216 

Note that treatment of IFN-γ didn’t have any effect on TCR-like antibody staining in 217 

HBcAg negative population in comparison with HBcAg+ population of the infected 218 

targets (Fig 4c). In contrast, in HBcAg+ populations, IFN-γ treatment increased the 219 

surface expression of A2-HBs183 complexes at all time points but it has a more limited 220 

effect on A2-HBc18 expression (Fig 4b).  We then tested the impact of IFN-γ treatment 221 

on HBc18-27 and HBs183-91 specific CD8+ T cell recognition of infected targets. IFN-γ 222 

treatment did not alter HBc18-27-specific CD8+ T cell activation (Fig4d, left panels) but 223 

significantly increased HBs183-91-specific CD8+ T cell activation (Fig 4d, right panels) 224 

(shown as CD107a+ CD8+ T cells), as early as day 1 post infection, with approximately 225 

>40% of activated HBs183-91 CD8+ T cells detected by day 7 post-infection (Fig 4d, 226 

right panels). Activation of CD8+T cells measured by IFN-γ production displayed a 227 

similar pattern (data not shown). Thus, the presence of inflammatory cytokines (IFN-γ) 228 

affects epitope presentation in HBV-infected cells. 229 

HBV-epitope/HLA-A*02:01 complex presentation requires NTCP-mediated HBV 230 

internalization and synthesis of viral proteins 231 

It was previously shown that HBsAg can be efficiently cross-presented by dendritic cells 232 

and monocytes treated with inflammatory cytokines (34). Since HBV infection of PHH 233 

and HepG2-hNTCP-A3 cells was performed utilizing a high dose of virus (GEV of 234 

3000/cell), we sought to determine if HBV antigen presentation by HLA-Class I 235 

molecules was the result of cross-presentation of exogenous viral antigens or 236 
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 11 

processing of endogenously synthesized antigen. Both PHH and HepG2-hNTCP-A3 237 

were infected with HBV either in the presence or absence of the viral entry inhibitor 238 

Myrcludex–B peptide (800 nM) with or without IFN-γ treatment (Figure 5a). In both 239 

infection systems HBs183-91 and HBc18-27-specific CD8+ T cell activation was 240 

significantly reduced (Fig 5b).  241 

Furthermore, HBV infection was carried out with UV inactivated virus. Due to limited 242 

number of PHH, this experiment was performed only with HepG2-hNTCP-A3. 243 

Regardless of IFN-γ treatment, HBs183-91 and HBc18-27-specific CD8+ T cell 244 

activation was significantly reduced in UV inactivated HBV-infected targets (Fig 5c). 245 

Thus, these results show that the generation of HBs183-91 and HBc18-27 epitope is not 246 

the result of cross-presentation of HBV proteins present in initial HBV inoculum. At the 247 

contrary, since both MyrB (Fig 5d) and UV inactivation (data not shown) suppress the 248 

HBV antigen expression, epitopes presentation requires HBV entry and synthesis of 249 

viral proteins. Note that experiments performed with HBV infected HepG2-hNTCP-A3 250 

treated with nucleoside analogue (NA)(Lamivudine, 10µM)  didn’t suppress HBV epitope 251 

presentation (Fig 5e) since NA blocks HBV DNA and not protein synthesis. 252 

CD8+ T cell recognition of targets with HBV-DNA integration 253 

A variable quantity of hepatocytes present in chronically infected livers are not HBV-254 

infected but carry HBV-DNA integrations and this phenomenon is more intense in anti-255 

HBe+ patients(23, 25, 26). We analyzed the HLA class-I /HBV epitope complex 256 

expression on target cells with HBV-DNA integration: HepG2.2.15 (HepG2 cells with full 257 

HBV genome integration) (10), HepG2-Env (HepG2 cells with full HBV genotype D 258 

envelope) (35) and PLC/PRF5/HLA-A2+ (natural HCC line with partial HBV surface 259 

antigen DNA integration (36) transduced with the HLA-A*02:01 molecule). 260 

All cell lines produced HBsAg constitutively and showed a higher expression of A2-261 
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HBs183 complexes compared to HBV-infected HepG2-hNTCP-A3 at day 7 post-262 

infection (Fig 6a). The quantity of complexes was higher than what was observed in 263 

infected HepG2-hNTCP-A3 in the presence of IFN-γ. Furthermore, cells with full HBV 264 

genome integration (HepG2.2.15) could present A2-HBc18 complexes at a higher level 265 

than that quantified in HBV-infected HepG2-hNTCP-A3, regardless of the presence of 266 

IFN-γ (Fig 6b). 267 

Moreover, these cells could activate HBs183-91 CD8+ T cells as efficiently as, or even 268 

better than HepG2-hNTCP-A3-infected targets in the presence of IFN-γ (Fig 6c). Since 269 

viral epitopes should be derived preferentially from newly synthetized proteins, we 270 

analyzed whether the increased quantity of HBV epitopes derived from the protein 271 

coded by integrated HBV DNA were proportional to the level of mRNA. We quantified 272 

HBV large S mRNA expression levels in the cell lines containing HBV-DNA integration in 273 

comparison with acutely-infected HepG2-hNTCP-A3 targets. The level of HBs mRNA in 274 

cells with HBV-DNA integration was higher (Fig 6d). Taken together, these data show 275 

that at least in HepG2 derived lines, HBV epitopes are presented in higher quantities in 276 

targets producing antigens from HBV-DNA integration. The epitope presentation is 277 

proportional to the quantity of HBV antigen mRNA detected in the different targets 278 

suggesting that the quantity of newly synthetized proteins might regulate the efficient 279 

presentation of HBV peptides  280 

Differential final intracellular distribution of HBV antigens does not alter HBV 281 

epitope presentation  282 

HepG2-hNTCP-A3 lines could be maintained in vitro for prolonged periods (up to 28-30 283 

days after HBV infection). We used confocal laser scanning microscopy to evaluate the 284 

cellular localization of HBcAg and HBsAg over the duration of infection. 285 

HBsAg showed a diffuse cytoplasmic and/or membranous pattern irrespective of length 286 

 on D
ecem

ber 18, 2018 by guest
http://jvi.asm

.org/
D

ow
nloaded from

 

http://jvi.asm.org/


 13 

of infection (Fig 7a). In contrast, HBcAg displayed a predominantly cytoplasmic 287 

distribution during early phases of infection (days 7 and 14), whilst during prolonged 288 

infection (days 21 and 28) its localization was increased in the nucleus. This variable 289 

intracellular localization has also been observed in the liver of patients with chronic HBV 290 

infection and has been hypothesized to regulate HBV-specific T cell recognition (Fig 7b) 291 

(21, 22). Thus, we determine whether the final localization of core antigen (from 292 

cytoplasm to nucleus) in HBV-infected HepG2-hNTCP-A3 (Fig 7b) might alter the 293 

efficiency of HBV antigen presentation. No difference in the quantity of A2-HBc18 294 

complexes or the activation of HBc18-27 specific CD8+ T cells was observed at days 7, 295 

14, 21 and 28 post HBV infection in HepG2-hNTCP-A3 (Fig 7c and 7d). Thus, these 296 

data show that the final different intracellular localizations of core antigen do not alter the 297 

processing and presentation of the HBc18-27 epitope. 298 

Discussion 299 

The HBV-infected liver contains a mosaic of hepatocytes expressing HBV antigens in 300 

different quantities, localizations (23-25) and from different sources (cccDNA or HBV-301 

DNA integration) (26). Here, we analyzed, to our knowledge for the first time, not the 302 

distribution of HBV proteins but the one of HLA class-I/HBV peptide complexes within 303 

the hepatic parenchyma. Even though our analysis is restricted to only two  anti-HBe+ 304 

CHB patients we directly observed that HLA class-I/HBV epitopes can be not equally 305 

distributed in the liver but , at the contrary, preferentially present in distinct and 306 

sometimes mutually exclusive hepatic zones. 307 

We then analyzed the possible causes of this target heterogeneity in HBV-infected PHH 308 

and hepatoma cell lines either infected with HBV (HepG2-hNTCP-A3) or with HBV-DNA 309 

integration (HepG2.2.15, HepG2-Env and PLC/PRF5-A2+). By using HBV-specific 310 
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CD8+ T cells and antibodies specific to HLA class-I/HBV peptide complexes, we 311 

demonstrated that presentation efficiency of different HLA-class I restricted HBV 312 

epitopes is modulated by the presence of IFN-γ and by the level of production of newly 313 

translated antigens. 314 

These findings might have important consequences for the design of immunotherapies 315 

targeting HBV chronically infected liver since CD8+ T cells of different HBV epitope 316 

specificities would not have an identical capacity to recognize the heterogeneous 317 

population of HBV-infected hepatocytes. 318 

Furthermore, by comparing the ability of cells in expressing HBV antigens from infection 319 

(PHH and HepG2-hNTCP-A3) and from integration (HepG2.2.15, HepG2-Env and 320 

PLC/PRF5-A2+), we showed that the HLA-A*02:01 immunodominant HBs183-91 321 

envelope epitope (37) was presented more efficiently in targets with HBV-DNA 322 

integration than in HBV infected HepG2-hNTCP-A3. Future studies need to be 323 

performed to understand whether the differences can be generalized to normal HBV 324 

infected hepatocytes with HBV-DNA integration 325 

These finding depicts a scenario where hepatocytes with HBV-DNA integration, could 326 

act as a decoy for HBV-specific CD8+ T cells, sparing HBV-infected hepatocytes from 327 

recognition. Clearly, these data need to be confirmed for other HBV epitopes restricted 328 

by different HLA-class I molecules and in larger population of CHB patients. 329 

Nevertheless, if HBV-DNA integration represents the major and constant source of 330 

newly synthetized HBsAg, particularly in anti-HBe+ CHB patients (26), the possibility 331 

that envelope-specific CD8+ T cells in anti-HBe+ patients would preferentially target 332 

hepatocytes with HBV-DNA integration and not with productive HBV infection appears 333 

possible. 334 
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On the other hand, the efficient and consistent presentation of viral epitopes derived 335 

from HBV-DNA integration might open a therapeutic opportunity for the treatment of 336 

HBV-related hepatocellular carcinoma. We have already shown that T cells engineered 337 

with HBV-specific T cell receptors can target HBV antigens in HCC cells with HBV-DNA 338 

integration (38). Understanding the efficiency of HBV epitope presentation in HBV-339 

infected primary hepatocytes or tumor cells carrying HBV-DNA integration will allow the 340 

generation of engineered CD8+ T cells with T cell receptors specific for epitopes mainly 341 

produced by HCC cells and not by HBV-infected hepatocytes. 342 

There are several limitations in this study. First we defined the differential distribution of 343 

two HBV epitopes in the biopsies of only two CHB patients.  Our TCR-like antibodies 344 

detect HBV epitopes originated from HBV genotype D patients and  as such the pool of 345 

HLA-A*02:01+ CHB patients showing a positive staining with both TCR-like antibodies 346 

was reduced to only 3 CHB patients. Furthermore, only in two patients the consecutive 347 

sections stained with the two different HBV epitopes have an identical morphology that 348 

allow us to compare the topological localization of two different HBV epitopes. In 349 

addition, the differential distribution of core and envelope epitopes was detected in CHB 350 

patients that were anti-HBe+. Since the quantity of HBsAg produced from HBV-DNA 351 

integration has been shown to be predominant in this CHB patient population(26),   352 

future studies will be necessary to define whether the mosaic distribution of different 353 

HBV epitopes  can be generalized to other CHB patients populations.  354 

In addition, the TCR-like antibodies used here limited our analysis to the HLA-A*02:01-355 

restricted HBc18-27 and HBs183-91 epitopes . Although these epitopes are important in 356 

HLA-A*02:01+subjects (31), they might not be representative of other nucleocapsid or 357 

envelope epitopes restricted by different HLA-class I molecules. 358 
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For example, a core-derived HBV epitope restricted by HLA-A68w and HLA-A31 359 

requires the activation of the immunoproteasome (20). This clearly differs from our 360 

results indicating that HBc18-27 epitope remains unchanged upon treatment with IFN-γ. 361 

Similarly, we doubt that all envelope derived epitopes restricted by different HLA-class I 362 

will follow the same pattern of presentation as the HBs183-191 epitope reported here. 363 

For example, the clear dominance of the HLA-Cw0801-epitope HBs178-185 detected in 364 

Asian populations (39) might suggest that its generation is mediated by constitutive 365 

proteasome activity like the immunodominant HLA-A*02:01/ HBc18-27. 366 

Nevertheless, the differences in the presentation efficiency of the two HBV epitopes 367 

described here suggest that during natural infection, HBV-specific CD8+ T cells of 368 

different specificities might target selected HBV antigen-expressing hepatocytes with 369 

different efficacy within an infected liver. These findings called for a deeper 370 

understanding of the HBV epitope hierarchy of presentation across different HLA-class I 371 

backgrounds in order to design immunological strategies to control chronic HBV 372 

infection or HBV-related HCC in patients.  373 

 374 

Material and Methods 375 

Cell Lines 376 

Table 2 lists the biological features of cell lines used in the experimental settings. 377 

Briefly, human liver cancer line HepG2 (ATCC), HepG2-hNTCP-A3 (HepG2 cells 378 

transduced with human NTCP) (14) and HepG2.2.15 (HepG2 cells transduced with full 379 

HBV genome) (10), were maintained in DMEM supplemented with 10% heat-inactivated 380 

fetal bovine serum (FBS), 100 U/ml of penicillin, 100 µg/ml of streptomycin and 381 

Glutamax (Invitrogen, Carlsbad, CA). HepG2-hNTCP-A3 and HepG2.2.15 were selected 382 
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using 5 µg/ml of puromycin (BD Biosciences, San Jose, CA) and 200 µg/ml geneticin 383 

(G418 disulfate salt) (Sigma-Aldrich, St. Louis, MO), respectively.  384 

HepG2-Env (35), PLC/PRF5/A2+ (PLC/PRF5 (36) transduced with HLA-A*02:01) and 385 

EBV core (EBV-transformed B lymphoblastoid cell line transduced with full HBV core) 386 

(8) were maintained in RPMI 1640 supplemented with 10% heat-inactivated FBS, 20 387 

mM HEPES, 0.5 mM sodium pyruvate, 100 U/ml penicillin, 100 µg/ml streptomycin, 388 

MEM amino acids, Glutamax and MEM nonessential amino acids (Invitrogen, 389 

Carlsbad,CA). HepG2-Env and PLC/PRF5/A2+ were selected using 5µg/ml of 390 

puromycin. EBV core cells were selected using 250ug/ml hygromycin (Sigma-Aldrich). 391 

HepAD38 cells, used for virus particle production, were cultured in DMEM with 10% 392 

tetracycline-free FBS, 100 U/ml penicillin/streptomycin, 2mM L-glutamine and 0.4 ug/ml 393 

doxycycline(41). 394 

Primary human hepatocyte (PHH) culture 395 

Fresh HLA-A*0201+ PHH were obtained from humanized FRG mouse model (Invitrocue, 396 

Singapore). PHH were maintained in a distinct density according to the manufacturer 397 

protocol in Hepacur medium (Invitrocue, Singapore) containing 2% DMSO in 37 ºC with 398 

5% CO2 all through the experiment. 399 

HBV virus production 400 

Briefly, to induce virus particle production in HepAD38 (HBV genotype D), doxycycline 401 

was removed from the medium, fresh medium replaced and after 20 days, HBV DNA 402 

titres were measured from the supernatant by qPCR, according to manufacturer's 403 

instructions, using Qiagen HBV Artus PCR kit (Qiagen). Virus particles were 404 

subsequently concentrated using a commercial polyethylene glycol (PEG) precipitation 405 

kit (Abcam) according to manufacturer's protocol, which resulted in approximately 50-406 

100 fold concentration of virus stock.  407 
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HBV infection  408 

HepG2-hNTCP-A3 cells at 70% confluency and PHH at day 1 post seeding were 409 

inoculated with approximately 50-100 fold concentrated supernatant of HepAD38 as 410 

HBV inoculum (genotype D) at multiplicities of GEV 3000/cell in 4% PEG (Sigma–411 

Aldrich) medium for 24 hours at 37 ºC with 5% CO2. Inoculum was removed 412 

subsequently and cells were washed with 1XPBS, three times. Infection efficiency was 413 

quantified at 12 hours, 18hours, days 1, 3, 7 for both HepG2-hNTCP-A3 and PHH after 414 

removal of inoculum, referred to as time post-infection. 415 

Co-culture experiment of HBV specific CD8+ T cells with targets 416 

Two HLA-A*02:01 CD8+ T cell lines specific to HBV epitopes core18-27 (HBc18-27), 417 

S183-91 (HBs183-91) were generated from HLA-A02:01+ patients with acute hepatitis 418 

infection and maintained in vitro as described previously (40). 419 

The activation of HBV-specific CD8+ T cells was tested by measuring degranulation 420 

(CD107a) and cytokine production (IFN-γ and TNF-α) through surface and intracellular 421 

staining, respectively. Briefly, CD8+ T cells were incubated with different cell lines for 5 422 

hours in the presence of Brefeldin A (BFA) (10 µg/ml) and CD107a-FITC (BD 423 

Biosciences) at E:T ratio of 1:2 at 37 ºC with 5% CO2. After washing, cells were 424 

subjected to surface and intracellular staining. 425 

Both CD8+ T cell clones were activated by HepG2.2.15 (HepG2 cells with full HBV 426 

genome integration) (10), demonstrating their ability to recognize HBV epitopes 427 

produced from endogenously synthetized HBV antigens (data not shown). Analysis of 428 

functional affinity of the CD8+ T cell clones showed that HBc18-27 and HBs183-91 429 

specific CD8+ T cells can recognize target cells (HLA-A*02:01+ EBV-immortalized B 430 

cells) pulsed with peptide concentration as low as 1-10pM. 431 

Surface and Intracellular staining 432 
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HBV specific CD8+ T cell activation: 433 

Upon 5 hours incubation with CD8+ T cell clones in the presence of CD107a and BFA 434 

(as described earlier), cells were stained with anti-CD8 V500 (Biolegend) for 30 min at 435 

4°C followed by standard intracellular staining protocol. Briefly, cells were fixed and 436 

permeabilized for 30 min at 4°C (CytoFix/Cytoperm, BD Biosciences), followed by 437 

staining with mouse anti human IFN-γ PE-CY7 (Biolegend) and mouse anti human TNF-438 

α PE (BD Biosceinces) for 30 min at 4°C . Finally, cells were fixed in 1% PFA in 1X PBS 439 

and cell acquisition was done using BD LSR-II flow cytometer and data were analyzed in 440 

FACS Diva software. 441 

HBV infection efficiency: 442 

HBV-infected or un-infected cells at different times post-infection were fixed and 443 

permeabilized for 30 min at 4°C (CytoFix/Cytoperm, BD Biosciences). Cells were then 444 

stained with primary antibodies, rabbit HBcAg (Thermofisher scientific) and mouse 445 

HBsAg (RayBiotech) for 30 min at 4°C. This was followed by 30 min staining using 446 

secondary antibodies goat anti-rabbit –CF55 (Sigma-Aldrich) and goat anti-mouse APC 447 

(Invitrogen) at 4°C. Cells were then fixed at 1% PFA in 1X PBS and acquisition was 448 

done using BD LSR-II flow cytometer and data were analyzed in FACS Diva software. 449 

HBV-epitope/HLA-A*02:01 complex quantification  450 

Two antibodies specific to HBc18-27 and HBs183-91/ HLA-A*02:01 complexes were 451 

used for staining PHH, hepatocyte-like cell lines and liver biopsies. Their production and 452 

specificity was described previously (17). Since they recognize the complexes HBV-453 

peptide/HLA-A*02:01 molecules like a T cell receptor of T cells, we defined them as 454 

TCR-like antibodies.  455 

In-vitro HBV infection system:  456 
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Flow cytometry analysis: 457 

Infected or un-infected cells were stained with Aqua LIVE/DEAD fixable dead cell stain 458 

kit (Invitrogen) for 10 min at room temperature (RT) followed by staining with TCR-like 459 

antibodies for 1 hour. Cells were then stained with goat anti-mouse APC secondary 460 

antibody (Invitrogen). Cells were then subjected to an APC FASER amplification kit 461 

(Miltenyi Biotech). This was followed with intracellular staining for HBcAg (as described 462 

earlier). APC mean fluorescence intensity (MFI) in cells positive for HBcAg was 463 

analyzed using BD LSR-II flow cytometer. Data analysis was done using FACS Kaluza 464 

software (Beckman Coulter). 465 

Image stream analysis: 466 

Infected or un-infected cells were stained with TCR like antibodies for 1 hour followed by 467 

staining with goat anti-mouse APC secondary antibody for 30 min. APC signal was 468 

amplified as described earlier. MFI of APC was then analyzed using Image Stream 469 

analyser. Images were analyzed using the IDEAS 4.0 software. 470 

Liver Biopsy tissue staining: 471 

TCR-like mAb staining 472 

Briefly, human liver biopsy samples from 8 HLA-A*02:01 patients as described in table 473 

1, were kept frozen in OCT (VWR Chemicals) before staining. Tissues were then 474 

sectioned (5µm) and fixed in acetone for 30 min followed by air-drying for 10 min. 475 

Samples were then washed with 1X PBS followed by two-step blocking with Dual 476 

Endogenous enzyme block (DAKO, Agilent Technologies) and 2% BSA in 1XPBS at RT 477 

for 10 and 30 min, respectively. Tissues were incubated with above mentioned TCR-like 478 

antibodies overnight at 4ºC. This was followed by anti-mouse secondary antibody 479 

staining using EnVision+ System-HRP labelled polymer (DAKO, Agilent Technologies), 480 
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for 30 min at RT. Tissues were then subjected to a Tyramide staining -Alexa Fluor 647 481 

(Thermo Fisher Scientific) amplification kit, followed by co-staining with a mouse anti-482 

human cytokeratin18-FITC (Miltenyi Biotech) and nuclei staining with DAPI. Whole-483 

tissue scanning and fluorescence microscopy was performed on an automated scanning 484 

workstation (TissueFAXS; Tissue Gnostics). 485 

Viral antigen staining in liver biopsies 486 

Tissue biopsy kept in OCT (as mentioned previously) were sectioned (5uM) and washed 487 

with 1XPBS. Slides were then blocked and permeabilized using 3% mouse sera 1% 488 

BSA, 0.25% Saponin in 1X PBS. This was followed with staining of tissue sections with 489 

primary antibody goat anti-HBsAg (Abcam) overnight at 4°C. Tissue sections were then 490 

subjected to staining with secondary antibody, rabbit anti-goat APC coupled with 491 

Cytokeratin 18-FITC conjugated antibody (Miltenyi Biotech). Cells were then stained 492 

with DAPI for nuclei staining. Images were captured using whole-tissue scanning and 493 

fluorescence microscopy on an automated scanning workstation (TissueFAXS; Tissue 494 

Gnostics) 495 

Immunofluorescence staining  496 

HBV-infected HepG2-hNTCP-A3 cells were seeded on cover slips at 2x105 cells density. 497 

At indicated days post-infection, cells were washed with 1XPBS and fixed with 4% PFA 498 

for 10 min. Upon permeabilization, cells were stained using primary antibodies rabbit 499 

anti-HBcAg (Abcam) and mouse anti-HBsAg (RayBiotech) followed by secondary 500 

antibodies goat anti-rabbit CF633 (Sigma-Aldrich) and goat anti mouse AF-488 501 

(Invitrogen). Cell nuclei were then stained with DAPI and images were acquired using 502 

Carl Zeiss confocal laser scanning upright microscope. 503 

NanoString gene expression analysis 504 
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Targets with HBV-DNA integration as well as HBV-infected or un-infected cells were 505 

lysed in RLT lysis buffer (QIAGEN, supplemented with 2-mercaptoethanol at 1:100) 506 

according to Nanostring Technologies guidelines. Lysate of at least 20000 cells were 507 

analyzed using the customized nCounter GX human Immunology Kit coupled with 508 

probes specific to HBV viral RNA. Probe set specific to HBV viral RNA were designed 509 

according to Nanostring nCounter Technology guidelines (Nanostring Technologies, 510 

Seattle, WA) to specific regions on the HBV genome as shown in Fig 2b.  511 

The background detection and normalization of data was done using the n-Solver 512 

analysis software 3.0 based on the geometric mean of the supplied positive and 513 

negative controls and the housekeeping gene panel. 514 

Statistics  515 

Statistical significance was evaluated with 2-tailed t test and, where appropriate, one 516 

way or 2-way ANOVA with Tukey’s or Dunnett’s multiple comparisons test using the 517 

data analysis software Prism 6. Only P values and adjusted P values (ANOVA) of less 518 

than 0.05 were considered significant and displayed in the figures. 519 
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 667 

Figure legends 668 

Figure 1: Spatial distribution of HLA/HBV epitope complexes in HBV chronically 669 

infected livers Comparative analysis of CHB patients’ liver biopsies demonstrated a 670 

non-uniform distribution of HBV epitope presentation in liver parenchyma.  671 

(a-d) Consecutive sections of two CHB patient liver biopsies (Patient number 1 and 2 in 672 

table 1), stained with isotype control antibody (anti mouse IgG-APC), TCR-like antibody 673 

specific for HLA-A*02:01/HBs183-91 (labelled as A2-HBs183) and for HLA-674 

A*02:01/HBc18-27 (labelled as A2-HBc18) complexes and with anti-HBs antibody 675 

(Insert b and d).  Regions positive for antibodies staining (TCR-like and anti-HBs 676 

antibodies) are in red, hepatocytes are stained with cytokeratin 18 in green, and nucleus 677 

of cells  is stained with DAPI  in blue. The images are captured using TissueFAXS 678 

immunofluorescent microscopy. 679 
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A schematic representation of the distribution of the two HLA-A*02:01/HBV epitope 680 

complexes in hepatic parenchyma of patient 1 is shown. Region A marks fibrotic portal 681 

region. Region B indicates parts only positive for A2-HBc18 complexes while region C is 682 

positive for A2-HBs183 complexes. Region D and E mark regions respectively negative 683 

or positive for both HLA/HBV epitopes complexes. Region E marks the region positive 684 

for both A2-HBc18 and A2-HBs183 complexes.  685 

(e) Representative liver biopsy images of a HLA-A*02:01 positive patient infected with 686 

HBV genotype C (patient number4 in table 1), stained with TCR-like antibodies. 687 

Inserted Tables summarize the clinical and virological features of each patient. 688 

 689 

Figure 2:  Establishment of in vitro HBV infection in PHH and HepG2-hNTCP-A3 690 

cells 691 

(a) Schematic representation of the experimental procedure utilized to infect HepG2-692 

hNTCP-A3 and PHH. Cells were inoculated at multiplicities of GEV 3000/cell for 24 693 

hours. Cells were utilized for virological and immunological assays at the indicated times 694 

after removal of the inoculum (time 0) referred to as time post-infection. 695 

(b) Nanostring probes specific to HBV 3.5kb mRNA (pgRNA) (3.5Kb mRNA probe), HBV 696 

large S (S probe) and HBV core (Core probe) mRNA are designed. Map represents the 697 

regions on the HBV genome which is covered by each probe. 698 

(c and d) Probes specificity were tested in cells with over-expression of individual HBV 699 

protein or full HBV-DNA integration: HepG2-Env and HepG2.2.15 (See Table 2). Bars 700 

show normalized counts for the indicated mRNA obtained by nanostring technology in 701 

each cell line. The highest count in each cell line belongs to the probe more specific to 702 

the region of the HBV protein which the different cell lines are overexpressing. (c) 703 
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HepG2-Env cell lines shows higher counts for the probe specific to a region of large S. 704 

(d) Highest counts of the probe specific to HBV 3.5 kb mRNA (pgRNA) is observed in 705 

HepG2.2.15, which has active HBV replication.  706 

(e) HBV 3.5 kb mRNA expression in PHH (left) and HepG2-hNTCP-A3 (right) infected 707 

cells at indicated length of infection. Bars represent the normalized counts of HBV 3.5 kb 708 

mRNA (pgRNA) obtained using nanostring technology.The indicated p values  represent 709 

the significant increase of viral replication over the time of infection  ( Mean of 3 710 

replicates) . 711 

 (f) Frequency of HBV-infected (solid lines) or un-infected (dotted lines) cells in PHH 712 

(right) and HepG2-hNTCP-A3 (left). Cells expressing HBcAg (blue) or HBsAg (green) at 713 

12 hours, 18 hours and day 1, 3 and 7 post-infection are measured with anti-HBs and 714 

anti-HBc specific antibodies by flow cytometry analysis. A gradual increase in frequency 715 

of HBcAg/HBsAg positive cells is observed in both PHH and HepG2-hNTCP-A3 over 716 

infection time.  717 

(g) HLA-class I surface expression in HBV-infected PHH (top) and HepG2-hNTCP-A3 718 

(bottom) cells measured using flow cytometry. The surface expression of HLA-class I is 719 

compared to un-infected target cells over time (day 1-7). 720 

Figure 3:  HLA/HBV epitope complexes presentation on HBV-infected PHH and 721 

HepG2-hNTCP-A3 722 

(a) Schematic representation of HBV infected PHH or HepG2-hNTCP-A3 utilized for  723 

immunological assays. 724 

 (b) Quantity of HLA-A*02:01/HBV epitope complexes on the HBcAg negative and 725 

positive on HBV infected cells is measured using two TCR-like mAb, A2-HBc18 and A2-726 

HBs183, by flow cytometry analysis. On left, shown is the gating strategy. Histogram 727 

 on D
ecem

ber 18, 2018 by guest
http://jvi.asm

.org/
D

ow
nloaded from

 

http://jvi.asm.org/


 29 

displays a representative  MFI of TCR-like  antibodies measured on gated cells positive 728 

or negative for HBcAg staining (using anti-HBc antibody) (L/D stands for Live/dead). The 729 

representative dot plot on the right shows the staining profile of double positive 730 

population for HBcAg (X axis) and TCR-like mAb (Y axis).  On right, bars show MFI 731 

values of A2-HBc18 (blue) and A2-HBs183 (green) on HBcAg+ cells in comparison with 732 

the HBcAg- population in both PHH (top) and HepG2-hNTCP-A3 (bottom) infected cells. 733 

Dots represents individual experiments. At least two replicates for indicated time points 734 

were performed.  735 

(c) The surface distribution of A2-HBc18 is shown on HepG2-hNTCP-A3 cells infected 736 

for 7 days post-infection in comparison with HepG2 cells pulsed with 1ug/ml of HBc18-737 

27 peptide, using Image Stream analyser. Representative images of cells show 738 

clustered distribution of complexes on infected targets as oppose to peptide pulsed 739 

ones. Un-infected cells show negative background staining. BF = bright field, APC= 740 

fluorescent field 741 

 (d) Ability of HBc18-27 (blue bars) and HBs183-91 (green bars) specific CD8+ T cells to 742 

recognize PHH and HepG2-hNTCP-A3 infected with HBV for the indicated times. Bars 743 

show the frequency of CD107a-expressing CD8+ T cells (top panels), activated IFN-γ 744 

(second row panels) or TNF-α (bottom panels) positive CD8+ T cells among total CD8+ 745 

T cells  after being co-cultured for 5 hours with E:T ratio of 1:2. All data shown as the 746 

mean ± SD of at least 3 independent experiments. 747 

 Figure 4: The effect of IFN-γ on HBV-epitopes presentation 748 

(a) Schematic of experimental procedure of IFN-γ pulsing ( 100IU/ml - 48 hours ) of HBV 749 

infected HepG2-hNTP-A3 and PHH . 750 
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(b) Direct quantification of HLA-class I/HBV epitope complexes with Abs specific for A2-751 

HBc18( blue) and A2-HBs183(green) complexes in HBV-infected PHH (left panels) or 752 

HepG2-hNTCP-A3 (right panels)  with or without IFN-γ. Bars show MFI of HBcAg+ 753 

population in untreated infected cells (dark shades) compared with IFN-γ treated ones 754 

(shown in brighter shades).  755 

(c)Representative histogram plots of day 3 post-infection showing MFI of A2-HBc18 756 

(blue) and A2-HBs183 (green) complexes on cell surface of HBcAg- (Top panels) and 757 

HBcAg+ cells (bottom panels) in infected PHH (left ) or HepG2-hNTCP-A3 cells (right). 758 

In each Histogram the MFI of TCR-like mAb is shown in the presence (dotted lines) or 759 

absence (solid lines) of IFN-γ treatment.  760 

(d) Ability of CD8+ T cells specific for HBc18-27 (blue bars) and HBs183-91 (green bars) 761 

to recognize infected PHH or HepG2-hNTCP-A3 for the indicated duration, with (brighter 762 

shades) or without (dark shade) IFN-γ treatment (100 IU/ml, for 48 hrs). Bars represent 763 

frequency of CD8+ T cells expressing CD107a among total CD8+ T cells co-cultured 764 

with PHH (top) and HepG2-hNTCP-A3 (bottom) for 5 hours at E:T ratio of 1:2 . All data 765 

shown as the mean ± SD of at least 3 independent experiments. 766 

Figure 5: HBV-epitope presentation requires NTCP-mediated infection and  viral 767 

protein synthesis 768 

(a) Schematic representation of infection of HepG2-hNTCP-A3 and PHH in the presence 769 

or absence of 800nM Myrcludex B (MyrB) 770 

(b) Frequency of HBV-specific CD8+ T cells expressing CD107a among total CD8+ T 771 

cells after 5 hours of co-culture (E:T ratio = 1:2) with infected PHH (left panels) or 772 

HepG2-hNTCP-A3 (right panels) at day 1 post-infection. Targets are infected in the 773 
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presence or absence of MyrB. In addition cells were either treated with IFN-γ or left 774 

untreated as described in Fig 4. 775 

(c) Ability of CD8+ T cells specific for HBc18-27 (blue bars) or HBs183-91 (green bars) 776 

to recognize HepG2-hNTCP-A3 infected with HBV or UV inactivated HBV, in the 777 

presence or absence of IFN-γ. Bars show CD8+ T cells positive for CD107a among total 778 

CD8+ T cells after 5 hours of co-culture with target cells at day 1 post-infection, E:T ratio 779 

= 1:2. Data shown as mean ± SD of two independent experiments. 780 

 (d) Expression of HBcAg (blue bars) and HBsAg (green bars) in the presence or 781 

absence of MyrB treatment in both PHH (top) and HepG2-hNTCP-A3 (bottom) infected 782 

targets at day 1 p.i is shown. Targets are either treated with IFN-γ (brighter shades) or 783 

un-treated (darker shades).   784 

(e) Frequency of CD107a positive CD8+ T cells specific for HBc18-27 (blue bars) and 785 

HBs183-91 (green bars), co-cultured with HBV infected (darker shades) or un-infected 786 

(brighter shades) HepG2-hNTCP-A3 treated or un -treated  with 10µM Lamivudine . 787 

Data related to day3 post infection. 788 

Figure 6: Superior HBV CD8+ T cell epitope presentation on targets producing 789 

HBV antigens from HBV-DNA integration 790 

(a) Direct quantification of A2-HBs183 complexes on the surface of hepatoma cells with 791 

HBV-DNA integration (HepG2.2.15, HepG2-Env, PLC/PRF5-A2+) in comparison with 792 

infected HepG2-hNTCP-A3 at day 7 post-infection treated or untreated with IFN-γ. Cells 793 

were stained with A2-HBs183 antibody as indicated previously. Bars show MFI of 794 

indicated antibody measured by Image Stream analyser. 795 
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(b) Bars show MFI of A2-HBc18 complexes on the surface of cells with full HBV genome 796 

integration, HepG2.2.15 in comparison with infected HepG2-hNTCP-A3 cells at day 7 797 

post-infection in the presence or absence of IFN-γ. MFI is measured using Image 798 

Stream analyser. 799 

(c) Ability of HBs183-91 specific CD8+ T cells to recognize target cells with HBV-DNA 800 

integration (HepG2.2.15, HepG2-Env, PLC/PRF5-A2+) and HBV-infected HepG2-801 

hNTCP-A3 (day 7 post-infection with or without IFN-γ treatment). Bars represent 802 

activation of CD8+ T cells measured through CD107a expression. 803 

(d) Expression of HBV large S mRNA is quantified on target cells with HBV-DNA 804 

integration (HepG2.2.15, HepG2-Env and PLC/PRF5-A2+). Bars represent the numeric 805 

normalized count of mRNA measured by nanostring technology. These values are 806 

compared to similar quantifications in HBV-infected HepG2-hNTCP-A3 target cells at 807 

day 7 post-infection. 808 

Figure 7: Cytosolic to nuclear re-localization of HBcAg does not alter HBc18-27 809 

epitope presentation 810 

(a) Cytoplasmic distribution of HBsAg at days 7 and 28 post infection in HepG2-hNTCP-811 

A3 cells using confocal laser scanning microscopy. The HBsAg is stained in green using 812 

anti-HBs antibody while the nucleus is stained blue using DAPI. 813 

(b) HBcAg re-localization from cytosolic (days 7 and 14 post-infection) to more nuclear 814 

localization (21 and 28 days post-infection) during HBV infection in HepG2-hNTCP-A3 815 

using confocal laser scanning microscopy. HBV-infected HepG2-hNTCP-A3 are stained 816 

with anti-HBc antibody (red) and DAPI to stain nucleus (blue).  817 

(c) Ability of CD8+ T cells specific for HBc18-27 to recognize HepG2-hNTCP-A3 818 

infected with HBV for the indicated time. Shown is the frequency of the CD8+ T cells 819 
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positive for CD107a among total CD8+ T cells upon co-culture with HepG2-hNTCP-A3 820 

targets for 5 hours at E:T ratio of 1:2. Data are shown as mean ± SD of at least two 821 

independent experiments. 822 

(d) Direct quantification of A2-HBc18 complexes on the surface of HBV-infected HepG2-823 

hNTCP-A3 kept in culture for prolonged infection duration. Bars represent the MFI of A2-824 

HBc18 on HBV-infected HepG2-hNTCP-A3 cells normalized to un-infected cells at each 825 

time post-infection. MFI is measured using Image Stream analyser. 826 

 827 

 828 

 829 

 830 

Table1: Virological and clinical characteristics of CHB patient liver biopsies 831 

Biopsy HBV 
Genotype 

HLA 

Typing 

HBsAg HBeAg TCRl-mAb-Apc 

1 (Fig1a,b) D A*02:01 POS POS POS 

2 (Fig 1c,d) D A*02:01 POS POS POS 

3 D A*02:01 POS POS POS 

4 (Fig 1e) C A*02:01 POS POS NEG 

5 C A*02:01 POS POS NEG 

6 C A*02:01 POS POS NEG 

7 B A*02:01 POS POS NEG 

8 B A*02:01 POS POS NEG 

 832 

 833 

 834 

 835 

 on D
ecem

ber 18, 2018 by guest
http://jvi.asm

.org/
D

ow
nloaded from

 

http://jvi.asm.org/


 34 

 836 

 837 

 838 

 839 

 840 

 841 

 842 

 843 

 844 

Table 2: List of cell lines used in experimental systems 845 

Cell line Description 

HepG2 HLA-A*02:01+, HCC line with no HBV DNA 

integration 

HepG2-hNTCP-A3 (A3 

clone) 

HepG2 cells overexpressing HBV entry receptor 

(hNTCP) (14) 

HepG2.2.15 HepG2 cells with full HBV genome integration 

producing virions (10) 

HepG2-Env HepG2 cells transduced with HBV Env (35) 

PLC/PRF5- HLA-A*02:01 Natural HCC line with partial HBV surface antigen 

DNA integration(36) / transduced with HLA-A*02:01 

molecule 

EBV core HLA-A*02:01+, EBV immortalized B cell lines 

transduced with HBV core DNA (8) 

HepAD38 HepG2 cells with full HBV genome integration 

producing virion (41) 
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 846 

 847 
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