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ABSTRACT  

This paper presents the results of a multidisciplinary study of the impact of climate 

change during the Little Ice Age on a medieval village in Asturias, Spain. The research 

focused on tracing evidence for a catastrophic flood that buried the village beneath a 

thick layer of debris, including examining the remains of structures and agricultural land 

sealed beneath the debris, and considering the social and economic implications of the 

event in the subsequent history of the area. First, a series of test pits was excavated within 

the area of the modern village to map the full extent of the damage. Following this, 

analysis of the stratigraphy, architectural remains, datable artefacts and radiocarbon 

dating contributed further details, while historical evidence revealed the privatisation of 

the agricultural land following the catastrophe. The findings offer a snapshot of climate 

change and its social contexts in a specific, under-studied area with possible implications 

for the study of risk behaviour and disaster response in currently inhabited areas.   



Introduction 

In this paper we present a case study of a flash-flooding event that destroyed a medieval 

village in the North West of the Iberian Peninsula, forming a large and enduring 

torrential cone. Through this work we were able to date the flooding event to close to the 

beginning of the Little Ice Age, most likely between the end of the thirteenth and the 

mid-fourteenth centuries. Through further detailed analyses of the sites, stratigraphy and 

relevant historical data we have begun to outline the social consequences of the flooding 

and the destruction it caused in the short, medium and long term. To this end our 

archaeological data are supported by a geo-morphological study of the basin and an 

analysis of morphometric parameters to enable us to examine the likely causes and the 

nature of the flash-flood and its aftermath. 

Van de Noort's essay on archaeological approaches to climate change stated that ‘By 

offering long-term perspectives on human interrelationships with climate change, 

archaeology is well placed to enhance an understanding of the socio-ecological 

resilience of communities and their adaptive capacity’ (2011, 1046). The idea of an 

instrumental archaeology at the service of studies of resilience and endurance in the 

face of environmental disaster is an inspiring one, but we would argue also for a 

campaigning archaeology of climate change that highlights the human impacts at the 

points where resilience and adaptation fail.  

This paper aims to contribute in a modest way to the growing body of research into 

global warming that seeks to derive humanistic and socio-politically engaged 

conclusions, and drive political action. To this end we examine events in medieval 

Asturias in terms analogous to studies of climate change and its human impacts in the 

contemporary world, drawing on ideas including Naomi Klein’s notion of the ‘shock 

doctrine’ and the operating methods of predatory ‘disaster capitalism’ (Klein 2007). 

The Little Ice Age: Climate and Archaeological Context 

As will be made clear below, dating evidence places the flash-flooding event described in 

this paper close to the beginning of the Little Ice Age. The Little Ice Age (here-after LIA) 



refers to a period between (roughly) 1300 and 1850 AD (Fagan 2000), when temperatures 

in the northern hemisphere were markedly colder than the preceding Medieval Warm 

period by an average of approximately 0.3°C, and 0.8°C lower than at the end of the 

twentieth century (Mann 2002). Alongside temperature changes the LIA was characterised 

by, inter alia, the growth of mountain glaciers and hydrological impacts including increased 

rainfall (see Morellón et al. 2011, for a discussion of these changes with a specific focus on 

northern Spain). While it was initially characterised as a period of consistent low 

temperature the LIA is now generally understood in terms of variability and instability, 

with considerable regional variation (Bradley and Jonest 1993; Pfister 1992). In the 

Atlantic region in particular, changes to the Gulf Stream at the start of the LIA 

contributed to irregular patterns of rainfall both seasonally and annually, while in the 

Mediterranean region and the Alps the same period was marked by an increase in rainfall 

(Benito et al. 2008). 

Archaeological studies of the LIA and past climate change in general have tended to 

operate at regional and larger scales: this is often for sound reasons, including the need 

to gather large datasets over a wide and varying area to carry out meaningful analyses. 

This has had the effect of creating a pattern of generalised results at regional levels and 

above, and has also left a relative dearth of fine-grained studies on a small, settlement-

level scale. Finer-grained local area studies such as this can contribute to an appreciation 

of regional and temporal variations in the LIA. Studies such as this that link the climatic 

evidence to socio-economic processes remain rare for the earlier stages of the LIA, when 

there are far fewer historical sources than for the later periods. It is here that 

archaeological evidence can be particularly valuable. 

Site and Methods 

The focus of this project is Villanueva, a concentrated settlement of approximately fifty 

inhabitants situated in a valley of the Cordillera Cantábrica, the mountainous area in the 

centre of Asturias, north-western Spain (Figure 1). The village is located on the fluvial 

terraces of the river Trubia, a tributary of the Nalón river, and was known as S. Romano in 

the Middle Ages: currently S. Romano is one of its 8 neighbourhoods, seated on both sides 

of a torrential stream of the same name. 



Villanueva is located on the narrow alluvial plain in the valley bottom, 150 m above sea 

level. The proximity of the river provides a range of cultivable soils. Agricultural and cattle 

areas are distributed around the village following the classic concentric distribution of 

European villages of medieval origin, with the orchards dedicated to intensive agriculture 

closer to the village, followed by the ‘veigas’ (cereal crops areas of collective regulation), 

forests and meadows in the slopes, occupying an intermediate position, and finally the 

uplands dedicated to extensive livestock farming. The total extension of the parish (San 

Romano) is about 6 km2. The orography is very rugged which causes the majority of this 

small territory present important and large slopes. The climate is oceanic, influenced by the 

sea, with cool summers, mild winters and abundant precipitations all year rounds. During 

the Middle Ages, the village was under control of the Tuñón monastery. This was a major 

power centre at the time, organised and built around an important pre-Romanesque church 

constructed during the 9th century (Fernández Fernández 2017a). 

Starting in 2009 a series of test pits were excavated as part of a project to trace the origins 

and development of the medieval village, obtaining a quantity of archaeological data 

including stratigraphic and soil analyses, radiocarbon dates, and material culture dating from 

pre-history to the present. The initial findings of these test pits forms part of an article 

published previously (see Fernández Mier et al. 2014). In this paper brief mention is made to 

evidence for a historic flood found in some of the test pits, and its potentially catastrophic 

impacts on the village. These flooding layers are the focus of the current analysis, focusing 

on two major stratigraphic sequence and the resulting geoarchaeological and 

palaeoenvironmental analyses. 

The topography of the torrential cone, formed during the flood and subsequently altered 

by construction and agriculture, was reconstructed using Lidar data and GIS software. 

Following this, an analysis was carried out of the morphometric parameters of the S. 

Romano stream basin, together with estimates of the water velocity based on measurements 

of the larger stones trans-ported by the flood employing Costa’s (1983) equations. 

Radiocarbon dates were obtained for three samples taken from the excavations: there were 

calibrated to an accuracy of 2σ with 95.4% probability (Blaauw 2010) using OxCal v4.2.2 

(Bronk Ramsey 2009) with atmospheric data intcal09.14C (Reimer et al. 2009). 



Results 

A series of ten test pits were excavated in and around the location of the medieval village 

of S. Romano (Figure 2). Traces of flooding were found in seven of the ten, made up of 

gravel and sand layers and the remains of flood channels. The flood deposits are alluvial, 

deposited by flood related running water, and forming an alluvial fan. These allow us to 

trace the shape and extent of the torrential cone, and two test pits in particular (TP CDR 

and TP MUR) offered particularly detailed insights into the nature of the flood-ing event 

(Figure 2). Nowadays there is a torrent (S. Romano stream) that incises the medieval 

alluvial fan. These findings and the stratigraphic and sedimentary analyses of these two 

test pits are described below. 

 

TP CDR 

This test pit was placed on the western side of the research area, towards the centre of the 

torrential cone. It contained a stratigraphic sequence detailed in Figure 3, beginning with 

a series of Roman levels (notably from the High-Imperial period) (Fernández Fernández 

2014a, 2014b, 2017b). 

Above the Roman material were a number of strati-graphic levels and structural features 

dating from the ninth to eleventh centuries, which matches previous theories on the date of 

origin of the medieval village. These included a layer of blackened soils, context 010, 

amortising the first negative structures recorded (S.U. 011 and 012) and related to a period 

in which seem to have happened different types of agricultural and domestic use. In this 

layer fauna, black pottery and iron -mainly nails- are intermingled and embedded with 

abundant carbonised vegetable matter. 

Micromorphological and geochemical data from 010 confirm the presence of abundant 

small fragments of domestic waste as bone, charcoal and dung dispersed in the sediments 

that could indicate tilling and manuring of an orchard area nearby domestic spaces or 

structures (Figure 4). 

A detailed micromorphological and geochemical study of the medieval archaeological 

units from some test pits is ongoing. The results and discussion of these data are out of 

the scope of this paper since they are more related to the characterisation of different 



medieval agricultural and paleoenvironmental processes identified in the samples (MUR 

test pit, described below, was not sampled for the micromorphological study since it is 

very similar to CDR). 

Context 009 contained an abundance of charcoal and organic matter but no 

archaeological material, and it was speculated that this may have been laid down as 

preparation for the structure evidenced in contexts 008, a paved level, and 007, a floor 

containing a hearth, both dated to the later medieval period (Figure 5). This floor level 

varies in thickness between 5 and 10 centimetres, and contains a considerable amount of 

charcoal. The hearth area is notable for the compaction of clay burned to an orange 

colour. This layer contained ceramics of a fine-grained fabric, varying degrees of firing 

and combed horizontal incisions. Faunal remains found in association with the hearth 

appear to be food-related. A fragment of charcoal from the fire was radiocarbon dated, 

yielding a date between the mid-thirteenth and mid-fourteenth centuries (Cal AD 2σ 

1271–1387). 

The contexts above are formed by the flash-flood. Context 006 is a one-off cutting of a 

channel the under-lying contexts 007-009, and filled by contexts 004 and 005 (Figures 3 

and 5). The palaeochannel is filled with ordered gravels of various sizes in a layer more 

than 30 cm thick: analysis of the lithology and graded of these gravels confirms that their 

origin is the nearby stream of S. Romano rather than the River Trubia, forty metres from 

the test pit. Context 004 is composed of sub-rounded gravel in a sandy-silty matrix: 

context 005 is similar but less ordered. Contexts 004-006 were interpreted as representing 

two phases of the flash-flood: the first erosive phase destroyed elements of the structure 

and formed the palaeochannel through the site; the second sedimentary phase saw the 

deposition of sand and gravels. Contexts 002 and 003 over-lying these flood layers contain 

early modern ceramic remains dated to approximately the sixteenth century, indicating the 

resumption of human activity in the area following the destructive flood. Context 001 is 

the modern topsoil. 

TP MUR 

 This trench is located in the southern part of the research area, closer to the River 

Trubia (Figures 2 and 6). The excavation is on-going at the time of writing and has not 



yet reached the river terrace levels, but the most recent phase of work revealed evidence 

of an occupied structure interpreted as a hut floor, with finds including a grindstone. 

Postholes associated with the structure have fills, one of which has been radiocarbon 

dated to between the thirteenth–fourteenth centuries. Above these structural remains there is 

an agricultural layer with abundant ceramic and organic materials including charcoal and 

animal bone. Like context 007 and 008 in the previously described pit, this agricultural layer 

is marked by a number of palaeochannels, and the material culture in both marked contexts is 

similar, with pottery of equivalent dates. For this reason, it is reasonable to interpret a 

contemporary late medieval date for both. Above this layer and filling the palaeochannels 

there are contexts made up of poorly ordered material including stone, ceramic tiles, sand, 

pottery, bones, gravel and sand. This thick layer appears to have been deposited by a high-

energy flow rather than by decantation, and was itself cut by a second set of channels filled in 

turn by sand, gravel and pebbles (Figure 7). 

 This layer, context 002, is archaeologically sterile, and key to understand the 

nature and origin of the process. It is composed with laminated sands interbedded with 

finer matrices and clayey silts, with pockets of gravels and pebbles ordered by size. Their 

main lithology includes sandstone, slate and limestone of Palaeozoic origin revealing a 

different nature than the river Trubia barrages formed mainly by quartzites. This 

lithological difference means that the origin of these deposits is the stream of S. Romano 

and not the river Trubia. Considering the structure, morphology and lithology of the 

pebbles (small size, subrounded) it is concluded that this is a torrential deposit. 

These two layers (contexts 002 and 003) are interpreted as phases of the same flash-flood 

event, a first phase (context 003) resulting from the massive transport of sediment and 

structures destroyed by a high energy stream in its first phase (debris flow), and a second 

phase (context 002) composed of deposits of gravel, areas and silt, accumulated in a phase of 

lower energy. 

Context 002 and 003 are sealed by a layer of agrarian soil rich in pottery dating (as with 

the previous test pit) from the sixteenth century through to the present. Context 003 in this 

trench contained a number of very large stones, interpreted as building material from the 

village as they were interspersed with broken roof tiles (Figure 8). 



Measurements of these stones were used to estimate the speed of the water flow using 

the formulae devised by Costa (1983) and the five largest stones (see Table 1). 

Accordingly with Kehew, Milewski, and Soliman (2010), there are numerous potential 

sources of error in this type of palaeohydrological analysis which could range from 28% of 

average error in small drainage basins up to 76% in large drainage basin. In conclusion the 

estimates presented here would be closer to the lower margin of error for small basins, but it 

is assumed that Costa’s formula is not accurate and is based on estimates. Nevertheless, for 

our research this information is very useful combined with the rest of the archaeological and 

stratigraphic data. The result was an average speed of around 3.5 m/s. Even taking into 

account this probable average error the sheer size of the stones indicates a flow of 

considerable force, con-firmed in this case by the presence of structures destroyed, 

displaced and turned over. 

Overall we can see four phases in these two trenches that are indicative of a flash-flood. 

The first are the erosion channels in the underlying contexts, the second is the deposit 

containing destruction materials from the medieval village structures, the third is a second 

phase of erosion channels in this deposited layer, and the final is a lower-energy deposit 

made up of sediments from higher in the flow area, and containing no archaeological 

materials from the settlement (Table 2). 

The most evidence of the flash-flood was the creation of a torrential cone. In the test 

pits studied there was no evidence of alluvial cone sediments before the event excavated, 

only terrace sediments, gravels and silty clay, from the floodplain of the river Trubia. For 

all these reasons it is interpreted that it was a single event with a limited duration and 

chronologically located between middle and modern ages. This cone has been partly 

obscured by changes in land use over the intervening period: the present-day 

neighbourhood of S. Romano covers much of its area, and different phases of construction 

and landscaping have further affected the topography. Lidar data was used to reconstruct 

the topography of the original cone, removing the current layers of construction (Figure 2). 

The resulting digital elevation model allows the proximal and intermediate zones of the 

cone to be easily identified, while the distal extents have been identified in part through the 

presence or absence of flood deposits in the test pits as indicated on the map (Figure 2). In 

this way the size of the cone was found to be 2.2 Ha (0.022 km2 or approximately 5 acres). 



Most significantly, the area of the cone covers more than half of what would previously 

have been the most valuable arable land in the village: the fertile, flat area in the valley 

bottom made up of the lowest river terraces. In mountainous areas such as this, the loss of 

this arable land and the crops it contained would have had a serious impact on the 

community, depending on a number of factors including the time of year, the survival of 

other parts of the arable land, the size of the com-munity, its resilience and resources. The 

first mention of the village name ‘Villanueva’, the new settlement built occurs in historical 

documents near the end of the fourteenth century, while the radiocarbon dates of the flood 

indicate a date between the thirteenth and fourteenth centuries. We do not have historical 

documents that refer this episode, nevertheless some information about important floods 

from other areas of Asturias in the fourteen and fifteenth centuries founts is available. 

Taking this information into account, we considered the hypothesis that the event recorded 

in Villanueva could be the ongoing of an important instability climatic stage prior to that 

reported by the fifteenth century documentation. 

 

The S. Romano Stream Basin 

To understand the nature of the flash-flood it is important to describe the geology and 

topography of the basin of the S. Romano stream. The geological substrate on which the 

stream basin sits consists of Paleozoic materials ranging in age from the Ordovician to the 

Carboniferous, with considerable lithological variety including siliciclastic formations, and 

carbonated and detrital calcareous alternations. On this substrate different quaternary 

formations associated with gravity processes can be found as scree and colluvium. The 

streambed itself is extremely steep in places, with a watershed composed of limestone 

resulting in escarpments in some cases more than 70° and dropping from a peak altitude of 

around 850 m to just 166 m in the valley of the River Trubia, with an average gradient of 

27.3%. Data obtained from the analysis of the morphometric parameters of the S. Romano 

basin obtained by GIS analysis are shown in Table 3. 

The stream is formed within a micro-watershed occupying an area of 1.6 km2 in the 

form of an elongated oval. The highest point of the watershed lies to the west, the Canto 

la Cruz, at an elevation of 850 m. Other peaks surrounding the basin include La Rasa 

(799 m) El Picu Castru Mayor (665 m) and El Serrón (677 m) (see Figure 9). The 



lowest point of the basin is the confluence with the River Trubia mentioned above. The 

length of the main channel is 1.8 km, and there is one small sub-basin without a per-

manent watercourse. Today the main channel is an intermittent stream that is strongest 

in winter and during rainy seasons, and practically disappears during the summer. 

The figures in the table above, and in particular the steep gradient of the stream, 

indicate a torrential basin with considerable potential for sediment transport. In addition, 

the drainage density of 1.13 indicates a very low hydrogeomorphological capacity in 

response to extremely high precipitation contributing to the potential for violent flash-

floods. Despite this, archaeological data from the test pits indicates a long period of 

relative stability, with no traces of flooding between the early Roman period and the 

flash-flood in the Middle Ages. Therefore, there is no reason to think that the zone around 

the stream would have been perceived to be a vulnerable settlement area during the 

establishment of the medieval habitation area around the ninth century. The uses of the 

stream basin during this period appear to have been varied but focused around forestry 

and livestock management including communal grazing areas and private meadows in a 

landscape of bocage. The climatic instability around the onset of the LIA may have been 

exacerbated by agricultural pressure and particularly the resulting deforestation, which 

would have increased surface run-off and the rapid evacuation of rainwater. This could 

be considered a warning and cause for concern for the contemporary population of the 

area. 

Impact of the Flood on Buildings and the Village 

Flash floods are characterised by their sudden onsets, violent force of water, and substantial 

residual sediments left in their aftermaths. They can occur in a variety of climatic 

environments but mountainous areas are particularly vulnerable. While flash floods remain 

rare events they are the most lethal natural disaster in the Iberian Peninsula, with the death of 

87 people on a campsite in the Barranco de Aras (Central Pyrenees) in 1996 a recent example 

(Alcoverro, Corominas, and Gómez 1999; Garcia-Ruiz et al. 2004). Unlike other violent 

climatic events the unexpected nature of flash floods and the velocity of the water makes it 

difficult to warn or evacuate communities in their path. According to the United States Army 

Corps of Engineers the water velocity in flash floods is also the main contributing factor in 



the destruction of buildings in the path of the flood water: in controlled experiments a 1 m 

depth of water moving at 3 m/s was found to be sufficient to destroy the walls of a typical 

structure (McBean et al. 1988). In the early stages of a flash flood there is often a 

quantity of mud and detritus carried along which increases the density of the flow and its 

ability to transport heavy objects, such as the stones found in the test pits (Fried-man and 

Sanders 1978). 

The archaeological evidence gathered in this article indicates that the medieval village 

of S. Romano was destroyed during a rapid flash flood, with water velocity around 3.5 m/s 

exceeding the 3 m/s figure stated above as capable of destroying buildings (Figure 8). The 

evidence of structural destruction found in the excavations suggests an event likely to have 

caused human casualties, particularly given the form of medieval buildings and the greater 

difficulty in emergency evacuation, as well as the limited resources for rescue efforts in 

the aftermath. The flood is likely to have destroyed the village in a period of minutes or at 

most hours, covering more than half of the arable land surrounding it in a thick layer of 

sterile rocky sediment. The effect on the local economy cannot be calculated, but 

archaeological evidence suggests that it was at least a century before agricultural activities 

recommenced in the area affected. At around the same time the place-name ‘Villanueva’ 

appears in records for the first time, and S. Romano survived in name at least as a 

neighbourhood of this village. Villanueva was principally situated on the other side of the 

River Trubia from the flooded area, and farmed a different area of arable land to the north 

of the old settlement. 

People and Place 

At the time of the flood it is likely that, in common with similar areas across Spain and 

Europe, the arable land of the village of S. Romano was managed in common by the 

community and managed collectively using an ‘open field’ system, although ownership 

of the land lay with the Bishop of Oviedo. If similar to the common land in the area at 

present, the land as a whole would probably have been enclosed within a boundary but 

within this boundary the division of land between families would have been agreed by 

custom. However, the management of the larger landscape was probably decided on a 

collective level, to manage processes such as crop rotation across the entire community. 



Some parts of the land in cases of this type were not associated with specific tenant 

families and were instead allocated to different users for set periods, again by 

agreement. Common lands managed as open fields were a common feature of 

agricultural communities in medieval Europe: what is remarkable in the area of 

Asturias around the study area is the survival of some of these practices into the 

present, albeit under significant pressure both internally and externally. One of the aims 

of the fieldwork described in this paper is to trace the origins of these patterns of land 

management: while the findings remain inconclusive there is evidence to suggest that it 

emerged in something resembling its current form between the thirteenth and fourteenth 

centuries. 

Changes in the patterns of use and management of common lands can be seen historically 

and archaeologically in the traces of past agricultural landscapes including redundant place-

names, old field boundaries, and palaeoenvironmental evidence of different land uses over 

time. Around S. Romano today the process continues, as falling population levels lead to 

common land falling out of use, the breaking of long-standing associations between families 

and specific plots of land, and the opportunistic enclosure of areas of common land for 

construction or development by private individuals. The breakdown of traditional practices 

of common land management and use contribute in turn to a decline in community sense of 

place that further weakens the connections between people and the land. 

The roots of this process of privatisation it is well-attested in Spanish history (Marcos 

1999) during the fifteenth-sixteenth centuries when there was a pattern of seizure of 

agricultural land that was deemed ‘vacant’ or unused. Therefore, natural disasters, such as 

the flooding registered in Villanueva there was certainly an opportunity for social elites that 

followed this strategy. 

In an area such as S. Romano with long-standing customary rules regulating the 

agricultural spaces it is only through the breakdown of these traditions that the more 

privileged families could privatise the land. After the natural event various acres of 

vacant lands were ‘ready’ to be reclaimed by these noble groups. 

In the modern era the S. Romano district became the area of the neighbourhood where 

the village elites lived: this is recorded in early documents and exemplified by the Muñiz-

Prada family mansion which sits in the centre of S. Romano. The Muñiz-Prada family line 



died out in the 1960s but was rooted in the old feudal families of the area: their mansion 

and private land cover an area almost identical to the space covered by the flood and the 

debris cone (see Figures 2 and 10). 

Why, then, this concentration of social elites in an area destroyed shortly before? It is 

tempting to com-pare the strategy of land privatisation in the aftermath of the flood to 

the model of ‘disaster capitalism’ out-lined by Naomi Klein in her book Shock Doctrine 

(2007). Klein argues that elites exploit the aftermaths of crises or traumatic events such 

as wars and natural disasters to enact controversial laws and policies that would 

normally meet strong popular resistance, but which a traumatised, distracted or displaced 

population is unable to effectively resist. Following this pat-tern, the privatisation of 

land in S. Romano in the aftermath of the flood could perhaps be described as ‘disaster 

feudalism’. 

Conclusion  

This paper presents evidence for a flash flood around the fourteenth century that 

destroyed the village of S. Romano and its surrounding lands, and buried its remains 

beneath a layer of rocky sediment. Based on excavations and analyses of the stratigraphy, 

the local topography and hydrology we have mapped the extent of the debris cone, the 

source of the floodwater and the likely reasons for the deluge. Due to the unique nature of 

the event based on excavation evidence we have pro-posed a connection to the onset of 

the Little Ice Age and the resulting rise in rainfall in the area. There were not alluvial 

cone sediments before the LIA flood, only terrace sediments, gravels and silty clay, from 

the floodplain of the river Trubia. In addition, we have sought to understand the human 

social and cultural impacts of the flash flood beyond the immediate destruction. 
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Table 1. Estimation of water velocity based on the five largest stones from context 
003.  

  

Axis of boulders in mm  Velocity of water in metres per second,  
V  (m/s) = 0.18 DI 0.487 � (where v  is  mean 
velocity and DI is  b-axis length,  Costa 
1983)  

540 3.854 

410 3.370 

510 3.748 

430 3.449 

400 3.330 

Mean velocity 3.5 m/s 

 



Table 2. Identified phases during the medieval flash-flood event registered.  

Phase   TP CDR          TP MUR  

Later context  

Phase IV  

Phase III  

Phase II  

 

Phase I 

� 

 

Previous 
context  

SU 003, 004. modern soils (TPQ C16)  

 

Depositional. SU 005-4. Flood 
deposits (graded bedding)  

Erosive phase  

 

Erosive. Medieval buildings 
destruction and displacement by flash 
flood. Formation of torrential channels 
(SU 006).  

SU 007-8. Medieval hut and fireplace. 
Chronology after s. XIII-XIV  

SU 001. modern soils (TPQ C16) �  

Depositional. SU 002. Flood deposit 
(graded bedding)  

Erosive. Formation of torrential 
channels 

�Depositional. SU 003. Massive 
deposits from the medieval  village 
destruction. Water velocity 3.5 m/s. �. 

Erosive. Medieval fields destruction 
by flash flood and formation of 
torrential channels � 

SU 004. Medieval cornfield. 
Chronology after s. XIII-XIV

  

 
  



 

Table 3. Characteristics of S. Romano basin based on GIS analysis 

�Description         Value 

 

Basin surface � 

Basin perimeter � 

Mean elevation � 

Mean slope (%) � 

Gravelius compactness coefficient. 
Elongated oval basin  

Length of major axis  

Total basin length  

Initial altitude � 

Final altitude  

Elevation difference  

Mean stream slope %  

Drainage density 

1,60 Km2  

6,51 Km  

574 m (asl)  

26,60 %  

1,44  

1,80 Km  

2,5 Km  

850 m (asl)  

166 m (asl)  

684 m  

27,36 %  

1,13  



 
 
 

 
 

Figure 1. Location of the study area. The bottom picture was taken from North.  

  



 

Figure 2. A) Image of the village excavated and its surrounding areas with the test pits, 
intervention codes of two main stratigraphies analyzed and reconstruction of the torrential 
fan. B) Enlarged image of the excavated areas. C) DEM from Lidar, topography of the 
torrential fan and profile graph.  

 

 

Figure 3. Stratigraphy of the excavations: IT-CDR. Radiocarbon samples and dates: S1 Cal. 
2 σ 900–1146 AD; S2 Cal. 2 σ 1271–1387 AD; S3 Cal. 2 σ 1469–1635 AD. 

  



 

Figure 4. Micromorphological features of medieval agricultural activities. 1) Bone fragment. 
2) Charcoal fragment. 3) Phosphatic dung nodule with calcium oxalate phytoliths. 4) 
Goethite hypocoatings in pores indicating iron lixiviation. The random distribution of all 
these features in the same layer point to anthropic manuring and tilling activity affecting 
surficial soils in humid environments.  

  



 

Figure 5. 1) Late medieval hut floor cut by flash flood channel (S.U. 008 and 009) IT-CDR. 
2) NE corner, detail of the channel cut. 3) E stratigraphic profile, detail of the channel and 
torrential deposit.  

 

 

Figure 6. Stratigraphy of the excavations: IT-MUR.  

  



 

Figure 7. Stratigraphy of the excavations IT-MUR, detail of the flash flood channels.  

  



  
 
Figure 8. Context 003, destruction level, IT-MUR. Zenithal picture and drawing. Tiles are 
coloured in red.  

 
 



 
 
Figure 9. S. Romano stream basin. Base map is used is a shaded relief raster derived from a 
DEM.  

  
Figure 10. Muñiz-Prada manor house and its private lands. The fan toe is approximately in 
the centre of the picture.  


