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Abstract

In multilevel settings such as individual participant data meta-analysis, a variable is 

‘systematically missing’ if it is wholly missing in some clusters and ‘sporadically missing’ if it is 

partly missing in some clusters. Previously proposed methods to impute incomplete multilevel 

data handle either systematically or sporadically missing data, but frequently both patterns are 

observed. We describe a new multiple imputation by chained equations (MICE) algorithm for 

multilevel data with arbitrary patterns of systematically and sporadically missing variables. The 

algorithm is described for multilevel normal data but can easily be extended for other variable 

types. We first propose two methods for imputing a single incomplete variable: an extension of an 

existing method and a new two-stage method which conveniently allows for heteroscedastic data. 

We then discuss the difficulties of imputing missing values in several variables in multilevel data 

using MICE, and show that even the simplest joint multilevel model implies conditional models 

which involve cluster means and heteroscedasticity. However, a simulation study finds that the 

proposed methods can be successfully combined in a multilevel MICE procedure, even when 

cluster means are not included in the imputation models.
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1 Introduction

Multiple imputation (MI) is a popular approach for handling the pervasive problem of 

missing data in biostatistics.1 MI uses the distribution of the observed data to estimate a set 

of plausible values for the missing data, usually under a missing at random (MAR) 
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assumption.2 MI is a Bayesian procedure: given a joint prior distribution for the observed 

data and a specific data model, we obtain a posterior distribution of the missing values given 

the observed data. Missing data in a single variable are straightforward to impute, for 

example using an appropriate generalised linear model,3,4 but missing data in several 

variables present a more complex problem except on the rare occasions when data are 

monotone missing. There are two standard approaches. Firstly, a joint model may be 

assumed for the data. Most commonly, a multivariate normal model is assumed, as 

implemented in standard software.5–7 This is surprisingly effective despite being mis-

specified for categorical data.8 Secondly, multiple imputation by chained equations (MICE), 

also known as multiple imputation by fully conditional specification, specifies a suitable 

conditional imputation model for each incomplete variable and iteratively imputes until 

convergence.3,9 The theoretical properties of MICE are not well understood: except in 

simple cases, conditional imputation models do not correspond to any joint model.10,11 

Despite this it performs well in practice,12,13 especially when the conditional imputation 

models are well accommodated to the substantive model.14 MICE is also implemented in 

standard software.6,15,16

Many datasets have a multilevel or clustered structure. Imputation that ignores this 

clustering leads to underestimation of the magnitude of clustering and hence underestimated 

standard errors, even if the analysis does allow for clustering.17 However, imputation that 

allows for the clustering through fixed effects of cluster overestimates the magnitude of the 

clustering and hence overestimates standard errors.18,19

There is therefore a need for advanced imputation methods that allow for the clustering. 

Schafer and Yucel proposed a Gibbs sampler to generate MIs of continuous missing 

variables from a joint multivariate linear mixed model:20,21 their method is implemented in 

the PAN package.22 REALCOM software23 and the R package jomo24 extended this 

approach allowing missing data at any level and handling categorical data through latent 

normal variables. van Buuren proposed extending MICE to perform multilevel imputation 

by a Bayesian procedure.25,26 More recently, extensions were proposed to impute level 2 

variables.27

In this paper we focus on imputation of two-level clustered data, such as are found in 

individual participant data (IPD) meta-analysis28 (where the cluster is the study) or in multi-

centre studies (where the cluster is the centre). A feature of such data is that some variables 

may be ‘systematically missing’ – that is, missing for all individuals in one or more clusters.

29 This arises in particular in IPD meta-analysis when a potential confounding variable is 

not collected in one or more studies. Variables may also be ‘sporadically missing’ – that is, 

missing for some but not all individuals in one or more clusters.29 Unfortunately, the 

multiple imputation methods and packages presented above are currently not able to handle 

systematically missing data except for jomo. Therefore, methods to handle systematically 

missing data have been proposed for continuous data29 and recently extended to binary and 

discrete data.30 These approaches handle the clustering by using generalized linear mixed 

models to impute data; they differ only in how they model the uncertainty around the 

between-cluster covariance parameters. However, they only deal with systematically missing 
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data. The aim of this paper is to propose methods that simultaneously handle systematically 

and sporadically missing data.

The paper is organised as follows. Section 2 describes imputation of a single incomplete 

variable and makes two innovations. Firstly, it extends the method previously described for 

systematically missing data29 to also handle sporadically missing data. Secondly, it 

proposes a new two-stage algorithm which conveniently allows for heteroscedasticity 

between clusters in the linear mixed model, as recommended by van Buuren in the 

sporadically missing case.25 The two-stage algorithm also offers an easy extension to handle 

categorical data alongside normal data, although we here evaluate it only for normal data. In 

section 3, we explore the sorts of conditional models needed in multilevel MICE and explain 

why it is important to account for heteroscedasticity. In section 4, we evaluate the 

performance of the multilevel imputation algorithms in multilevel MICE. We illustrate the 

methods in an IPD meta-analysis in cardiovascular disease in section 5. Finally, section 6 

provides a discussion.

2 Imputation of univariate missing data

Let yi be a ni × 1 vector of observed outcomes on units j ∈ {1, … , ni} within cluster i ∈ {1, 

… , N}, yi = (yi1, yi2, … , yini)
T. We consider the following linear mixed model

yi = Xiβ + Zibi + ei, bi ∼ N 0, Ψb , ei ∼ N 0, Σi (1)

where Xi is a ni × p matrix of variables associated with the outcome yi via β, a p × 1 vector 

of fixed effects, and Zi (typically equal to or contained within Xi) is a ni × q matrix of 

variables associated with yi via bi, a q × 1 vector of random effects. We model bi ~ N(0, Ψb) 

where Ψb is the Ψb is the q × q variance-covariance matrix of the random effects, and the ni 

× 1 error vector as ei ~ N(0, ∑i) with Σi = σi
2I(ni) . Under this model, the posterior 

distribution of bi given yi is bi| yi ~ N(m(yi), v(yi)), with 

m yi = Ψb Zi
T Zi Ψb Zi

T + Σi
−1

yi − Xiβ  and v yi = Ψb − Ψb Zi
T Zi Ψb Zi

T + Σi
−1

Zi Ψb .

20,31,32

Suppose y = y1
T, y2

T, ⋯, yN
T T

 contains missing data ymis. yi is systematically missing if it is 

missing for all individuals in cluster i; it is sporadically missing if it is only partly 

incomplete.

Our goal is to generate independent draws under a MAR assumption from a posterior 

predictive distribution for the missing data p( ymis| yobs) = ∫ p(ymis| yobs, θ) p(θ| yobs)dθ 
where θ = (β, Ψb, {σi}) is the vector of parameters in the linear mixed model (1) and p(θ| 

yobs) is the observed data posterior density of θ.1 In practice, this may be achieved (with 

implicit vague priors) by:

(1) fitting the model p( y|θ) to the units with observed y, yielding an estimate 

(typically an MLE) θ̂ with an estimated variance-covariance matrix Sθ;
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(2) drawing a value of θ, θ*, from its posterior, approximated as N(θ̂, Sθ);

(3) drawing values of ymis from p( y|θ*).

In the next two subsections, we propose two approaches to perform step 1. The first 

approach uses one-stage estimation of the model parameters.33 The second approach, two-

stage estimation, first estimates parameters within each cluster separately using the same 

model. Then, it applies multivariate meta-analysis methods using the summary statistics 

obtained at the first stage.34 One-stage and two-stage approaches give similar results in 

individual patient data meta-analyses,35 except when there are relatively few studies or the 

studies are small (especially with binary outcomes).36 The two approaches both fit versions 

of model (1), but extra assumptions are convenient in each approach: in one-stage estimation 

we consider a homoscedastic model, i.e. a constant σi for all clusters, while in two-stage 

estimation we assume Zi = Xi.

2.1 One-stage approach

This approach fits model (1) directly. To ease computation, we assume the residuals are 

homoscedastic between clusters: σi
2 = σ2∀i ∈ 1, ⋯, N . Steps 1–3 are implemented as 

follows:

(1) Estimate the model parameters, θ̂ = (β̂, Ψ̂
b, σ̂) and their variance covariance 

matrix Sθ by maximizing the restricted log-likelihood of model (1) fitted to the 

available data. We parameterise Ψb as proposed by Pinheiro and Bates,37 using 

Ψb
trans = ((log Ψbrr : r = 1 to q , (log

1 + ρrs
1 − ρrs

: r, s = 1 to q, r < s)) where 

ρrs = Ψbrs / Ψbrr Ψbss . We assume that the estimates of the transformed 

parameters Ψb
trans follow a multivariate normal distribution.

(2) Draw θ* = β*, Ψb
trans * , σ*  using N(θ̂, Ŝθ) and hence obtain Ψb* and 

Σi* = σ * 2I ni . If Ψb* is not positive semi-definite, make it positive semi-definite 

by setting negative eigenvalues to zero.38

(3) Compute m*(yi) and v*(yi), the posterior mean and variance of bi, using Ψb* , β* 

and Σi*:

(a) For clusters with systematically missing data, m*(yi) = 0 and 

v* yi = Ψb* .

(b) For clusters with sporadically missing data, 

m* yi = Ψb* Zi
T Zi Ψb* Zi

T + Σi*
−1

yi − Xiβ*  and 

v* yi = Ψb* − Ψb* Zi
T Zi Ψb* Zi

T + Σi*
−1

Zi Ψb* .

Then draw each bi* using N(m*(yi), v*(yi)) and for observation j ∈ {1, … , ni} 

with missing yij, draw ei j* ∼ N 0, σ * 2  and set yi j* = xi jβ* + zi jbi* + ei j* .
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This approach, recently extended by Jolani in a generalised linear model framework,30 is 

close to van Buuren’s method for sporadically missing data which used a Gibbs sampler to 

generate θ* and bi* .25 However, van Buuren argued that the imputation quality could be 

improved by allowing the within cluster variance to vary over the clusters, and modelled 

σi ∼
σ0χ1/ϕ

2

ϕ , where σ0 and ϕ are hyperparameters for the location of prior belief about 

residual variance and a measure of variability respectively.

Implementation

We fit the mixed model using the lme() function from the nlme package in R 3.1.1.39,40 

This does not report the covariance between β* and Ψb*, σ* , so in practice we draw β* and 

Ψb*, σ*  independently.

2.2 Two-stage approach

This approach uses procedures developed for multivariate meta-analysis.41,42 We first fit a 

separate model within each cluster and then combine the results using multivariate random-

effects meta-analysis models. This approach naturally allows heteroscedastic level-1 

variances. The model fitted in cluster i is

yi = Xiβi + ei (2)

with ei ∼ N(0, σi
2I(ni)) . This is model (1) with Zi = Xi (i.e. every variable in the model has a 

random effect) and βi = β + bi; we propose how to allow Zi ≠ Xi in the discussion. We 

approximate β̂i ~ N(βi, Sβi) and log σ̂
i ~ N(log σi, Sσi). The between-studies model is βi ~ 

N(β, Ψβ), where Ψβ is the same as Ψb in section 2.1, and log σi ~ N(log σ, Ψσ), where σ is 

an average within-cluster standard deviation. Then the marginal models are β̂i ~ N(β, Sβi + 

Ψβ) and log σ̂i ~ N(log σ, Sσi + Ψσ).

The main steps of the two-stage imputation procedure are:

(1) (a) For each cluster i without systematically missing data, fit model (2) 

using yi
obs (complete case analysis). This gives β̂i with variance Sβi, 

and log σî whose variance Sσi is obtained by noting that σi
−2 follows a 

χ2 distribution and using the delta method.

(b) Perform a multivariate meta-analysis using the β̂i and Sβi from each 

cluster without systematically missing data. Using a REML estimator, 

obtain β̂, Ψ̂β and their variance-covariance matrices Sβ and SΨβ. Ψβ is 

parameterised via its Cholesky decomposition Ψβ
chol .

(c) Perform a univariate meta-analysis using the σ̂
i and Sσi from each 

cluster without systematically missing data. Using a REML estimator, 

obtain log σ̂, Ψ̂σ and their variance-covariance matrices Sσ and SΨσ.
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(2) Draw β* using N(β̂, Sβ) and Ψβ
chol * using N( Ψβ

chol , S
Ψβ

chol) . Hence set 

Ψβ* = Ψβ
chol * ( Ψβ

chol * )T : the use of the Cholesky decomposition ensures a 

positive semi-definite Ψβ* . Similarly draw log σ* and Ψσ* using N(log σ̂, Sσ) and 

N(Ψ̂σ, SΨσ).

(3) Draw the missing yij:

(a) For clusters with systematically missing data, draw βi* using 

N(β*, Ψβ* ) and draw σi* using logσi* ∼ N(logσ*, Ψσ* ) .

(b) For clusters with sporadically missing data, draw βi* from its posterior 

given Ψβ* and β*,

βi* ∼ N ( Ψβ
* − 1 + Sβi

−1)−1( Ψβ
* − 1 β * + Sβi

−1βi), ( Ψβ
* − 1 + Sβi

−1)−1

and draw logσi* from its posterior given Ψσ* and log σ*

logσi* ∼ N
logσ * / Ψσ* + logσi/Sσi

1/ Ψσ* + 1/Sσi
, 1

1/ Ψσ* + 1/Sσi
.

(c) For each missing yij, draw ei j* ∼ N(0, σ1
* 2) and set yi j* = xi jβi* + ei j* .

The REML estimation proposed in step 1 can be computationally slow. We therefore 

propose the method of moments (MM) as a simple and computationally effcient alternative. 

In step 1(c), we use the univariate MM described in Dersimonian and Laird.43 In step 1(b), 

we use the multivariate extension proposed by Jackson et al.38 The MM does not allow 

estimation of SΨβ and SΨσ, so we are forced to modify Step 2 by setting Ψβ* = Ψβ and σ* = 

σ̂.

Implementation

Multivariate meta-analysis is performed using the mvmeta package in R 3.1.1.34,44,45

3 Imputing two or more incomplete variables

3.1 MICE

It is usual for missing values to occur in several variables. MICE specifies the multivariate 

imputation model on a variable-by-variable basis by a set of conditional densities obtained 

by different regression models, one for each incomplete variable.46 Thus, MICE allows the 

imputation model to be adapted to the type of each variable. Conditional distributions for the 

missing data given the other data for each incomplete variable are iteratively obtained, 

missing values being replaced by simulated draws. The algorithm may be initiated by a 

simple random sampling with replacement from the observed values. Once each variable has 
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been imputed the complete cycle is repeated at least 5–10 times to stabilize the posterior 

distribution obtained for each variable.3 In practice, posterior distributions could be derived 

either from maximum likelihood estimators or using Gibbs samplers as proposed by van 

Buuren.25 In the multilevel setting, the use of MICE was first proposed by van Buuren26 

and was applied for systematically missing data by Resche-Rigon et al.29 We propose using 

the methods described in section 2 to provide the conditional imputations needed at each 

step of the MICE procedure.

3.2 Conditional models in the multilevel setting

Ideally, one wants to use conditional imputation models compatible with the unknown 

overall data model. For complex models this is often unachievable. We use a simple joint 

model to explore mathematically the difficulties arising in specifying conditional models in 

the multilevel setting. We consider two incomplete variables x1ij and x2ij, with the joint 

model

x1i j

x2i j
=

μ1
μ2

+
u1i

u2i
+

ε1i j

ε2i j
(3)

where 
u1i
u2i

∼iid N(0, Ψu ) and
ε1i j
ε2i j

∼iid N(0, Σε ) .

We prove in Appendix 1 that the conditional expectation of x2ij depends on x1ij and x̄1i, the 

mean of x1ij within cluster i, and on ni, the size of cluster i (equation (8)). Similarly, the 

conditional variance of x2ij depends on ni (equation (9)). Appendix 2 generalises this result 

to the case of many incomplete variables by letting x1ij and x2ij be vectors. These results 

suggest (1) that we should incorporate the cluster means of the predictors in the imputation 

model and (2) that if cluster sizes vary then the level-1 variance should vary between 

clusters, i.e. that the imputation model should be heteroscedastic. Thus, a simple joint model 

implies complex conditional models: this is unlike the situation with independent 

observations, when a joint normal model implies simple conditional models.11

Many settings, including the simulation setting of section 4, include random slopes: for 

example, we might combine model (3) with a random slopes model regressing yij on x1ij and 

x2ij. Under this joint model, the cluster-specific density of (x, y) is multivariate normal, but 

the marginal density is not. Deriving the conditional distributions in this model is intractable, 

and we anticipate that the problems identified above will be joined by others.

4 Simulation study

The methods proposed in section 2 make certain approximations, and section 3 suggests that 

combining them into a MICE procedure involves mis-specification of the conditional 

models. We therefore conduct a simulation study aiming (a) to explore and compare the 

performance of the methods in a MICE procedure, and (b) to explore whether their 

Resche-Rigon and White Page 7

Stat Methods Med Res. Author manuscript; available in PMC 2018 June 01.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts



performance is improved by including cluster means or heteroscedasticity in the imputation 

model.

4.1 Simulating complete data

As in section 2, let yi, x1i, x2i denote ni × 1 vectors containing outcomes and covariates 

respectively on units j ∈ {1, … , ni} within cluster i ∈ {1, … , N}. The covariates were 

drawn from a possibly heteroscedastic version of model (3): (x1ij, x2ij)T ~ N(μi, Σεi and μi ~ 

N(μ, Ψu). We allowed the marginal variances to vary across clusters using log Σεikk ~ N(log 

Σε.k, ΨΣε.k) for k = 1, 2, but we fixed the marginal correlations Σεi12 / Σεi11 Σεi22 = ρε .

Our parameter values for the base case were μ = (0, 0)T, Ψu = 0.52 1 0.5
0.5 1 , Σε.1 = Σε.2 = 

0.52, ρε = 0.5 and ΨΣε.1 = ΨΣε.2 = 0, giving homoscedasticity with Σεi = Ψu for all i and 

hence intra-cluster correlations of approximatively 0.5 for both x1 and x2.

The outcome data yij were generated from a random intercepts and slopes model

yi j = β0 + β1x1i j + β2x2i j + b0i + b1ix1i j + b2ix2i j + ei j (4)

with ei j ∼ N(0, σi
2), log σi ~ N(log σ, Ψσ) and bi = (b0i, b1i, b2i) ~ N(0, Ψb). Our parameter 

values for the base case were β0 = 0, β1 = 0.5 and β2 = 1; Ψb had all diagonal elements 0.52 

and all correlations 0.3; σ = 0.5 and Ψσ = 0, so the outcome model was homoscedastic with 

intra-cluster correlation (conditional on x1ij = x2ij = 0) of 0.5.

Following Appendices 1 and 2, E(x1ij|x2ij, yij) and E(x2ij|x1ij, yij) may depend on ȳi and on 

x̄2i and x̄1i respectively. We estimate this dependency using a large simulated data set of 

1000 clusters of size 100. Estimated coefficients of ȳi and x̄2i in the model for x1ij and of ȳi 

and x̄1i in the model for x2ij were −0.020, 0.049, 0.007 and 0.020 respectively, much smaller 

than the coefficients of yi, x1i, x2i which were all greater than 0.12.

The total number of patients was fixed at 2000. The number of clusters was N = 20 yielding 

ni = 100 patients per cluster. A total of 1000 independent datasets were generated for each 

setting.

4.2 Simulating missing data

yi was complete for all i. x1i and x2i were independently systematically missing with 

probability πsys. For any cluster where x1i or x2i was not systematically missing, x1ij and x2ij 

were independently sporadically missing with probability πspor. This is a missing 

completely at random mechanism. Our parameter values were πsys = 0.2 and πspor = 0.3 in 

all cases, leading to an overall probability of missing data equal to 0.44.

4.3 Imputing missing data

Under this data generating model, the conditional distributions [x1i|x2i, yi] where 

x1i = (x1i1
T , x1i2

T , …, x1ini
T )T etc. are not of the simple forms given in equations (1) and (2). 
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Nevertheless, in order to explore the practical consequences of imputation model 

misspecification, missing data were imputed using a MICE algorithm, using as imputation 

model either homoscedastic equation (1) (for the one-stage approach) or heteroscedastic 

equation (2) (for the two-stage approach). The two-stage approach was implemented using 

either REML or the MM in steps 1(b) and 1(c). When imputing x1, the outcome in equation 

(1) or (2) was x1, and the covariates were x2 and y, with both fixed and random effects. A 

similar model was used to impute x2. To evaluate the impact of the cluster means within the 

imputation model we used two series of imputation models, either excluding or including the 

cluster means. Cluster means were included in the one-stage method by adding them as 

predictors in the imputation models, and in the two-stage method by using meta-regression 

in the second stage with cluster means as predictors. The incomplete data were imputed m = 

5 times using 10 iterations of the chained equations algorithm.

4.4 Analysis

In every case, the analysis model was equation (4). The data were analysed before data 

deletion as a benchmark for the multiple imputation procedure, and after data deletion using 

complete cases. After imputation, the model was estimated in each imputed data set using 

the REML estimator of the lmer() function of the lme4 R-package47 and the estimates were 

combined using Rubin’s rules.1 The performance of each method was assessed by 

computing the empirical mean of the parameter estimates, root mean square estimated 

standard error (Model SE), empirical Monte Carlo standard error (Emp SE), the coverage of 

nominal 95% confidence intervals (95%CI), and the mean run time per simulated data set.

4.5 Results

In the base case (Table 1), point estimates are slightly negatively biased for β1 = 0.5 and 

unbiased for β2 = 1 for two-stage methods. Empirical standard errors are lower for multiple 

imputation approaches than for complete case analysis, reflecting the better use made of the 

data. Model-based standard errors are below empirical standard errors, in particular for the 

one-stage approach. The underestimated standard errors appear to arise from underestimated 

random effect variances. Moderate under-coverage is observed, and is only partly explained 

by the underestimated standard errors: only two-stage methods achieve coverage within 5% 

of the nominal 95%. Mean run times are in favour of the two-stage MM especially compared 

to the two-stage REML. Including cluster means in imputation models has little impact on 

results (lower part of Table 1).

We next modified the data generating mechanism to explore performance when the 

coefficients of cluster means are clearly different from 0. To do this we set Σε.1 = 0.52, Σε.2 = 

0.172 and Ψu = 0.172 0.52 × 0.17
0.52 × 0.17 0.52 . Using a large simulated data set, the estimated 

coefficients of ȳi and x̄2i in the model for x1ij and of ȳi and x̄1i in the model for x2ij were 

−0.16, −0.87, 0.22 and 0.95 respectively, larger than the corresponding coefficients of yi, x1i, 

x2i which were 0.30, 0.60, 0.07 and 0.12, respectively.

The bias in β1 and β2 remains small, but seems smaller for two-stage approaches (Table 2). 

The MI methods underestimate Ψb11 (especially with one-stage approaches) and 
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overestimate Ψb22 (especially with two-stage approaches), leading to mis-estimated model-

based standard errors. In this setting, in which cluster means could have an impact on the 

efficiency of the imputation model, including cluster means has very little effect on the final 

results, with only a small reduction in model-based standard errors.

We next modified the data generating mechanism of Table 2 by introducing unequal cluster 

sizes, with 10 clusters of size 160 and 10 clusters of size 40. Results (Table 3) were very 

close to those obtained in Table 2, and two-stage methods seem to be less biased than one-

stage approach.

Finally, Table 4 reports a simulation study using the same parameter values as in Table 2, but 

with heteroscedasticity on X1 and X2 introduced by setting ΨΣε, 1 = 0.172, ΨΣε, 2 = 0.062. 

Results were still less biased with two-stage methods than with the one-stage approach. 

Ψb22 was largely overestimated. Model-based standard errors obtained with the two-stage 

approaches were overestimated.

5 Application to GREAT data

The GREAT Network explored risk factors associated with short-term mortality in acute 

heart failure (AHF). Their dataset consisted of 12 observational cohorts: 6 were based in 

Western Europe (2 in Italy and 1 in each of France, Finland, Switzerland, and Spain), 2 in 

Central Europe (Austria, Czech Republic), 2 in the United States, 1 in Asia (Japan), and 1 in 

Africa (Tunisia).48 The principal investigators of each cohort study submitted the original 

data collected for each patient, including a list of patient characteristics and potential risk 

factors.49

The biomarker of interest was brain natriuretic peptide (BNP), which is known to be 

elevated in acute heart failure. Because our aim is to develop and compare statistical 

methods, we take as outcome the left ventricular ejection fraction (LVEF) measured by 

echocardiography, a potential sign of AHF. Our aim is to construct a model predicting the 

value of LVEF using BNP and six other variables: gender, body mass index (BMI), age, 

systolic blood pressure (SBP), diastolic blood pressure (DBP) and heart rate (HR). The 

analysis model is a linear mixed model with all predictors included as linear terms. The 

intercept and the slope for BNP were both random at cohort level. A description of the 

variables considered is given in Table 5. BNP was log-transformed for analysis.

This analysis was complicated by missing data (Table 6). BNP measurement is a relatively 

recent innovation, so BNP was systematically missing in 4 cohorts and sporadically missing 

in 5 others. BMI, SBP and DBP were also systematically missing in some cohorts and 

sporadically missing in others, while HR and age were only sporadically misssing. Gender 

and LVEF were complete by design.

The results (Table 7) show that multiple imputation approaches have a substantial impact on 

point estimates of the coefficients. We observe a gain in precision for all MI methods for 

complete variables (gender, age) and for most incomplete variables (BMI, SBP, DBP, HR). 

Only log(BNP) has a bigger standard error after imputation, perhaps reflecting a difference 

between the smaller cohorts with systematically missing data and the more complete 
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cohorts. Results from different imputation methods agree except for log(BNP), whose 

coefficient and standard errors vary substantially.

6 Discussion

There is increasing need for ways to handle missing values in multilevel structures, notably 

with the development of meta-analysis of IPD.50 IPD, whether from randomised clinical 

trials or observational studies, have the advantage of facilitating consistent definitions of 

outcomes, exposures and confounders and consistent analyses between studies. 

Nevertheless, the availability of confounders typically varies between studies. In this paper, 

we proposed a method to handle both systematically and sporadically missing covariates in a 

two-level structure using MICE. We explored the conditional imputation models needed in 

multilevel MICE and showed that cluster means and heteroscedasticity should be considered 

in the imputation model. We proposed a new two-stage approach in which we first fit the 

imputation model within each cluster and then combine the results using multivariate 

random effects models. Our simulation studies showed broadly good performance for the 

MICE methods, a very low impact of including the cluster means, and an advantage for 

heteroscedastic models. Small biases and slight under-coverage were observed in the 

presence of only systematically missing data.29 These biases disappeared when only 

sporadically missing covariates were considered, suggesting that they are linked to the 

presence of systematically missing covariates (Appendix 3). Moreover, the two-stage 

approach using the MM was more computationally efficient.

Our work extended a previous algorithm that we proposed to handle systematically missing 

data.29 In recent work, Jolani et al. also extended our one-stage approach to handle 

systematically missing binary data.30 The approaches differ in the way uncertainty is 

introduced around the estimated between-cluster covariance parameters, whose sampling 

distribution is skewed: we used a general log-transformation for the variances and Fisher’s 

transformation for correlations, as proposed by Pinheiro and Bates37 and applied in some 

current software packages for fitting non-linear mixed models (e.g. nlme in R), whereas 

Jolani et al. used a Bayesian framework with a Wishart distribution for the inverse between-

cluster covariance.30

To our knowledge, no other package can handle both systematically and sporadically 

missing data except the recent jomo R-package.24,51 Other methods developed to impute 

one type of missing data could be modified to handle the other type. In particular, the 2 
l.norm routine15 for sporadically missing data in MICE R-package could be adapted using 

step 3(a) and 3(b) of the one stage approach, although using a MCMC algorithm at each step 

of the chained equations algorithm seems to be computationally laborious.30

Another alternative is Gibbs sampling. Schafer proposed a Gibbs sampler to generate 

multiple imputations of a single continuous incomplete variable from a joint multivariate 

linear mixed model;20 this approach was implemented in the PAN package22 and also in the 

MICE package.15 The REALCOM package23 and the recent jomo R-package24 perform 

multilevel joint modelling multiple imputations, handling binary and categorical variables 
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through latent normal variables. The jomo R-package is also able to use heteroscedastic 

framework, and should be in that sense close to our two-stage approach.

The multilevel MICE approach has several problems, especially the heteroscedasticity of the 

conditional imputation models demonstrated in section 3.2. Our simulation studies showed 

that with heteroscedastic models our two-stage methods (which naturally allow 

heteroscedasticity) outperform the one-stage method. It would be possible to introduce 

heteroscedasticity in the one-stage model, thus avoiding any issues due to small studies or 

small number of studies,36 but in our current view this is computationally laborious and 

unrealistic within a MICE procedure. To our knowledge only the 2 l.norm routine in the 

MICE package allows for heteroscedasticity.25 More recently, Yucel described a 

heteroscedastic imputation model for imputing multivariate multilevel continuous data.21 

Similarly, Jolani argued for a cluster-specific error variance which they related to cluster-

level characteristics.30

Another potential problem is compatibility between the full conditional distribution of each 

incomplete variable (represented by the specification of variable-by-variable imputation 

models) and the global joint distribution of the multivariate missing data. Ideally, the 

conditional distribution should be derived from a joint probability distribution.26,52 Recent 

studies have identified compatibility in simple cases, notably for the linear model without 

any random effect,10 but the MICE approach is usually validated only by simulation studies, 

and the results appear to be robust even with incompatible models.26,53 In this work, we 

studied simulations with only two missing covariates but extension of our results with more 

missing variables should be valid provided that conditional imputation models are well 

specified. Moreover, having a valid joint distribution may be “less important than 

incorporating information from other variables and unique features of the dataset”.54 This 

could partially explain the good results observed for our method even without including the 

cluster means in the imputation model. Another possible explanation is that x̄1i and x̄2i are 

normally distributed and can therefore be absorbed into the random intercept term.

The number of random effects that we can consider is a further problem, especially when 

most studies have systematically missing data. We previously showed that random effects on 

the intercept and on the factor of interest could be sufficient to produce good results.29 A 

large number of random effects can make the computational time prohibitive. Nevertheless, 

we prefer to put a random effect on all the variables, and the two-stage method with the 

simple and computationally efficient MM is a good alternative despite the fact that we are 

forced to ignore uncertainty in the variance components Ψβ* and σ*. The computational 

advantage becomes much greater as the number of random effects increases. Of course, our 

methods could benefit from parsimonious modelling of the variance-covariance matrix of 

random effects in the imputation model (e.g. modelling independent random effects). One 

could also constrain some components of the random effect covariance matrix to zero, based 

on empirical covariance matrix estimates.23 Such constraints could be directly implemented 

in the two-stage methods by forcing some between-studies variances to be zero in the second 

step. In practice, this corresponds to considering a smaller set of variables in Zi than in Xi. 
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The two stage approach also allows level-2 variables to be included through meta-regression 

in the second stage.

An important extension of our imputation model is to impute categorical variables. In the 

past, this has been done in a MICE framework using random-effects logistic imputation 

models,30 and in a joint model framework using latent continuous normally distributed 

variables.24 Our two-stage approach would be particularly simple to modify for any 

generalised linear or other regression model, and this is the subject of future work.

In conclusion, MICE seems to be a valuable approach to handle both systematically and 

sporadically missing data. We proposed three methods, but only the two-stage methods 

easily take account of the potential heteroscedasticity in the imputation model, and they 

outperform the one-stage approach in some settings. The two-stage methods perform quite 

similarly, but the computational time needed to fit a REML estimator is a disadvantage. 

Therefore, the two-stage method with the MM approach appears to be a solid and efficient 

alternative.

Appendix

Refer to Web version on PubMed Central for supplementary material.
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Table 1

Base-case simulations. Ψu = 0.52 1 0.5
0.5 1 , Σε.1 = Σε.2 = 0.5, ΨΣε.1

= ΨΣε.2
= 0.

β1 Ψb11 β2 Ψb22 Mean run time

Method Est mean Model SE Emp SE Cover Est mean Est mean Model SE Emp SE Cover Est mean

True value 0.5 0.5 1 0.5

No missing data 0.501 0.113 0.115 0.926 0.489 1.002 0.114 0.117 0.922 0.494

Complete case 0.505 0.145 0.154 0.925 0.483 1.005 0.146 0.150 0.916 0.486

Imputation methods, excluding cluster mean from imputation model

    One-stage 0.485 0.112 0.129 0.899 0.407 0.984 0.105 0.132 0.874 0.410 1 min 51 s

    Two-stage 0.488 0.125 0.134 0.919 0.461 1.008 0.121 0.134 0.915 0.474 3 min 57 s

    Two-stage MM 0.489 0.124 0.136 0.908 0.456 1.010 0.121 0.131 0.910 0.472 1 min 3 s

Imputation methods, including cluster mean in imputation model

    One-stage 0.486 0.112 0.129 0.888 0.406 0.982 0.105 0.134 0.868 0.409 3 min 26 s

    Two-stage 0.485 0.125 0.137 0.895 0.469 1.005 0.122 0.135 0.909 0.476 4 min 11 s

    Two-stage MM 0.487 0.122 0.137 0.906 0.464 1.006 0.120 0.133 0.915 0.474 1 min 6 s

Est mean: mean estimate over imputed data sets; Model SE: standard error derived from Rubin’s rules (mean over imputed data sets); Emp SE: 
standard deviation of estimate over imputed data sets; Cover: coverage of nominal 95% confidence interval.
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Table 2

Simulations when the coefficients of cluster means are clearly different from 0. 

Ψu = 0.172 0.52 × 0.17
0.52 × 0.17 0.52 , Σε.1 = 0.52, Σε.2 = 0.172, ΨΣε.1

= ΨΣε.2
= 0.

β1 Ψb11 β2 Ψb22 Mean run time

Method Est mean Model SE Emp SE Cover Est mean Est mean Model SE Emp SE Cover Est mean

True value 0.5 0.5 1 0.5

No missing data 0.500 0.113 0.112 0.934 0.494 1.003 0.131 0.132 0.929 0.485

Complete case 0.500 0.146 0.148 0.926 0.486 1.002 0.188 0.191 0.934 0.484

Imputation methods, excluding cluster mean from imputation model

    One-stage 0.475 0.110 0.125 0.897 0.416 1.036 0.183 0.174 0.928 0.521 2 min 54 s

    Two-stage 0.486 0.120 0.129 0.919 0.465 1.014 0.204 0.174 0.960 0.631 3 min 52 s

    Two-stage MM 0.491 0.121 0.130 0.927 0.463 1.011 0.215 0.176 0.963 0.667 1 min 3 s

Imputation methods, including cluster mean in imputation model

    One-stage 0.474 0.108 0.125 0.893 0.412 1.025 0.179 0.172 0.942 0.514 5 min 19 s

    Two-stage 0.481 0.119 0.129 0.915 0.465 1.016 0.196 0.177 0.951 0.627 4 min 12 s

    Two-stage MM 0.489 0.118 0.129 0.916 0.465 0.995 0.204 0.181 0.959 0.655 1 min 5 s

Note: Abbreviations as in Table 1.

Stat Methods Med Res. Author manuscript; available in PMC 2018 June 01.



 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts

Resche-Rigon and White Page 18

Table 3

Simulations when the coefficients of cluster means are clearly different from 0 and cluster sizes are unequal 

(10 clusters ofsize 160, 10 clusters of size 40). 

Ψu = 0.172 0.52 × 0.17
0.52 × 0.17 0.52 , Σε.1 = 0.52, Σε.2 = 0.172, ΨΣε.1

= ΨΣε.2
= 0.

β1 Ψb11 β2 Ψb22 Mean run time

Method Est mean Model SE Emp SE Cover Est mean Est mean Model SE Emp SE Cover Est mean

True value 0.5 0.5 1 0.5

No missing data 0.495 0.115 0.115 0.946 0.492 0.997 0.135 0.139 0.950 0.485

Complete case 0.494 0.147 0.155 0.935 0.483 1.002 0.192 0.206 0.912 0.495

Imputation methods, excluding cluster mean from imputation model

One-stage 0.473 0.111 0.132 0.900 0.415 1.023 0.185 0.183 0.941 0.513 3 min 13 s

Two-stage 0.481 0.124 0.135 0.925 0.468 0.994 0.213 0.185 0.971 0.632 3 min 53 s

Two-stage MM 0.486 0.123 0.136 0.925 0.466 0.996 0.221 0.193 0.968 0.668 1 min 3 s

Imputation methods, including cluster mean in imputation model

One-stage 0.473 0.110 0.131 0.899 0.412 1.009 0.181 0.183 0.947 0.504 5 min 42 s

Two-stage 0.479 0.123 0.134 0.928 0.472 0.998 0.206 0.187 0.968 0.637 4 min 15 s

Two-stage MM 0.482 0.121 0.135 0.920 0.469 0.982 0.213 0.186 0.974 0.664 1 min 5 s

Note: Abbreviations as in Table 1.
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Table 4

Simulations when the coefficients of cluster means are clearly different from 0 and with heteroscedasticity on 

X1 and X2. Ψu = 0.172 0.52 × 0.17
0.52 × 0.17 0.52 , Σε.1 = 0.52, Σε.2 = 0.172, ΨΣε.1

= 0.172, = ΨΣε.2
= 0.062 .

β1 Ψb11 β2 Ψb22 Mean run time

Method Est mean Model SE Emp SE Cover Est mean Est mean Model SE Emp SE Cover Est mean

True value 0.5 0.5 1 0.5

No missing data 0.500 0.113 0.115 0.943 0.490 1.000 0.134 0.136 0.946 0.488

Complete case 0.503 0.146 0.147 0.943 0.483 0.988 0.187 0.203 0.918 0.484

Imputation methods, excluding cluster mean from imputation model

    One-stage 0.451 0.115 0.122 0.912 0.425 1.002 0.204 0.185 0.961 0.598 1 min 41 s

    Two-stage 0.484 0.139 0.131 0.951 0.505 1.019 0.268 0.200 0.993 0.796 3 min 54 s

    Two-stage MM 0.500 0.136 0.131 0.956 0.499 1.018 0.260 0.200 0.988 0.796 1 min 4 s

Imputation methods, including cluster mean in imputation model

    One-stage 0.453 0.115 0.120 0.922 0.422 0.995 0.200 0.182 0.963 0.582 3 min 46 s

    Two-stage 0.482 0.138 0.129 0.953 0.509 1.017 0.262 0.201 0.987 0.802 4 min 10 s

    Two-stage MM 0.497 0.133 0.128 0.941 0.502 1.001 0.252 0.195 0.986 0.787 1 min 6 s

Note: Abbreviations as in Table 1.
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Table 5

GREAT study: description of variables.

Variables Values Patients (N=4546) Statistics

Gender 0 1767 38.87%

1 2779 61.13%

Age 4540 73.28 [63.75;80]

BMI 3298 27.37 [24.34;31.06]

SBP 4185 136 [116;160]

DBP 4170 80 [69;90]

HR 4439 88 [73;105]

BNP 2034 973 [471.2;1860]

LVEF 4546 40 [27;55]

Note: Categorical variables are presented by counts and percentages and quantitative variable by their median and quartiles.
BMI: body mass index; SBP: systolic blood pressure; DBP: diastolic blood pressure; HR: heart rate;
BNP: brain natriuretic peptide; LVEF: left ventricular ejection fraction.

Stat Methods Med Res. Author manuscript; available in PMC 2018 June 01.



 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts

Resche-Rigon and White Page 21

Table 6

GREAT study: percentages of missing values by variables and cohort.

Cohort 1 2 3 4 6 7 8 9 10 11 12 13

Sample size 410 567 210 375 107 267 203 354 137 48 1790 78

Percentage missing

    Gender 0 0 0 0 0 0 0 0 0 0 0 0

    Age 0 0 0 0 0 0 0 1 0 0 0 0

    BMI 36 19 43 2 1 100 0 44 1 100  21 60

    SBP 1 2 1 1 0 100 1 16 0 0 1 0

    DBP 2 3 2 1 0 100 2 16 0 0 1 0

    HR 3 1 1 2 0 0 1 19 0 4 0 0

    BNP 57 1 0 4 100 100 0 12 0 100  93 100

    LVEF 0 0 0 0 0 0 0 0 0 0 0 0

Note: Abbreviations as in Table 5.
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Table 7

GREAT study: results from linear mixed model analysis.

Gender Age BMI SBP DBP HR log(BNP)

β SE β SE β SE β SE β SE β SE β SE

Complete case −6.869 0.803 0.200 0.030 0.184 0.064 0.167 0.016 −0.176 0.028 −0.060 0.016   −9.887 1.176

Imputation methods, excluding cohort mean in imputation model

    One-stage −5.669 0.475 0.165 0.019 0.233 0.043 0.124 0.012 −0.124 0.023 −0.048 0.009 −10.359 1.112

    Two-stage −5.795 0.474 0.154 0.019 0.226 0.048 0.129 0.012 −0.132 0.023 −0.050 0.009   −9.313 2.034

    Two-stage MM −5.824 0.463 0.156 0.020 0.243 0.043 0.127 0.010 −0.127 0.017 −0.051 0.009   −9.816 1.900

Imputation methods, including cohort mean in imputation model

    One-stage −5.662 0.503 0.170 0.020 0.230 0.049 0.123 0.011 −0.123 0.019 −0.049 0.009 −10.096 1.666

    Two-stage −5.737 0.455 0.158 0.020 0.243 0.045 0.125 0.010 −0.125 0.020 −0.050 0.009   −6.440 2.803

    Two-stage MM −5.950 0.484 0.152 0.020 0.250 0.047 0.137 0.013 −0.141 0.023 −0.049 0.009   −6.302 2.672

Note: Abbreviations as in Table 5
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