
IEEE TRANSACTION ON MEDICAL IMAGING, VOL. XX, NO. X, 2016 1

A Multi-Grid Iterative Method for Photoacoustic
Tomography

Ashkan Javaherian* and Sean Holman

Abstract—Inspired by the recent advances on minimizing
nonsmooth or bound-constrained convex functions on models
using varying degrees of fidelity, we propose a line search multi-
grid (MG) method for full-wave iterative image reconstruction
in photoacoustic tomography (PAT) in heterogeneous media.
To compute the search direction at each iteration, we decide
between the gradient at the target level, or alternatively an
approximate error correction at a coarser level, relying on some
predefined criteria. To incorporate absorption and dispersion, we
derive the analytical adjoint directly from the first-order acoustic
wave system. The effectiveness of the proposed method is tested
on a total-variation penalized Iterative Shrinkage Thresholding
algorithm (ISTA) and its accelerated variant (FISTA), which
have been used in many studies of image reconstruction in PAT.
The results show the great potential of the proposed method in
improving speed of iterative image reconstruction.

Index Terms—photoacoustic tomography, iterative method,
multi-grid, adjoint.

I. INTRODUCTION

PHOTOACOUSTIC Tomography (PAT) is a hybrid imag-
ing technique, which combines the advantage of rich con-

trast attributed to optical imaging and high spatial resolution
brought up by ultrasound. Typically near-infrared pulses of
light are used to irradiate tissue, which are then absorbed
preferentially as a function of the optical absorption of the
tissue. The absorbed energy produces local increases in pres-
sure, which move outwards because of the elasticity of soft
tissues, and are then sampled temporally by surface detectors
[1].

To estimate the optical absorption distribution of the irra-
diated tissue from the recorded surface data, one faces two
distinct inverse problems, namely acoustic [2] and optical [3].
To solve the acoustic inverse problem for media with rela-
tively homogeneous acoustic properties and simple detection
surfaces, numerous methods based on filtered back-projection
[4]–[6] or eigenfunction expansion techniques [7] have been
proposed.

From a practical point of view, real-time 3D reconstruction
has been provided for photo-acoustic [8] and thermo-acoustic
tomography [9] via 2D reconstruction of slices of the sample,
and composing the reconstructed slices into a volume image.
Techniques to reduce the effects of out-of-plane acoustic
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signals were successfully introduced in [8], and in order to
achieve the speeds required for real-time imaging reconstruc-
tion was done by an onboard field programmable gate array
(FPGA) in [9]. In these cases, a dense and simple (circular)
detection geometry, as well as relatively homogeneous acoustic
properties allow a one-step image reconstruction based on a
filtered backprojection algorithm [10].

Time reversal (TR) is a more versatile inversion approach
for PAT since it is practical for media with heterogeneous
acoustic properties and arbitrary detection geometries [2], [11],
[12]. TR and the other inversion approaches mentioned above
are inherently based on continuous models, and thus require
the detection surface to be very dense and enclose the object
[11], [12]. This is problematic for 3D PAT especially in
medical applications. The dependance of shape, spectrum and
amplitude of propagating acoustic waves on the characteristic
properties of tissue media impels enriching the image recon-
struction of PAT by simulation of tissue-realistic acoustic prop-
agation [13]. To achieve this aim here, the forward problem
was solved by a first order acoustic system of three coupled
equations which includes two fractional Laplacian operators
in order to account separately for absorption and dispersion
according to a frequency power law [13]. The main advantage
of this acoustic wave propagation model is that it can be
efficiently implemented by the k-space pseudospectral method
[13], [14] in which the spatial gradient of field parameters is
globally computed in frequency domain [13], [15].

To mitigate the effects of data incompleteness and noise,
iterative methods are often used, e.g., TR-based iterative
algorithms [16], [17] or optimization techniques [18], [19].
Among a great number of optimization approaches, a total
variation penalized variant of the Fast Iterative Shrinkage
Thresholding Algorithm (FISTA) [20], [21] has been very
popular for iterative PAT [18], [19]. The key element of these
optimization approaches is the computation of the gradient of
an objective function in terms of the forward model and its ad-
joint. For heterogeneous media, the adjoint was computed by a
“discretize-then-adjoint” method in [19]. Recently, an adjoint
was derived for PAT, based on an “adjoint-then-discretize”
method [22], from the second order acoustic wave equation
which does not include absorption and dispersion. Instead,
here the adjoint will be derived using the aforementioned
system of three coupled acoustic wave equations [13]. In the
absence of absorption and dispersion this matches the adjoint
in [22].

In medical PAT, the compartmentalised distribution of chro-
mophores composing tissues induces step-like pressure discon-
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tinuities within absorbing regions, which make the generated
waves highly broadband [2]. To cover such a broad range of
frequencies in the reconstruction, very dense grids are needed
which make iterative PAT computationally burdensome. To
mitigate this problem, numerous methods have been proposed
to accelerate wave propagation models [23]–[25]. By recent
advances on data casting and parallelization using graphics
processing units (GPUs) [26]–[28] or FPGA-based hardware
implementation of the reconstruction algorithms [9], wave
propagation models were accelerated notably. In the present
work, we take a different approach, and look at a method to
improve the performance of the underlying algorithm.

In general, whenever a finite-dimensional optimization prob-
lem arises from an infinite-dimensional continuous problem, it
is possible to control the fidelity with which the optimization
model captures the underlying continuous problem [29]. In
the case that the arising discretized model is very large-
scale, multi-grid (MG) schemes, which exploit a hierarchy of
discretized models (levels) of varying size, are very popular.

A MG scheme for unconstrained smooth optimization prob-
lems was first proposed by Nash [30], in which the information
at the coarse level is utilized to compute the search direction
at the target level. This method was recently extended to
composite convex functions involving a smooth term plus a
non-smooth `1 term [29], [31], relying on the recent theoret-
ical advances on minimization of smoothable functions [32].
Additionally, Nash’s method was recently extended to smooth
bound-constrained optimization [33].

To mitigate the burdensome computational requirements of
iterative PAT, we propose a line search multi-grid method
for full-wave iterative image reconstruction in PAT so that at
some iterations, a recursive search direction is computed by
minimizing the objective function at some coarser levels. Here
the proposed MG method is applied to ISTA and FISTA on
two levels, but it can be easily extended to other first order
methods such as Primal-Dual algorithms, or to more than two
levels.

II. BACKGROUND

A. Forward Problem
1) Lossless media: Acoustic propagation in lossless het-

erogeneous media can be described relying on three coupled
equations, i.e, equation of motion, equation of continuity, and
adiabatic equation of state, respectively in the form [2]

∂u

∂t
(r, t) = − 1

ρ0(r)
∇p(r, t), (1)

∂ρ

∂t
(r, t) = −ρ0(r) ∇ · u(r, t), (2)

p(r, t) = c0(r)2ρ(r, t) (3)

with initial conditions

p(r, 0) = p0(r), u(r, 0) = 0. (4)

Here, p(r, t) denotes the acoustic pressure at position r ∈ Rd
(d = 2 or 3), and time t ∈ R+. Additionally, u(r, t) denotes
the vector-valued acoustic particle velocity, c0(r) denotes the
varying sound speed, and ρ(r, t) and ρ0(r) represent the
acoustic and ambient densities, respectively.

2) Lossy media: To simulate wave propagation in lossy
media, a trade-off is typically needed between agreement with
experimental observations [34], meeting causality conditions
[35]–[37], and efficiency of numerical computations [13], [38].
Over frequencies of generated ultrasound waves in PAT, the
absorption in tissue obeys a frequency power law in the form

α = α0w
y, (5)

where α0 is the absorption coefficient in dB MHz−y cm−1,
w is the angular frequency in MHz, and y is the power law
exponent [2].

Describing the wave attenuation as effects of viscosity and
thermal conduction leads to the so-called thermo-viscous at-
tenuation model, which yields a frequency-squared attenuation
(y = 2). This model does not match the observed frequency
dependence of attenuation in tissues [34], and also violates the
causality condition [36]. The attenuation model was later de-
scribed by a superposition of relaxation mechanisms [35]. This
model meets the causality condition [36], and can be imple-
mented efficiently by the k-space method [15]. However, for
simulating broadband acoustic propagation in PAT, estimation
of the distribution of relaxation parameters for each relaxation
process is troublesome. To account for the power law depen-
dence on frequency evident in biological tissue (1 < y < 1.5),
a lossy wave equation based on temporal convolution, the so-
called Szabo’s model [34], was proposed, which was later
rewritten as a time-domain fractional derivative operator, e.g.,
[39], [40]. Szabos’s model has been shown to be noncausal
for y > 1 [36]. Furthermore, the time-domain convolution or
fractional derivative operators inherently require storing the
complete pressure field at previous times. A memory-efficient
power law absorption model based on fractional Laplacian
operators was proposed in [38], and was then modified to
incorporate the dispersive sound speed [13]. This model can
be easily incorporated into the k-space pseudospectral method
without storing the computed pressure field at previous time
steps [13], as opposed to classical absorption and dispersion
models that involve time-domain fractional operators. This
model is very popular in PAT [2], [13], [28], and was thus
used in the present study.

Applying this model, the absorption and dispersion effects
are incorporated into the wave propagation by adding two
fractional Laplacian operators to the equation of state in the
form [13]

p(r, t) = c0(r)2
{

1− τ(r)
∂

∂t
(−∇2)

y
2−1

− η(r)(−∇2)
y−1
2

}
ρ(r, t).

(6)

The absorption and dispersion proportionality coefficients,
τ(r) and η(r) respectively, are calculated by

τ(r) = −2α0c0(r)y−1, η(r) = 2α0c0(r)y tan(πy/2). (7)

A toolbox for modeling of acoustic wavefield propagation
based on the k-space pseudo-spectral method is freely avail-
able [28], and was used in this study.

Recently it has been shown that this attenuation model en-
counters some noncausality problems, since the corresponding
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equation of state (6) is nonlocal in space at each time instant,
and in addition the Green’s function of the resulting wave
equations does not have a finite wave front speed [37]. To
maintain these causality conditions, the state equation was
spatially localized by enforcing a local time shift to the
attenuation model. This also leads to a Green’s function with a
finite wave front speed, which is known to be a strong causality
condition for systems of wave equations [36], [37]. However,
similar to classical lossy wave equations based on temporal
fractional derivatives [39], [40], the numerical implementation
of this model is very expensive for 3D PAT.

B. Inverse Problem

The acoustic inverse problem is to estimate the initial
pressure p0(r) inside a bounded region Ω ⊂ Rd from the
measurements pm(rs, t) taken at positions rs within an open
set Γ ⊂ Rd−1 from time t = 0 to T .

1) Time Reversal (TR): Employing the time reversal
method, pm(rs, t) is enforced as a Dirichlet boundary con-
dition in a time-reversed order, yielding

ptr(rs, t) = pm(rs, T − t).

Here, the time T is assumed to be sufficiently large so that
all waves leave the medium, yielding ptr(r, 0) = 0 [2]. This
is, however, not exactly held for even dimensions or heteroge-
neous media [11], [12]. It was shown that to account for the
absorption and physical dispersion in TR, the absorption term
in (6) must be reversed in sign, while the physical dispersion
term remains unchanged [2].

2) Variational methods: The accuracy of inversion ap-
proaches, including TR, is limited for sub-sampled or noisy
data. In these cases, variational image reconstruction methods
provide an effective alternative [19], [22]. Let p0 denote the
sought after initial pressure distribution, and p̂ ∈ RM (M ∈ N)
and ε denote the time series of measured data at sensors and
the corresponding Additive White Gaussian Noise (AWGN),
respectively. Additionally, let H represent the forward model
discussed in II-A. We then have

p̂ = Hp0 + ε. (8)

Inferring p0 from p̂ amounts to solving a regularized least-
square optimization problem in the form

p = argmin
p0>0

1

2
‖Hp0 − p̂‖2 + λJ (p0). (9)

Here, λ > 0 is a regularization parameter, and J (p0) is
a regularization functional that can be used to impose a-
priori information about the true solution. Here, regularization
functional J is taken to be total variation (TV) since it is very
popular in PAT because of accounting for feature edges in the
reconstruction [19], [25].

Solving (9) requires the computation of gradient of the
objective function as a function of the forward operator H
and its adjointH∗. Specifically in PAT, the main computational
cost of the minimization problem is the implementation of H
andH∗, and the cost of other steps is negligible in comparison.
To derive the adjoint for the forward model described in II-A,

a “discretize-then-adjoint” method was proposed, where the
computational steps of the discretized forward problem are
explicitly reversed [19]. The adjoint obtained by this strategy
may not correspond exactly with a discretization of the adjoint
in the continuous domain. Very recently, a general analytic
form of the adjoint in PAT was derived [22], where the
time-reversed pressure pm(rs, T − t) is added as a time-
dependent mass source term s(r, t) to (2). In comparison,
in the TR approach this is enforced as an explicit Dirichlet
boundary condition [2]. However, the method in [22] gives
the adjoint using the second order acoustic equation, which
does not include absorption and dispersion. In order to include
absorption and dispersion, we will derive the adjoint using (1),
(2) and (6).

III. ADJOINT OF THE THREE-COUPLED FIRST ORDER
WAVE PROPAGATION EQUATION

Similar to [22], the continuous forward operator is the map

H : C∞0 (Ω)→ RM ,
H[p0](r, t) =Mw(r, t)p(r, t),

(10)

where w(r, t) ∈ C∞0 (Γ × [0, T ]) restricts the pressure p(r, t)
to the spatio-temporal field accessible to the sensors, and M
maps the accessible part of the pressure field into the measured
data at sensors p̂ ∈ RM . Like [22], we will assume that M∗
is given. Now, we have H∗ = P∗M∗, where P∗ : C∞0 (Γ ×
[0, T ])→ C∞0 (Ω) is the adjoint of

P : C∞0 (Ω)→ C∞0 (Γ× [0, T ])

P[p0](r, t) = w(r, t)p(r, t).
(11)

Let us first define the time-reversed adjoint fields, p∗, u∗, ρ∗

by

∂u∗

∂t
(r, t) = − 1

ρ0(r)
∇p∗(r, t), (12)

∂ρ∗

∂t
(r, t) = ρ0(r)

(
−∇ · u∗(r, t) (13)

+ w(r, T − t)h(r, T − t)
)
,

p∗(r, t) = ρ0(r)
{

1− ∂

∂t
(−∇2)

y
2−1τ(r) (14)

− (−∇2)
y−1
2 η(r)

}c0(r)2

ρ0(r)
ρ∗(r, t)

with initial conditions

p∗(r, 0) = 0, u∗(r, 0) = 0. (15)

By definition of the adjoint, for any h(r, t) ∈ C∞0 (Γ× [0, T ])∫ T

0

∫
Rd

P[p0](r, t) h(r, t) dr dt =

∫
Rd

p0(r) P∗[h](r) dr.

(16)
The claim is that

P∗[h](r) =
ρ∗(r, T )

ρ0(r)
. (17)
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To prove this we start with (2), which yields

0 =

∫ T

0

∫
Rd

(
∂ρ

∂t
+ ρ0∇ · u

)
p∗(r, T − t)

ρ0
dr dt.

=

∫ T

0

∫
Rd

(
∂ρ

∂t
+ ρ0∇ · u

){
1− ∂

∂t
(−∇2)

y
2−1τ

− (−∇2)
y−1
2 η
}
c20
ρ∗(r, T − t)

ρ0
dr dt.

where we also used (14) for the second equality, and sup-
pressed the dependence on (r, t) in some places for brevity.
Now, the Laplacian −∇2 is self-adjoint, and so the fractional
powers of the Laplacian are as well and we can move them
from acting on c20ρ

∗/ρ0 to the first term as in integration-by-
parts. This gives

0 =

∫ T

0

∫
Rd

[
∂

∂t
c20

{
1− η(−∇2)

y−1
2

}
ρ

]
ρ∗(r, T − t)

ρ0

−
[
c20τ

∂

∂t
(−∇2)

y
2−1ρ

] ∂ρ∗

∂t (r, T − t)
ρ0

+∇ · u p∗(r, T − t) dr dt.

Now we apply integration-by-parts to the terms on the first
and third lines as well as (6), and the initial conditions in
(15), which together yield

0 =

∫ T

0

∫
Rd

p

ρ0

∂ρ∗

∂t
(r, T − t)− u · ∇p∗(r, T − t) dr dt

−
∫
Rd

[
c20

{
1− η(−∇2)

y−1
2

}
ρ(r, 0)

] ρ∗(r, T )

ρ0
dr.

Considering that ∂ρ∂t (r, 0) = −ρ0(r)∇·u(r, 0) = 0 by (2), and
in light of (6), we have

c20

{
1− η(−∇2)

y−1
2

}
ρ(r, 0) = p0(r).

Putting this into the previous formula finally gives∫
Rd

p0(r)
ρ∗(r, T )

ρ0(r)
dr =∫ T

0

∫
Rd

p

ρ0

∂ρ∗

∂t
(r, T − t)− u · ∇p∗(r, T − t) dr dt.

(18)

Putting (18) aside for a moment, we next use (1) which gives

0 =

∫ T

0

∫
Rd

(
ρ0
∂u

∂t
+∇p

)
· u∗(r, T − t) dr dt.

Applying integration-by-parts to both terms, and enforcing the
initial conditions (4) and (15) gives

0 =

∫ T

0

∫
Rd

ρ0 u ·
∂u∗

∂t
(r, T − t)− p ∇ · u∗(r, T − t) dr dt.

(19)
Subtracting (19) from (18) and gathering on the right-hand-
side the terms involving p and u respectively in lines two and
three of the next formula, we have∫

Rd

p0(r)
ρ∗(r, T )

ρ0(r)
dr =∫ T

0

∫
Rd

(
1

ρ0

∂ρ∗

∂t
(r, T − t) +∇ · u∗(r, T − t)

)
p dr dt

−
∫ T

0

∫
Rd

(
ρ0
∂u∗

∂t
(r, T − t) +∇p∗(r, T − t)

)
· u dr dt.

Now, by (13) the integrand in the second line above is equal
to p(r, t)w(r, t)h(r, t), and by (12) the third line is equal to
zero. Therefore∫

Rd

p0(r)
ρ∗(r, T )

ρ0(r)
dr =

∫ T

0

∫
Rd

w(r, t)p(r, t)h(r, t) dr dt

=

∫ T

0

∫
Rd

P[p0](r, t) h(r, t) dr dt.

Finally, using (16), we see now that P∗[h](r) = ρ∗(r,T )
ρ0(r)

, and
thus the claim (17) about the adjoint is proven. Taking τ(r) =
0 and η(r) = 0 makes this adjoint the same as that proposed
in [22] for lossless media.

IV. FIRST-ORDER OPTIMIZATION METHODS FOR PAT

The numerical implementation of the derived forward and
adjoint operators requires discretization of the models. Accord-
ingly, the discretized variant of the sought after initial pressure
p0 is denoted by x ∈ RN (N ∈ N) with N the number of grid
points, and the discretized forward model linking x to data
p̂ is denoted by H ∈ RM×N . Problem (9) is in a class of
non-smooth constrained convex minimization problems of the
form

argmin
x
{F (x) := f(x) + g(x)} . (20)

Here, f(x) = 1
2 ‖Hx− p̂‖

2 is a continuously differentiable
function with Lipschitz continuous gradient having smallest
Lipschitz constant Lf = σmax(H∗H), where σmax(.) stands
for the largest singular value. The gradient of f is computed
by

∇f(x) = H∗ (Hx− p̂) . (21)

Additionally, we take g(x) = λJ (x)+δC (x) where δC is the
indicator function for the set of constraints C = {x > 0}.

Applying the so-called forward-backward splitting method
to a fixed point iterative scheme arising from the optimality
conditions of problem (20) gives the two-step Iterative Shrink-
age Thresholding Algorithm (ISTA) shown in Algorithm 1.

Algorithm 1 ISTA
1: Iteration 0: x0
2: Iteration k > 1:
3: zk = xk−1 − αk ∇f(xk−1)
4: xk = proxαk

(g)(zk)
5: Output: x∗.

Here, line 3 is a forward gradient descent step [41], and is in a
class of line search techniques which utilize a steepest descent
search direction −∇f(y) and step size αk [20]. Applying
ISTA, the convergence of the iterates xk to a minimizer x∗ of
problem (20) is proven if αk ∈ (0, 2/Lf ) [21]. To determine
Lf , the largest singular value of H∗H is computed iteratively
by the power method [22]. Since Lf is independent to the
unknown x, it can be stored and used for all experiments
done in a fixed setting [25]. Otherwise, αk can be computed
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adaptively by backtracking line search techniques, although
this is inefficient for large-scale PAT problems. Additionally,

proxαk
(g)(zk) := argmin

x

{
g(x) +

1

2αk
‖x− zk‖2

}
. (22)

is a backward gradient step, and is called the proximal map
[41]. Similar to [19], here the proximal map associated with
the TV functional was computed based on a dual approach
given in [21].

The computational cost of performing the forward and
adjoint solvers necessary to compute ∇f on a grid of size
Nx ·Ny ·Nz in Nt time steps is O(Nt ·Nx ·Ny ·Nz log(Nx ·Ny ·
Nz)), whereas the computational cost of solving the proximal
map by the dual approach given in [21] is O(Nx ·Ny ·Nz).
As a result, the major cost of each iteration is the forward
gradient step, while the cost of the proximal map in (22) is
almost negligible in comparison.

An acceleration to ISTA is given by the Fast Iterative
Shrinkage Thresholding Algorithm (FISTA) [20], which pro-
vides a global convergence rate of O(1/

√
ε), compared to

O(1/ε) for ISTA, where ε denotes the desired accuracy. FISTA
is outlined in Algorithm 2 [20].

Algorithm 2 FISTA
1: Iteration 0: y1 = x0, tk = 1 (θk = 0)
2: Iteration k > 1:
3: xk = PL(yk)

4: tk+1 =
1+
√

1+4tk2

2
5: θk = tk−1

tk+1

6: yk+1 = xk + θk (xk − xk−1)
7: Output: x∗

Here, operator PL(·) represents lines 3 and 4 in Algorithm
1. Note that replacing line 5 by θk = 0 in Algorithm 2
gives yk+1 = xk, and reduces the algorithm to ISTA. In the
next section, the multi-grid algorithm will be described for a
general algorithm like FISTA but with line 5 possibly replaced.
Thus an extension to ISTA or other first-order optimization
methods is straightforward. The convergence of sequence xk
provided by FISTA is proven when αk ∈ (0, 1/Lf ) [20]. For
applications of ISTA in iterative PAT, see [22], and for FISTA,
see [18], [19].

V. LINE SEARCH MULTI-GRID OPTIMIZATION METHOD

To improve the speed of Algorithm 2, a multi-grid (MG)
line search strategy is adopted based on Nash’s well-known
method [30] so that at each iteration the algorithm decides
between two possibilities: a direct search direction computed
at the target level, or alternatively a recursive search direction
generated from some steps taken at coarser levels.

Considering the computational cost of the forward and
adjoint operators given in Section IV, the cost of performing
them on a coarse grid with a size (Nx/2) · (Ny/2) · (Nz/2) in
Nt/2 time steps is less than 1/16 the cost on the fine grid, as
the time step is changed proportionally to the spatial distance
of grid points. Accordingly, for 2D PAT, the computational
cost of coarse forward and adjoint models is less than 1/8 the
cost on the fine model.

A. First-order Coherence of Levels for Smooth Unconstrained
Optimization: An Extension to FISTA

We denote the level that supports the fine resolution, referred
to here as the “target level”, by subscript h and the next coarse
level by h−1. The transfer of information from level h to h−1
is done by restriction operator Ih−1h . Conversely, prolongation
operator Ihh−1 is used to transfer information from level h− 1
to h.

To guarantee convergence on multiple levels, the first order
optimality conditions of the levels must match. To attain this,
Nash [30] suggests adding a linear term to the objective
function at the next coarse level. We extend Nash’s method to
FISTA so that to compute a recursive search direction, starting
from iteration yh,k at the target level, we use as the objective
function at the next coarse level h− 1

φh−1 (xh−1) = Fh−1 (xh−1) + 〈vh−1, xh−1〉, (23)

where vh−1 stands for

vh−1 = Ih−1h ∇Fh (yh,k)−∇Fh−1 (xh−1,0) , (24)

with xh−1,0 = Ih−1h yh,k the initial point at the next coarse
level h − 1. Note that yh−1,1 = xh−1,0 according to the
initialization in Algorithm 2. In this way, the gradient of the
objective functions at the point of transfer between the two
levels matches so that

∇φh−1 (xh−1,0) = Ih−1h ∇Fh (yh,k) . (25)

This property is called “first-order coherence” [29]–[31], [42].

B. Extension to Non-smooth Unconstrained Optimization

The approach given above is not applicable to non-smooth
objective functions since the computation of ∇F is not
possible. From a theoretical point of view, an approach for
minimizing non-smooth functions via treating the problem
as a sequence of smooth problems has been considered. A
global convergence rate of O(1/ε) was first established for
functions with so-called “explicit max-structure" [43], and was
then extended to the so-called “smoothable" functions [32].

Recently, relying on the mentioned works, Nash’s multi-
grid method was extended to unconstrained composite func-
tions involving a smooth term plus a nonsmooth `1 term.
The convergence rate of ISTA on a multi-grid setting was
established by [29]. Recently, an MG method with an optimal
rate of convergence (O(1/

√
ε)) was proposed [31]. This has

been inspired by a modified variant of Nesterov’s acceleration
technique, where the problem is treated as a linear combination
of primal gradient and mirror descent steps [44]. The global
convergence rate established by this MG method is optimal,
but the bound on the worst case convergence rate is greater
than that of the standard “gradient and mirror descent" algo-
rithm in [44]. Note that in practice the sequence xk provided
by the “gradient and mirror descent” algorithm matches that
of FISTA on a fixed grid [31], [44]. However, as opposed to
the MG variant of FISTA proposed here, we observed that the
MG algorithm proposed in [31] is not efficient in PAT.
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In order to use MG with FISTA, at yh,k, we smooth the TV
penalty function in the form

Jρ(yh,k) =
∑

n1,n2,n3

√
|(∇yh,k)n1,n2,n3

|2 + ρ2 − ρ, (26)

where ρ is the smoothing parameter. The gradient of F is now
computed as [45]

∇Fρ(yh,k) = H∗ (Hyh,k − p̂)− λ ∇ ·

(
∇yh,k√

|∇yh,k|2 + ρ2

)
.

(27)

The implementation of Nash’s method via computing vh−1 and
minimizing φh−1 by Eqs. (24) and (23) is now straightforward
in the unconstrained case.

C. Extension to Constrained Convex Optimization

The coherence formula does not account for the bound
constraint that is enforced in the PAT problem. In general, very
few studies exist in the literature to extend Nash’s method to
bound-constrained optimization, e.g., [46]. In [47], a method
to deal with bound constraints for MG optimization problems
was proposed based on truncation of the set of indices at which
the constraints are active. In this method, the active nodes on
the fine level are fixed for the next coarse-grid correction.
This truncation scheme is very conservative, and thus makes
the MG algorithm inefficient.

Recently an MG approach for smooth constrained optimiza-
tion problems has been developed via restriction of bound
constraints, rather than the truncation of active set [33]. The re-
striction of constraints is done so that a feasible point remains
feasible after the coarse correction step. In our specific case,
this MG approach is applied to two levels, and a nonnegativity
constraint is enforced globally to all nodes at the fine level.
Let Ih,i denote the union of indices at level h that locate at
the same position as, or neighbor to, index i at level h − 1.
The restriction of constraints gives the lower bound constraints
ϕh−1 at level h− 1 in the form

(ϕh−1)i = (Ih−1h xh,k)i −min{(xh)j |j ∈ Ih,i} (28)

This constraint is enforced to all iterates xh−1,k at the coarse
level. Note that in FISTA at the target level, the constraint is
enforced to xh,k, whereas the transfer between levels is done
at yh,k.

D. Decision on Recursive Search Direction

At the beginning of each iteration k the algorithm decides
whether to compute a recursive search direction on the coarse
level. This depends on the first-order optimality condition at
the current iterate yh,k at the two levels, as well as the distance
between the current iterate and the point ỹh at which the last
recursive search direction was performed [29], [31], [42]. In
particular, a recursive search direction is used at yh,k if(∥∥Ih−1h ∇Fρh(yh,k)

∥∥ > κ
∥∥∇Fρh(yh,k)

∥∥) ∩
(‖yh,k − ỹh‖ > ϑ ‖ỹh‖ ∪ Kr = 0 ∪ Kd > qd) ,

(29)

where κ ∈
(
0,min(1,min

∥∥Ih−1h

∥∥)
)
, ϑ ∈ (0, 1), and qd ∈ N

are some predefined parameters, Kd is the number of con-
secutive iterations with direct search direction, and Kr is
the number of all iterations already performed with recursive
search direction [29], [31]. The first condition implies that a
recursive search direction is not efficient if the first-order opti-
mality condition is almost satisfied at the starting point of the
coarse error correction, as this makes the minimization of the
objective function at the coarse level ineffective. Furthermore,
the second condition implies that a recursive search direction is
not efficient if the current point yh,k is very close to the point
ỹh since it gives a result that is similar to what was obtained
on the last recursive search direction [42]. This condition is
ignored if the algorithm has already performed no step with a
recursive search direction (Kr = 0), or many consecutive steps
with a direct search direction at the fine level, say greater than
qd.

E. Outline of the MG algorithm

In Algorithm 3 our MG variant of FISTA on two grids is
outlined. Here, ∗ denotes the last iteration at each level. Since

Algorithm 3 FISTA in MG framework
1: Iteration 0: yh,1 = xh,0, θk = 0, Kd = 0, Kr = 0
2: Iteration k > 1:
3: if k > 1 ∩ (29) holds then
4: Recursive search direction: Kd = 0, Kr = Kr + 1
5: xh−1,0 = Ih−1h yh,k
6: vh−1 = Ih−1h ∇Fρ(yh,k)−∇Fρ(xh−1,0)
7: compute ϕh−1 by (28)
8: compute φh−1 by (23)
9: xh−1,∗ = FISTA(h− 1, φh−1, xh−1,0, ϕh−1)

10: xh,k = yh,k + Ihh−1 (xh−1,∗ − xh−1,0)
11: else
12: Direct search direction: Kd = Kd + 1
13: xh,k = PL(yh,k)
14: end if
15: update θh,k
16: yh,k+1 = xh,k + θh,k (xh,k − xh,k−1)
17: Output: xh,∗

φh−1 is smooth, at level h − 1 the proximal map is reduced
to a projection on the feasible set defined by ϕh−1. At each
iteration with a recursive search direction, the termination of
the algorithm at the coarse level is done whenever

φh−1,k − φh−1,k+1

max (φh,k, φh,k+1)
< εc ∪ ∗ > qc, (30)

where qc denotes the maximum permitted number of iterations
at the coarse level, and is applied to guarantee the efficiency
of coarse error corrections. Similarly, at the fine level the
algorithm was terminated at iteration k if

Fh,k − Fh,k+1

max (Fh,k, Fh,k+1)
< εd. (31)
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VI. NUMERICAL RESULTS

Numerical studies were performed to investigate the effec-
tiveness of the proposed multi-grid strategy on performance of
ISTA and FISTA for iterative image reconstruction in PAT. To
numerically solve the three-coupled first order acoustic wave
equations, which were described in Section II-A, the K-Wave
MATLAB toolbox was used [28]. Additionally, to compute
the gradient defined in (21) at each iteration at each level, the
adjoint operator H∗ was computed based on the “adjoint-then-
discretize” method (cf. Section III). The processor that was
employed in this work is an Intel(R) Core(TM) i5-4570 CPU
@ 3.20 GHz with a RAM of 8.00 GB and a 64-bit operating
system (Windows 7, Microsoft).

A. 2D PAT Simulation

A square grid with a size of 2.36 × 2.36 cm2 was created,
which is made up of 472 × 472 grid points evenly spaced
with a separation distance of 5 × 10−2mm in both x and y
dimensions, supporting frequencies of up to 13.23MHz. To
measure the propagated wavefield, 200 point-wise pressure
detectors were equidistantly placed along the left half of a
circle having a radius of 11mm so that π radians of the circle
were covered by the detectors. A Perfectly-Matched Layer
(PML) having a thickness of 20 grid points and a maximum
attenuation coefficient of 2 nepers per grid point was added
to each side of the simulated grid in order to reduce spurious
reflections at the boundaries [28].

Medium’s properties: Figs. 1(a) and 1(b) show sound
speed and density maps that were used for reconstruction,
respectively. The sound speed and density for the inhomogene-
ity (vasculature) were set to those of blood, i.e., 1575 ms−1

and 1055 kgm−3, respectively, and the red color represents
skin with a sound speed of 1730 ms−1 and a density of
1150 kgm−3. The background inside the detection surface
represents fat tissue with a sound speed of 1450 ms−1 and a
density of 950 kgm−3, and a sound speed of 1500 ms−1 and
a density of 1000kgm−3 were considered for region outside
the detection surface to represent water. These maps were
inspired by acoustic properties in tissues given in [48]. Note
that acoustic properties in realistic tissues are often smoother
than the simulated maps, and do not have sharp interfaces.
However, these sharp maps were provided in order to make a
challenge for coarse error correction in the MG method.

Furthermore, the absorption coefficient was set to 0.75
dB MHz−y cm−1 for the whole medium, except the
area that represents water, where it was set to 2 ×
10−3 dB MHz−y cm−1. The attenuation power law exponent
was set to 1.5 for the entire medium.

Since the exact maps are not readily available for recon-
struction, data were generated from a more realistic phantom
by contaminating the maps with a 35dB Additive White
Gaussian Noise (AWGN), as well as shifting the “water-skin”
and “skin-soft tissue” interfaces towards the centre of the
detection surface by 2% of radius of the circle. Figs. 1(c)
and 1(d) show distributions of sound speed and density that
were used for data generation, respectively. To mitigate errors

(a) (b)

(c) (d)

Fig. 1. (a) and (b) sound speed and density, respectively, of 2D phantom
for reconstruction. (c) and (d) sound speed and density, respectively, of 2D
phantom for data generation.

arising from aliasing, for all forward and adjoint models, the
acoustic properties were smoothed by the k-wave toolbox [28].

The phantom was created so that it simulates the pressure
distribution of vessels with a maximal amplitude of 2. Fig. 2(a)
displays the simulated phantom. To avoid spurious oscillations
in the computed pressure field, high frequencies of the initial
pressure distribution for each forward implementation were
filtered by a self-adjoint smoothing operator. This operator was
then included in the adjoint (see [22]).

The computed time-dependent pressure field arriving at
the sensors was then sampled evenly in 2655 time steps.
The interpolation of pressure field to sensors was performed
by the well-known linear method. The generated data was
then contaminated with a 30 dB AWGN. In order to avoid
inverse crime, the reconstruction was applied to a grid made
up of 328 × 328 grid points, which supports a maximal
frequency of 10.07 MHz. The PML at each side of the grid
was proportionally reduced to 16 grid points. This grid will
further be used as the “target grid” for our proposed multi-grid
algorithm.

Iterative methods: The iterative reconstruction was per-
formed by TV-regularized ISTA, i.e., Algorithm 1. The step
size αk was chosen to be 2/Lf [21] computed by the “power
iteration” method, similar to [22], [25]. The regularization
parameter was heuristically set to λ = 1× 10−2.

The MG variant of ISTA, Algorithm 3 with FISTA replaced
by ISTA, was then employed to reconstruct images on two
grids having sizes 328 × 328 and 164 × 164. The algorithm
was implemented by κ = 1/4, ϑ = 10−1, qd = 3, qc = 8,
εd = 10−3 and εc = 10−2. The coarse model supports a
maximal frequency half the fine grid, i.e. 5.038 MHz. For
iterations at which a recursive search direction was computed,
the TV function was smoothed by ρ = 1 × 10−2 as in (26).
At the coarse level, the number of grid points associated with
the PML was halved so that the thickness of the PML was the
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(a) (b)

Fig. 2. 2D phantom. (a) Initial pressure distribution (b) image reconstructed
by TR.

same as the target level. The sequences xk computed by the
algorithms were measured by the following parameters.

Relative Error (RE): This is defined at iteration k as

RE(xk) =
‖psol − pexact‖
‖pexact‖

× 100,

where psol stands for the sequence xk interpolated back to the
forward grid, and pexact denotes the simulated phantom.

Norm of Residual (RES): This is defined at iteration k as

RES(xk) =
∥∥Axk − p̂∥∥ .

Objective function (F ): This is defined at iteration k as a
discretized variant of (9) on the inverse grid. It should be noted
that the efficiency of any optimization algorithm, including the
MG algorithm we are examining, should be evaluated using
the objective function.

Fig. 2(b) shows the image reconstructed by TR, which
has an RE of 68.95%. Fig. 3(a) shows RE of the images
reconstructed by ISTA. To make a fair comparison between the
competing algorithms, the image parameters were plotted ver-
sus CPU time although the iterations are also shown as black
dots. For the MG algorithm, the iterations at which a recursive
search direction was used are designated by hexagrams. As
seen in this figure, the fixed-grid algorithm was terminated
after 4.87× 103s (38 iterations), and finally reconstructed an
image having an RE of 49.14%, whereas the MG algorithm
produced an image having an RE of 48.68% at 1.20 × 103s
(6 iterations). The MG algorithm was finally terminated after
2.07× 103s (11 iterations), and provided an image having an
RE of 47.81%. Fig. 3(b) shows RES in the same way as RE.

Subsequently, FISTA and its MG variant were implemented
on the same grids as and with the same parameters as ISTA and
MG ISTA, respectively, except that the step size was chosen
to be 1/Lf [20], [21]. Figs. 3(c) and 3(d) display RE and RES
of sequences provided by FISTA, respectively. As shown in
Fig. 3(c), FISTA reconstructed a final image having an RE of
50.44% after 3.09×103s on a fixed grid (24 iterations), while
the MG variant of FISTA provided an image having an RE
of 49.31% at 8.09 × 102s (4 iterations). The MG algorithm
finally reached an RE of 47.87% at 1.46× 103s (8 iterations).

The objective function values corresponding to sequences
computed by ISTA and FISTA are shown in Fig. 4(a). This
figure has been shown in a larger view around the optimum
in Fig. 4(b). As seen in these figures, FISTA converged more
slowly than ISTA at early iterations, but it was faster than

(a) (b)

(c) (d)

Fig. 3. Evaluation of 2D images reconstructed on fixed grid (blue) and
two-level grid (red). ISTA: (a) RE (b) RES, and FISTA: (c) RE (d) RES.

(a) (b)

Fig. 4. The convergence of ISTA on a fixed grid (black), ISTA on a two-
level grid (green), FISTA on a fixed grid (blue) and FISTA on a two-level
grid (red) for the 2D phantom. (a) Objective function (b) larger view.

ISTA around the optimum on both fixed grid and two-level
grids. ISTA has finally reached an objective function having
a value of 2.15× 102 at 4.87× 103s on a fixed grid, whereas
it has reached an F of 2.12 × 102 at 1.20 × 103s on a two-
level grid. This indicates that the MG variant of ISTA was
four times faster than the fixed-grid ISTA. The MG variant of
ISTA has finally reached an F of 2.10× 102 at 2.07× 103s.
Applying FISTA on a fixed grid, the algorithm was terminated
at 3.09×103s with an F of 2.14×102, while FISTA on a two-
level grid has reached almost the same value at 9.37×102s (5
iterations). This implies that FISTA on a two-level grid was
almost three times faster than on a fixed grid. MG FISTA was
finally terminated at 1.46× 103s with an F of 2.10× 102.

Some of the reconstructed images have been shown in Fig.
5. The color scale of each figure was set independently. It
is clear that the MG variant of FISTA reconstructed more
accurate images in less times than the fixed-grid algorithm.

B. 3D PAT Simulation

A 3D grid with a size of 1 × 1 × 0.25 cm3 was created,
made up of 160× 160× 40 grid points with a spatial spacing
of 6.25×10−2 mm, supporting a maximal frequency of 10.36
MHz in all axes. To measure the propagated wavefield, 36×36
point-wise pressure detectors were placed on the top surface of
the grid (see [25]). A PML was added to the grid in the same
way as in Section VI-A. The sound speed and density maps
were simulated inhomogeneous, as shown in Figs. 6(a) and
6(b), respectively. From the top to bottom, the layers represent
properties of water, skin and soft tissue with sound speed
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(a) (b)

(c) (d)

Fig. 5. 2D images reconstructed by FISTA. (a) Iteration 4 on a fixed grid
(5.09×102s) (b) Iteration 2 on a two-level grid (4.05×102s) (c) Iteration 8
on a fixed grid (1.03×103s) (d) Iteration 4 on a two-level grid (8.09×102s).

(a) (b)

(c) (d)

Fig. 6. (a) and (b) sound speed and density, respectively, of 3D phantom
for reconstruction. (c) and (d) sound speed and density, respectively, of 3D
phantom for data generation.

and density values given in Section VI-A [48]. The sound
speed and density of vasculature were set the same as the 2D
phantom as well.

To avoid inverse crime, for data generation these maps have
been contaminated with a 35dB AWGN, and the “water-skin”
and “skin-soft tissue” interfaces were shifted to the bottom
by 3 grid points (18.75 × 10−2mm), as shown in Figs. 6(c)
and 6(d). To mitigate aliasing artifacts, for all forward and
adjoint models, medium’s properties were smoothed by the k-
wave toolbox [28]. The absorption coefficient and power law
exponent of tissues were set the same as those in Section VI-A.

The phantom that was already created for the 2D scenario
was now placed obliquely in the plane z = y/4. Fig. 7(a)
displays the simulated phantom from a top view, and the sen-
sors are shown by black dots. The computed pressure field was
evenly sampled in 914 time steps, and was linearly interpolated
to the sensors. A 30dB AWGN was then incorporated to the
generated data.

The reconstruction was applied to a grid made up of 128×
128× 32 grid points, supporting a maximal frequency of 9.28
MHz. Fig. 7(b) displays the image reconstructed by TR. This
image has an RE of 87.98%. In our study, 3D visualizations

(a) (b)

Fig. 7. 3D phantom. (a) Initial pressure distribution (b) image reconstructed
by TR.

(a) (b)

(c) (d)

Fig. 8. Evaluation of 3D images reconstructed on fixed grid (blue) and
two-level grid (red). ISTA: (a) RE (b) RES, and FISTA: (c) RE (d) RES.

were done by Maximum Intensity Projection (MIP) method
(see [19], [25]).

Iterative methods: The iterative reconstruction was per-
formed by ISTA and FISTA. The step sizes were chosen by
power iteration method similarly to the algorithms in Section
VI-A. The regularization parameter was heuristically chosen to
be λ = 1×10−2. The MG algorithms were then implemented
to reconstruct images on two levels having sizes 128×128×32
and 64× 64× 16. These algorithms were implemented by the
same parameters as in 2D scenario, except that κ was set to
1/8, i.e., size of the coarse grid relative to the fine grid, and
also the smoothing parameter ρ was set to 3× 10−2.

Figs. 8(a) and 8(b) respectively, show RE and RES of the
images reconstructed by ISTA versus CPU time in the same
way as in Section VI-A. Figs. 8(c) and 8(d) display RE and
RES of sequences provided by FISTA, respectively. As seen
in these figures, both ISTA and FISTA exhibited a better
performance on a two-level grid than on a fixed grid.

Fig. 9 shows F values versus CPU time for all the used
algorithms. As shown in this figure, the F value obtained by
MG ISTA after 8.74 × 103s (9 iterations) was less than the
optimal value obtained by fixed-grid ISTA at 2.05× 104s (23
iterations). This indicates that MG ISTA was 2.35 times faster
than ISTA on a fixed grid.

Applying FISTA, the F value computed by the MG algo-
rithm after 4.71×103s (5 iterations) was less than the optimal
value computed by the fixed-grid algorithm at 1.42×104s (16
iterations). This indicates that MG FISTA was almost three
times faster than FISTA on a fixed grid.
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Fig. 9. The objective function values computed by ISTA on a fixed grid
(black), ISTA on a two-level grid (green), FISTA on a fixed grid (blue), and
FISTA on a two-level grid (red) for the 3D phantom.

Furthermore, a comparison between ISTA and FISTA on a
fixed grid indicates that the convergence of ISTA was faster
than FISTA at early iterations because of using a step size
greater than FISTA, but FISTA has finally provided almost
the same optimal F as ISTA in a less time. Applying the
MG algorithms, MG ISTA was faster than MG FISTA at
early iterations, but MG FISTA converged better than MG
ISTA around the optimal point, and reached a lower F than
MG ISTA in less time. MG ISTA finally reached a value of
3.36×102 at 1.15×104s (12 iterations), while MG FISTA was
terminated at 8.59×103s (9 iterations) with an F of 3.32×103.

Figs. 10(a) and 10(c) show images reconstructed by FISTA
on the fixed grid at iterations 6 and 16 (stopping point), re-
spectively. Figs. 10(b) and 10(d) display images reconstructed
by MG FISTA at iterations 4 and 9 (stopping point). The MIP
visualization provided a different scaling for the reconstructed
images, compared to the simulated phantom (pexact). This
different scaling as well as small scale noise do not affect the
evaluation of a human observer [25]. Thus the reconstructed
images were rescaled and thresholded before visualization
according to [25]. This makes the colorbars equal to that
of the simulated phantom, and thus simplifies comparison
between the images with respect to the simulated phantom.
Accordingly, the visualized image x̄ is computed in the form

x̄ = thres
(

2
x

‖x‖∞
, 0.1

)
(32)

where,

thres(v, a) =

{
v, if v > a

0, else
.

Here, a is a thresholding parameter, and the factor 2 multiplied
to (32) accounts for the maximum amplitude of pexact.

VII. CONCLUSION

We proposed a line search MG optimization approach for
PAT. Applied on two grids, our numerical results show that this
strategy has improved the speed of ISTA 4 and 2.35 times,
respectively in 2D and 3D scenarios. A better convergence
than MG ISTA was reached by MG FISTA, which was 3 times
faster than fixed-grid FISTA in both 2D and 3D cases.

We derived the adjoint from a first order acoustic system
of equations that includes the absorption and dispersion. Our
method for deriving the adjoint is in contrast to the method
used in [22], where the adjoint has been derived based on

(a) (b)

(c) (d)

Fig. 10. Visualization of 3D images reconstructed by FISTA. (a) Iteration 6
on a fixed grid (5.34×103s) (b) Iteration 4 on a two-level grid (3.84×103s)
(c) Iteration 16 on a fixed grid (1.42 × 104s) (d) Iteration 9 on a two-level
grid (8.59× 103s).

second order acoustic wave equation, and thus does not include
absorption and dispersion.

Further studies are needed to extend the proposed MG
method to other popular acoustic systems of equations, or
other models for describing absorption and dispersion, e.g.,
[37]. The forward implementation of these acoustic systems
is often more expensive than the forward model used in our
study, and thus solving the corresponding iterative algorithms
in a multi-grid setting can be very useful. Additionally, a direct
method for quantitative PAT has recently received much atten-
tion, where the forward model is treated as a coupled acoustic
and optical model, and thus directly links optical properties
of medium to time series of acoustic boundary measurements
[49]. Quantitative PAT requires the joint reconstruction of
optical absorption and scattering coefficients. This makes the
corresponding iterative reconstruction very expensive. It is
hoped that an extension of the proposed MG method to
the direct quantitative PAT can be useful for improving the
reconstruction speed.

APPENDIX

TABLE I
ACRONYMS

Word Acronym
Multi-Grid MG

Photo-Acoustic Tomography PAT
Iterative Shrinkage Thresholding Algorithm ISTA

Fast Iterative Shrinkage Thresholding Algorithm FISTA
Field Programmable Gate Array FPGA

Time Reversal TR
Graphics Processor Unit GPU

Total Variation TV
Perfectly-Matched Layer PML

Relative Error RE
Residual Norm RES

Objective Function (at target level) F
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