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High-performance reconstruction of microscopic
force fields from Brownian trajectories
Laura Pérez García1, Jaime Donlucas Pérez1, Giorgio Volpe 2, Alejandro V. Arzola1 & Giovanni Volpe 3

The accurate measurement of microscopic force fields is crucial in many branches of science

and technology, from biophotonics and mechanobiology to microscopy and optomechanics.

These forces are often probed by analysing their influence on the motion of Brownian par-

ticles. Here we introduce a powerful algorithm for microscopic force reconstruction via

maximum-likelihood-estimator analysis (FORMA) to retrieve the force field acting on a

Brownian particle from the analysis of its displacements. FORMA estimates accurately the

conservative and non-conservative components of the force field with important advantages

over established techniques, being parameter-free, requiring ten-fold less data and executing

orders-of-magnitude faster. We demonstrate FORMA performance using optical tweezers,

showing how, outperforming other available techniques, it can identify and characterise

stable and unstable equilibrium points in generic force fields. Thanks to its high performance,

FORMA can accelerate the development of microscopic and nanoscopic force transducers for

physics, biology and engineering.
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In many experiments in biology, physics, and materials sci-
ence, a microscopic colloidal particle is used to probe local
forces1–4; this is the case, for example, in the measurement of

the forces produced by biomolecules, cells, and colloidal inter-
actions. Often particles are held by optical, acoustic, or magnetic
tweezers in a harmonic trapping potential with stiffness k so that
a homogeneous force acting on the particle results in a dis-
placement Δx from the equilibrium position and can therefore be
measured as kΔx. To perform such measurement, it is necessary
to determine the value of k, which is often done by measuring the
Brownian fluctuations of the particle around its stable equili-
brium position. This is achieved by measuring the particle
position as a function of time, x(t), and then using some cali-
bration algorithms; the most commonly employed techniques are
the potential5, the power spectral density (PSD)6, and the auto-
correlation function (ACF)7 analyses (see Methods for details).
The first method samples the particle position distribution ρ(x),
calculates the potential using the Boltzmann factor, and then fits
the value of k; this method requires a series of independent
particle positions acquired over a time much longer than the
system equilibration time to sample the probability distribution,
and depends on the choice of some analysis parameters, such as
the size of the bins. The latter two methods respectively calculate
the PSD and ACF of the particle trajectory in the trap and fit
them to their theoretical form to find the value of k; both
methods require a time series of correlated particle positions at
regular time intervals with a sufficiently short timestep Δt, and
depend on the choice of some analysis parameters that determine
how the fits are made.

Here we introduce a new powerful algorithm for microscopic
force reconstruction via maximum-likelihood-estimator analysis
(FORMA). FORMA exploits the fact that in the proximity of an
equilibrium position the force field can be approximated by a
linear form4,8, and therefore, optimally estimated using a linear
maximum-likelihood-estimator (MLE)9,10. FORMA has several
advantages over the methods mentioned above. First, FORMA
executes much faster because its algorithm is based on linear
algebra for which highly optimised libraries are readily available.
Second, it requires less data and therefore it converges faster and
with smaller error bars. Third, it has less stringent requirements
on the input data, as it does not require a series of particle
positions sampled at regular time intervals or for a time long
enough to reconstruct the equilibrium distribution. Fourth, it is
simpler to execute and automatise because it does not have any
analysis parameter to be chosen. Fifth, it probes simultaneously
the conservative and non-conservative components of the force
field. Finally, as it does not need to use the trajectory of a particle
held in a potential, it can identify and characterise both stable and
unstable equilibrium points in extended force fields, and therefore
it is compatible with a broader range of possible scenarios where a
freely diffusing particle is used as a tracer, e.g., in microscopy and
rheology.

Results
FORMA in one-dimension. To introduce the algorithm in the
simplest one-dimensional (1D) situation, we start by considering
a spherical microparticle of radius R immersed in a liquid with
viscosity η, at temperature T, and held in a harmonic confining
potential of stiffness k. Experimentally, we have used a standard
optical tweezers with a single-focused laser beam to create a
harmonic trap; in this configuration, the motion along each
dimension is independent and can be treated separately as
effectively 1D4. The details of the experimental setup are descri-
bed in the Methods and Supplementary Figure 1. Briefly, we have
employed a focused laser beam (Gaussian profile, linear

polarisation, wavelength 532 nm, power at the sample 0.8 mW)
and used it to trap a silica microsphere (R= 0.48 ± 0.02 μm) in an
aqueous solution. We have tracked the particle position using
digital video microscopy11 with a spatial resolution below 5 nm
and with a frame frequency fs= 4504.5 s−1, corresponding to a
sampling timestep Δt= 0.222 ms. Note that, as in the case of the
PSD and ACF analyses, the sampling frequency needs to be at
least about one order of magnitude greater than the characteristic
trap frequency in order to obtain accurate results (see also Sup-
plementary Figure 2). The corresponding overdamped Langevin
equation is12:

_x ¼ � k
γ
x þ

ffiffiffiffiffiffi
2D

p
w; ð1Þ

where x(t) is the 1D particle position, γ= 6πηR, D= kBT/γ, and
w(t) is a 1D white noise. We assume to have N measurements of
the particle displacement Δxn at position xn during a time Δtn,
where n= 1,...,N (note that the time intervals do not need to be
equal). Discretizing Eq. (1), we obtain that the average viscous
friction force in the n-th time interval is

fn ¼ γ
Δxn
Δtn

¼ �kxn þ σwn; ð2Þ

where σ ¼
ffiffiffiffiffiffiffi
2Dγ2

Δtn

q
and wn is a Gaussian random number with zero

mean and unit variance12. The central observation is that Eq. (2)
is a linear regression model9,10, whose parameters, k and σ, can
therefore be optimally estimated with a maximum-likelihood
estimator from a series of observations of the dependent (fn) and
independent (xn) variables, as schematically illustrated in Fig. 1.
The detailed derivation is provided in the Methods for the general
case. Wu et al.13 have proposed a direct force measurement
method based on taking the average of fn around each position of
the force field; this approach requires many more samples than

tn

xn

xn

fn

–kxn

0

Potential depth
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Fig. 1 Force reconstruction via maximum-likelihood-estimator analysis.
Schematic of the 1D version of FORMA for a particle held in an optical
tweezers. a While a particle is held within a harmonic optical trap generated
by an optical tweezers (the green background illustrates the depth of the
potential), samples xn of its trajectory (solid orange line) are acquired at times
tn. b FORMA exploits the fact that the stiffness k of the optical tweezers is
related to the correlation between xn and the friction force fn acting on the
particle (each dot represents a different (xn, fn) pair). FORMA uses an MLE to
quickly, precisely, and accurately estimate this correlation and, thus, k. The
spread of the dots around the linear regression line −kxn provides information
about the diffusion coefficient D of the particle
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FORMA. The MLE estimation of the trap stiffness is then

k� ¼
P
n
xnfnP

n
x2n

: ð3Þ

Equation (3) is indeed a very simple expression that can be
executed extremely fast using standard highly optimised linear
algebra libraries, such as LAPACK14, which is incorporated in
most high-level programming languages, including MatLab and
Python. Using the fact that fn+ k*xn= σ wn (Eq. 2), we can
estimate the diffusion coefficient as

D� ¼ 1
N

X
n

Δtn
2γ2

fn þ k�xn½ �2 ð4Þ

and compare it to the expected value D, which provides an
intrinsic quantitative consistency check for the quality of the
estimation.

Performance of FORMA. In Fig. 2a, we show the estimation of
the trap stiffness as a function of the number of samples (orange
line). Already with as little as 103 samples (corresponding to a
total acquisition time of ~0.2 s), the stiffness has converged to its
final value with small relative error (<20%), which improves as
the number of samples increases reaching <2% relative error for
105 samples (~20 s). The quality of the estimation can be eval-
uated by estimating the diffusion coefficient D (Fig. 2b), which
indeed converges to the expected value (dashed line) already for
103 samples with a 3% relative error. Even for the highest number
of samples, the algorithm execution time is in the order of a few
milliseconds on a laptop computer (Fig. 2c). We have further
verified these results on simulated data with physical parameters
equal to the experimental ones (Fig. 2d–f). These simulations are
in very good agreement with the results of the experiments and,
given that the value of k is fixed and known a priori (dashed line
in Fig. 2d), they demonstrate the high accuracy of FORMA
estimation: FORMA converges to the ground truth value of k for
about 104 samples with 10% relative error, which, as in the
experiments, reduces to 2% for 105 samples.

In Fig. 2, we also compare the performance of FORMA with
other established methods typically used in the calibration of
optical tweezers, i.e. the potential, PSD, and ACF analyses4–7 (the
details and parameters used for these analyses are provided in the
Methods). Overall, these results show that FORMA is more
precise than other methods when estimating k for a given number
of samples, as the other methods typically need 10–100 times
more data points to obtain comparable relative errors (Fig. 2a, b,
d, and e). FORMA also executes faster by one to two orders of
magnitude than the other methods (Fig. 2c, f). The relative errors
of the FORMA estimation are also typically smaller, being 2% for
105 samples, while the potential, PSD and ACF analyses achieve
relative errors larger than 6, 7, and 20%, respectively. FORMA is
also more accurate in estimating the value of k, as can been seen
comparing experiments and simulations (Fig. 2a, d): whereas the
potential and ACF analyses also converge to the correct k value,
the PSD analysis introduces a significant bias in the estimation
(around 8%). Although for the specific case of the potential
analysis (green lines), FORMA’s performance can be considered a
marginal improvement in terms of accuracy, it actually provides
access to additional information that the potential analysis does
not provide, namely the estimation of the diffusion coefficient D.
Nonetheless, FORMA is significantly more accurate than the PSD
analysis (blue lines), whose estimated k and D present a
systematic error; with experience this error can be reduced by

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4
pot
psd
acf

2

20

0.0

0.2

0.4

0.6

0.8

1.0

0.1

1

10

10−1

100

101

102

a

b

c

d

e

f

t c
 [m

s]
�D

/D
 [%

]
D

 [μ
m

2 
s−

1 ]
�k

/k
 [%

]
k 

[p
N

 μ
m

−
1 ]

Experiments Simulations

FORMA

Ns

103 104 105

Ns

103 104 105

Fig. 2 Better performance of FORMA compared to alternative techniques.
Experimentally determined values of a the trap stiffness k and its relative
error δk/k, b the diffusion coefficient D and its relative error δD/D, and c the
computational execution time tc as a function of the sample number Ns for
FORMA (orange lines); and d–f corresponding results from numerical
simulations. The comparisons with potential (green lines), PSD (blue lines),
and ACF (pink lines) analyses show that FORMA converges faster (i.e. for
smaller Ns), is more precise (i.e. smaller relative errors), is more accurate
(i.e. it converges to the expected value represented by the black dashed
line), and executes faster than the other methods. In all cases, we have
acquired/simulated 24 trajectories of the motion of a spherical
microparticle with radius R= 0.48 μm in an aqueous medium of viscosity η
= 0.0011 Pa s−1 at a sampling frequency fs= 4504.5 s−1. The relative errors
are obtained as the standard deviations of the estimations over the 24
trajectories. The execution times are measured using a MatLab
implementation of the algorithms on a laptop computer (processor Intel
Core i7 at 2.2 GHz and 8 GB 1600MHz DDR3)
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tweaking the fitting PSD range, although this process can still be
tricky without knowing a priori the value of k. Finally, FORMA is
also significantly more precise and about two orders of magnitude
faster than the ACF analysis (pink lines), which in fact is the least
precise and the slowest method with 20% relative error and 100
ms execution time for 105 samples, while FORMA has 2% relative
error and 2 ms execution time for the same number of samples.

FORMA in two-dimensions. We now generalise FORMA to the
two-dimensional (2D) case. Beyond a conservative component
that is also present in 1D force fields, 2D force fields can also
feature a non-conservative component8; as we will see, FORMA is
able to estimate both simultaneously, differently from most other
methods. The overdamped Langevin equation is now best written
in vectorial form as

_r ¼ 1
γ
FðrÞ þ

ffiffiffiffiffiffi
2D

p
w; ð5Þ

where F(r) is a force field and w is a vector of independent white
noises. F(r) can be expanded in Taylor series around 0 as F(r)=
F0+ J0r+ o(r), where F0= F(0) is the force and J0= J(0) the
Jacobian at 0. If we assume that 0 is an equilibrium point, then F0
= 0; with this assumption, the results in the following become
much simpler without loss of generality, as this is equivalent to
translating the experimental reference frame so that it is centred
at the equilibrium position (we discuss below how to proceed if
the equilibrium position is not known). Analogously to the 1D
case explained above, using Eq. (5) the average friction force in
the n-th time interval is

fn ¼ γ
Δrn
Δtn

¼ J0rn þ σwn; ð6Þ

where wn is an array of independent random numbers with zero
mean and unit variance. Eq. (6) is again a linear regression model
and therefore the MLE estimator of J0 is given by

J�0 ¼ rTr
� ��1

rTf; ð7Þ

where r= (rn) and f= (fn) are matrices with N × 2 elements. Eq.
(6) can be computed extremely efficiently as it only requires
matrix multiplications and the trivial inversion of a 2 × 2 matrix.
As in the 1D case, we can calculate the residual error (see
Methods) and use it to determine the quality of the reconstruc-
tion of the force field by estimating the value of the diffusion
coefficient along each of the two axes.

A schematic of the workflow of the 2D version of FORMA is
presented in Fig. 3a–c. The estimated force field around the
equilibrium point is F�ðrÞ ¼ J�0 r, where we use the estimated
Jacobian8 (Eq. 7). This is a linear form that results from the
superposition of a conservative harmonic potential (which is
characterised by its stiffnesses k�1 and k�2 along the principle axes,
and the orientation θ* of the principle axes with respect to the
Cartesian axes) and a non-conservative rotational force field
(which is characterised by its angular frequency Ω*). Some
examples of this decomposition are shown in Supplementary
Figure 3. It is possible to obtain these two components directly
from the Jacobian, by separating it into its conservative and non-
conservative parts as J�0 ¼ J�c þ J�r , making use of the fact that they
are respectively symmetric and antisymmetric. The conservative
part is

J�c ¼
1
2
ðJ�0 þ J�T0 Þ ¼ Rðθ�Þ �k�1 0

0 �k�2

� �
R�1ðθ�Þ; ð8Þ

where R(θ) is a rotation matrix that diagonalises Jc and whose

principal axes correspond to the eigenvectors corresponding to
the principle axes of the harmonic potential and the stiffnesses
along these axes correspond to the eigenvalues with a minus sign.
The non-conservative (rotational) part is

J�r ¼
1
2

J�0 � J�T0
� � ¼ 0 �γΩ

γΩ 0

� �
ð9Þ

and, as it is invariant under a rotation of the reference system, the
angular frequency can be simply estimated as

Ω� ¼ 1
2γ

J�0;21 � J�0;12
h i

: ð10Þ

To demonstrate this 2D version of FORMA at work, we have
used it to estimate the transfer of orbital and spin angular
momentum to an optically trapped particle. In fact, orbital and
spin angular momentum can make a transparent particle orbit,
even though the precise angular-momentum-transfer mechan-
isms can be very complex when the beam is tightly focused,
depending on the size, shape and material of the particle, as well
as on the size and shape of the beam13,15–19. We employ the same
setup and microparticle as for the results presented in Fig. 2 (see
Methods and Supplementary Figure 1), using a spatial light
modulator to generate Laguerre-Gaussian (LG) beams carrying
orbital angular momentum (OAM) to trap the particle and a
quarter-wave plate to switch their polarisation state from linear to
positive or negative circular polarisation. The results of the force
field reconstruction are the stiffnesses kx and ky (Fig. 3d–f) and
the angular frequencies Ω (Fig. 3g–i) of a Brownian particle
optically trapped in various LG beams. In Fig. 3d, g, we employ a
linearly polarized LG beam with topological charge l=−2, −1, 0,
1, 2 (the case l= 0 corresponds to the standard Gaussian beam
already employed in Fig. 2). As already observed in previous
experiments, we also measure that Ω* is proportional to l (Ω* ≈
1.8 s−1l), which follows the quantisation of the OAM20. We have
verified that these values are in good quantitative agreement with
those obtained using the more standard cross-correlation
function (CCF) analysis, which is an extension of the ACF
analysis that permits one to detect the presence of non-
conservative force fields8. These non-conservative rotational
force fields are very small, produce an almost imperceptible
bending of the force lines when comparing LG0 with LG2 (insets
of Fig. 3g), and, therefore, cannot be detected by directly counting
rotations of the particle around the beam axis. To further test our
results, we have then changed the polarisation state of the beam
switching it to positive circular polarisation (Fig. 3e, h), which
introduces an additional spin angular momentum (SAM), so that
Ω* ≈ 1.8 s−1(l+ 1), recovering the SAM quantisation. This
relation suggests that the OAM and SAM contribute equally to
the rotation of the particle. We finally changed the polarisation
state of the beam to negative circular polarisation (Fig. 3f, i)
obtaining Ω* ≈ 1.8 s−1(l− 1).

FORMA in three-dimensions. Following the same procedure,
FORMA can be extended also to measure three-dimensional (3D)
force fields. The resulting equations are provided in the Methods,
and we have tested them on simulated data (see Supplementary
Table 1).

Measurement of stable and unstable equilibrium points. Until
now, we have always centred the reference frame at the equili-
brium position. However, the positions of the equilibria might be
unknown a priori, for example when exploring extended potential
landscapes. FORMA can be further refined to address this
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problem and determine the value of F0 in Eq. (5), which permits
one to identify equilibrium points when F0= 0. We obtain the
following estimator (see Methods for detailed derivation):

J�0F
�
0

� � ¼ erTer� ��1erTf ; ð11Þ

where er ¼ ½r 1� with 1 a column vector constituted of N ones.
Having the trajectory of a particle moving in an extended
potential landscape, it is possible to use Eq. (11) to simultaneously
identify the equilibrium points, classify their stability, and char-
acterise their local force field: For each position in the potential
landscape, the parts of the trajectory that fall within a radius a
smaller than the characteristic length over which the force field
varies from this position are selected and analysed with FORMA;
if F�0 � 0, then this position is an equilibrium point and J�0 per-
mits us to determine the local force field.

We have applied this procedure to identify the equilibrium
points in a multistable potential, which we realised focusing two
slightly displaced laser beams obtained using a spatial light
modulator (see Methods and Supplementary Figure 1). Similar

configurations have been extensively studied as a model system
for thermally activated transitions in bistable potentials21,22;
however, the presence of additional minima other than the two
typically expected has been recognized only recently due to their
weak elusive nature23. The results of the reconstruction are shown
in Fig. 4. In Fig. 4a, we use the potential analysis to determine the
potential (green solid line with error bars denoted by the shaded
area) by acquiring a sufficiently long trajectory so that the particle
has equilibrated and fully explored the region of interest; this
potential appears to be bistable with two potential minima (stable
equilibrium points) and a potential barrier between them
corresponding to an unstable equilibrium point. When we
use FORMA, we identify five equilibria, and classify them as
stable (x�1 , x

�
3 , x

�
5 ; full circles) and unstable (x�2 , x

�
4 ; empty circles);

importantly, we are able to clearly resolve the presence of
additional equilibrium points within the potential barrier (x�2 , x

�
3 ,

x�4). For each point, FORMA provides the respective stiffness (the
corresponding harmonic potentials are shown by the orange
lines), which is negative for unstable equilibrium points. This
highlights one of the additional key advantages of FORMA: It can
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Fig. 3 Measurement of the non-conservative force-field component. a–c Schematic of the 2D version of FORMA for a particle held in an optical tweezers: a
Samples rn of a particle trajectory (solid orange line) held in an optical tweezers (the green background illustrates the depth of the potential) are acquired at
times tn. b FORMA estimates the Jacobian J0 of the force field from the relation between rn and fn using a 2D MLE. In the schematic, we represent only the
estimation of the first row of J0, which is related to the x-component of fn; the complete graph cannot be represented because it is 4D. c Using this
information, FORMA reconstructs the force field around the equilibrium point req (see also Supplementary Figure 3). d–f Stiffnesses kx and ky, and g–i angular
frequency Ω of a Brownian particle optically trapped by d, g a linearly polarised, e, h circularly (+) polarised, and f, i circularly (−) polarised Laguerre-
Gaussian (LG) beam with l=−2, −1, 0, 1,2. g–i The results of FORMA (orange circles) agree well with the results of the CCF analysis (pink triangles). The
insets in g show the force fields for the case of a Gaussian beam (LG0), which is purely conservative (l= 0), and of a beam with a charge l= 2 of orbital
angular moment (LG2), which features a non-conservative component that only induces a mild bending of the arrows. In all cases, we have acquired
trajectories of the motion of a spherical particle with radius R= 0.48 μm in an aqueous medium of viscosity η= 0.0011 Pa s−1 at a sampling frequency fs=
4504.5 s−1, and used 25 windows of 105 samples for the analysis; the error bars in d–i are the standard deviations over these 25 measurements
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also measure the properties of the force field around unstable
equilibrium points, thanks to the fact that it does not require an
uninterrupted series of data points or a complete sampling of the
equilibrium distribution, which are difficult or impossible near an
unstable equilibrium. Figure 4b shows a 2D view of the potential,
where we used FORMA to estimate the force field on a 2D grid
and to identify the stable and unstable equilibria. The background
colour represents the potential reconstructed using the equili-
brium distribution, which shows a good agreement with the
results of FORMA, but does not allow to clearly identify the
presence of the additional equilibria in the potential barrier.

Measurement of extended force fields. Finally, we can also use
FORMA to study larger extended force fields, such as the random
optical force fields generated by speckle patterns24–28. Speckles
are complex interference patterns with well-defined statistical
properties generated by the scattering of coherent light by dis-
ordered structures29; the equilibrium positions are not known a
priori due to their random appearance, the configuration space is
virtually infinite, and there can be a non-conservative component.
Thus, the challenge is at least twofold. First, the configuration
space is virtually infinite and, therefore, cannot be sampled by a
single trajectory in any reasonable amount of time. Second, the

force field can present a non-conservative component; in fact,
whereas several works have demonstrated micromanipulation
with speckle patterns24–28, none of them has so far achieved the
experimental characterisation of this non-conservative nature of
the optical forces. To study this situation, we have employed a
speckle light field generated using a second optical setup (see
Methods and Supplementary Figure 4). A portion of the resulting
speckle field is shown by the green background in Fig. 5a. To
sample the force field, we have acquired the trajectories of a
particle in various regions of the speckle field: In each of these
trajectories the particle typically explores the regions surrounding
several contiguous stable equilibrium points by being metastably
trapped in each of them while still being able to cross over the
potential barriers separating them30. These trajectories cannot be
used in the potential analysis because they do not provide a fair
sampling of the position space. Nevertheless, they can be used by
FORMA to identify the equilibrium points, which are shown in
Fig. 5a by the full circles (stable points) and empty circles
(unstable and saddle points), and to determine the force field
around them (see Supplementary Table 2 for the measured
values): For example, in Fig. 5b we show a stable point, in Fig. 5c
an unstable point with a significant rotational component, and in
Fig. 5d a series of two stable points with a saddle between them in
a configuration reminiscent of that explored in Fig. 4.

Discussion
We have introduced FORMA: a new, powerful algorithm to mea-
sure microscopic force fields using the Brownian motion of a
microscopic particle based on a linear MLE. We first introduced the
1D version of FORMA; we quantitatively compared it to other
standard methods, showing that it needs less samples, it has smaller
relative errors, it is more accurate, and it is orders-of-magnitude
faster. We then introduced the 2D version of FORMA; we showed
that it can also measure the presence of a non-conservative force
field, going beyond what can be done by the other methods. Finally,
we applied it to more general force-field landscapes, including
situations where the shape of the potential is not harmonic and the
forces are too shallow to achieve long-term trapping: we used
FORMA to identify the equilibrium points; to classify them as stable,
unstable and saddle points; and to characterise their local force
fields. Overall, we have shown that, requiring less data and having a
faster run time, FORMA can be applied to situations that require a
fast response such as in real-time applications (e.g., in haptic optical
tweezers31) and in the presence of time-varying conditions (e.g., in
the study of biological systems32–34, of active baths35,36 and of
systems out of equilibrium37–39). Even though we have presented
results only for particles of a single size, FORMA can be used as
described in this work for spherical particles of any size, from
Rayleigh particles much smaller than the optical wavelength to large
Mie particles. FORMA can be straighforwardly extended also to
measure flow fields and 3D force fields. FORMA can also be
extended to deal with non-translational degrees of freedom, which
might be important when dealing with non-spherical particles. For
force fields that cannot be approximated by a linear form around an
equilibrium position, because J0= 0, FORMA needs to be extended
using a higher-order MLE estimator. Thanks to the fact that this
algorithm is significantly faster, simpler and more robust than
commonly employed alternatives, it has the potential to accelerate
the development of force transducers capable of measuring and
applying forces on microscopic and nanoscopic scales, which are
needed in many areas of physics, biology, and engineering.

Methods
Potential analysis. The potential method4,5 relies on the fact that a harmonic
potential has the form U(x)= 1

2 kx
2 and the associated position probability
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Fig. 4 Reconstruction of stable and unstable equilibrium points. a Multiwell
optical potential generated by two focused Gaussian beams slightly
displaced along the x-direction. FORMA identifies three stable (x�1 , x

�
3, x

�
5;

full circles) and two unstable (x�2, x
�
4; empty circles) equilibrium points, and

measures their stiffness (orange solid and dashed lines). The corresponding
x-potential obtained from the potential method is shown by the green solid
line (the green shaded area represents one standard deviation obtained
repeating the experiment 20 times). b 2D plot of the force field measured
with FORMA (arrows) and of the potential measured with the potential
analysis (background colour). The stable and unstable equilibrium points
are indicated by the full and empty circles, respectively. We have acquired
trajectories of the motion of a spherical particle with radius R= 0.48 μm in
an aqueous medium of viscosity η= 0.0011 Pa s−1 at a sampling frequency
fs= 4504.5 s−1, and used 20 windows of 4.5 × 105 samples for the analysis
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distribution of the particle is ρðxÞ ¼ ρ0exp � UðxÞ
kBT

	 

. Therefore, by sampling ρ(x)

it is possible to reconstruct U(x)=−kBT ln(ρ(x)) and FðxÞ ¼ � dUðxÞ
dx . The value

of k is finally obtained by fitting F(x) to a linear function. The potential method
requires a series of particle positions acquired over a time long enough for the
system to equilibrate as well as the choice of the number of bins and of the fitting
algorithm to be employed in the analysis: here, we used 100 bins equally spaced
between the minimum and maximum value of the particle position, and a linear
fitting.

Power spectral density analysis. The PSD method4,6 uses the particle trajectory
in the harmonic trap, x(t), to calculate the PSD, Pðf Þ ¼ D

2π2 ðf 2c þ f 2Þ�1, where fc
= (2πγ)−1k is the harmonic trap cutoff frequency, γ is the particle friction
coefficient, and D is its diffusion coefficient. It then fits this function to find
the value of k, and therefore the harmonic force field surrounding the particle.
The PSD method requires a time series of correlated particle positions at
regular time intervals with a sufficiently short timestep Δt. It also requires to
choose how the PSD is calculated (e.g., use of windowing and binning6)
and the frequency range over which the fitting is made: here, we performed
the PSD fitting over the frequency range between five times the minimum
measured frequency and half the Nyquist frequency without using windowing
and binning.

Auto-correlation function analysis. The ACF method4,7 calculates the ACF of the

particle position, CðτÞ ¼ kBT
k exp � kjτj

γ

	 

, where kB is the Boltzmann constant and

T is the absolute temperature. It then fits this function to find the value of k, and
therefore the harmonic force field surrounding the particle. Like the PSD method,
also the ACF method requires a time series of correlated particle positions at
regular time intervals. It also requires to choose over which range to perform the
fitting: here, we have performed the fitting over the values of the ACF >1% its
maximum.

Experimental setups. For the single-beam (Figs. 2 and 3) and two-beam (Fig. 4)
experiments, we used the standard optical tweezers shown in Supplementary
Figure 14,28,40. An expanded 532-nm-wavelength laser beam (power at the sample
0.8 mW) is reflected by a spatial light modulator (SLM) in a 4f-configuration with a
diaphragm in the Fourier space acting as spatial filter4,28. By altering the phase
profile of the beam we generate different beams, including the Gaussian beam used
in Fig. 2, the Laguerre-Gaussian beams with l=−2, −1, 0, 1, 2 used in Fig. 3, and
the double beam used in Fig. 4. We control the polarization of the beam using a

quarter-wave plate, which permits us to switch the polarisation state of the beam
between linearly polarised (Fig. 3d, g), circularly (+) polarised (Fig. 3e, h), and
circularly (−) polarised (Fig. 3f, i). These experiments are performed with spherical
silica microparticles with radius R= 0.48 ± 0.02 μm in an aqueous medium of
viscosity η= 0.0011 Pa s−1 (corrected using Faxén formula for the proximity of the
cover slip41) whose position is acquired with digital video microscopy11 at a
sampling frequency fs= 4504.5 s−1 and a resolution below 5 nm.

For the speckle experiments (Fig. 5), we used the SLM in the image plane, as
shown in Supplementary Figure 4: The 532-nm laser beam is reflected by the
SLM, which projects a random phase (with uniform distribution of values in (0,
2π)) in every domain of 6 × 6 pixels, and is directed to the sample using two
telescopes. We control the effective numerical aperture of the system, and
therefore the grain size of the speckle, by using a diaphragm with a diameter Di

= 1.54 ± 0.05 mm in the Fourier plane of the first telescope. The mean intensity
of the speckle is 0.015 mW μm−2. These experiments are performed with
spherical polystyrene microparticles with radius R= 0.50 ± 0.02 μm in an
aqueous medium of viscosity η= 0.0013 Pa s−1 measured by using the mean
diffusion of the particle in the speckle pattern obtained from FORMA and using
Einstein-Stokes relation. Because of the radiation pressure of the optical forces
generated by the speckle light field, the probe bead is pushed towards the upper
cover slip (without touching it because of screened electrostatic repulsion), where it
remains confined in a quasi-2D configuration and diffuses exploring a wide area. In
order to have control of the region of interest the initial positions of the particles
were prepared using an optical trap generated with the same laser beam and SLM.
The particle’s position is recorded for 2 × 106 frames each at a sampling frequency
fs= 600 s−1.

Detailed derivation of FORMA in two-dimensions. Here we derive FORMA in
its most general form presented in the article (Eq. 11). The average friction force in
the n-th time interval is

fn ¼ γ
Δrn
Δtn

¼ F0 þ J0rn þ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
2kBTγ
Δtn

s
wn; ð12Þ

which can be rewritten explicitly as

fx;n
fy;n

" #
� J0;11 J0;12 F0;x

J0;21 J0;22 F0;y

" # xn
yn
1

264
375þ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
2kBTγ
Δt

r
wx;n

wy;n

" #
; ð13Þ

1
2

3
4

567
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Fig. 5 Reconstruction of the equilibrium points in a speckle pattern. a The intensity of the speckle (green background, laser wavelength λ= 532 nm) is
approximately proportional to the potential depth of the optical potential felt by a particle whose size (particle diameter 1.00 ± 0.04 μm) is similar to the
speckle characteristic size (2.8 μm)27, 30. FORMA identifies several stable (full circles) and unstable (empty circles) equilibrium points, and measures the
orientation of the principal axes (θ), the stiffnesses along them (k1 and k2), and angular frequency (Ω) (see Supplementary Table 2 for the measured
values). We have acquired trajectories of the motion of a spherical particle with radius R= 0.50 ± 0.02 μm in an aqueous medium of viscosity η= 0.0013
Pa s−1 at a sampling frequency fs= 600 s−1; as we cannot expect the particle to spontaneously diffuse over the whole speckle field during the time of the
experiment, we have placed this particle in 25 positions within the speckle field and let it diffuse each time acquiring 2 × 106 samples for the analysis. b–d
Examples of reconstructed force fields around b a stable point, c an unstable point with a significant rotational component (indicated by the arrow), and d
two stable points with a saddle in between; the grey arrows plot the 2D force field measured with FORMA and are scaled by a different factor in each plot
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Assuming to have N measurements, we introduce the vectors

f ¼

γ Δx1
Δt1

γ Δy1
Δt1

::: :::

γ Δxn
Δtn

γ Δyn
Δtn

::: :::

γ ΔxN
ΔtN

γ ΔyN
ΔtN

26666664

37777775 ð14Þ

and

er ¼
x1 y1 1

::: ::: :::

xn yn 1

::: ::: :::

xN yN 1

26666664

37777775; ð15Þ

the MLE is given by Eq. (11), i.e.,

J�0 F
�
0

� � ¼ J�0;11 J�0;12 F�
0;x

J�0;21 J�0;22 F�
0;y

" #
¼ erTer� ��1erTf

and the estimated particle diffusivity along each axis can be calculated from the
residual error of the MLE

D�
x ¼ 1

N

PN
n¼1

Δtn
2γ2 fx;n � J�0;11 xn � J�0;12 yn � F�

0;x

	 
2

D�
y ¼ 1

N

PN
n¼1

Δtn
2γ2 fy;n � J�0;21xn � J�0;22yn � F�

0;y

	 
2
ð16Þ

Codes. We provide the MatLab implementations of the key functionalities of
FORMA42.

For the 1D version of FORMA, we provide the following codes: function
forma1d.m, script test_forma1d.m to execute it, and set of test data forma1d.mat.
This code estimates the values of k* and D* assuming that the equilibrium position
is at x= 0 and implementing Eqs. (3) and (4).

For the 2D version of FORMA, we provide the following codes: function
forma2d.m, script test_forma2d.m to execute it, and set of test data forma2d.mat.
This code estimates the value of k�1, k

�
2, θ

*, and Ω* assuming that the equilibrium
position is at r0= 0 and implementing Eqs. (7), (8), and (10).

FORMA in three-dimensions. Following the same steps as in the previous sec-
tions, the MLE of a particle in 3D near an equilibrium position can be explicitly
written as

J�0 ¼
J�0;11 J�0;12 J�0;13
J�0;21 J�0;22 J�0;23
J�0;31 J�0;32 J�0;33

264
375 ¼ erTer� ��1erTf; ð17Þ

where f and er are the corresponding 3D extensions of Eqs. (14) and (15). The
estimated particle diffusivity along each axis can be calculated from the residual
error of the MLE

D�
x ¼ 1

N

PN
n¼1

Δtn
2γ2 fx;n � J�0;11 xn � J�0;12yn � J�0;13zn

	 
2
;

D�
y ¼ 1

N

PN
n¼1

Δtn
2γ2 fy;n � J�0;21xn � J�0;22yn � J�0;23zn

	 
2
;

D�
z ¼ 1

N

PN
n¼1

Δtn
2γ2 fz;n � J�0;31 xn � J�0;32yn � J�0;33zn

	 
2
:

ð18Þ

Using Brownian simulations, we were able to prove the performance of this
method in 3D. The data in the Supplementary Table 1 show the results of the
analysis of an hypothetic optical trap with defined properties along the three axis.

Data availability
Data and codes supporting the findings of this study are available in figshare with
the digital object identifier https://doi.org/10.6084/m9.figshare.718188842. Further
data and resources in support of the findings of this study are available from the
corresponding authors upon reasonable request.
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