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Abstract: In this work, a methodology for fault detection in wastewater treatment systems, based on
parameter estimation, using multiparametric programming is presented. The main idea is to detect
faults by estimating model parameters, and monitoring the changes in residuals of model parameters.
In the proposed methodology, a nonlinear dynamic model of wastewater treatment was discretized
to algebraic equations using Euler’s method. A parameter estimation problem was then formulated
and transformed into a square system of parametric nonlinear algebraic equations by writing the
optimality conditions. The parametric nonlinear algebraic equations were then solved symbolically to
obtain the concentration of substrate in the inflow, Scin , inhibition coefficient, Ki, and specific growth
rate, µo, as an explicit function of state variables (concentration of biomass, X; concentration of organic
matter, Sc; concentration of dissolved oxygen, So; and volume, V). The estimated model parameter
values were compared with values from the normal operation. If the residual of model parameters
exceeds a certain threshold value, a fault is detected. The application demonstrates the viability of
the approach, and highlights its ability to detect faults in wastewater treatment systems by providing
quick and accurate parameter estimates using the evaluation of explicit parametric functions.
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1. Introduction

Traditionally, wastewater treatment is a process of converting wastewater into bilge water that
can be returned to the environment, and used for domestic and industrial applications. Nowadays,
wastewater treatment plants (WWTPs) also focus on sustainability issues through recovery of energy
and nutrients from wastewater [1–3]. With the increasing number of WWTPs worldwide, and the
increasingly stricter requirements for maintaining the quality of effluents, on-line process monitoring
has become an important aspect for ensuring efficient operation and management of WWTPs [4].
It involves a process of detecting faults and diagnosing their causes and locations. This is achieved by
continuously monitoring the systems to detect any abnormal conditions, and then, evaluating and
diagnosing the conditions with faults [5–7].

Fault detection methods for sensor faults in wastewater treatment (WWT) systems have normally
used data-based methods, such as neural networks (NN) and principal component analysis (PCA).
The neural network model was presented in Maier and Dandy [8] to model a wastewater treatment
system. In Caccavale et al.’s work [9], faults in nitrogen sensors were detected by estimating the
concentration of NO and NH using neural networks. Honggui et al. [10] showed how sensor faults
can be diagnosed using the fuzzy neural network to estimate dissolved oxygen concentrations,
pH, chemical oxygen demand (COD), and total nutrients. In Lee et al. [11], the kernel PCA was
used to extract nonlinear relations in process variables, and it showed a better performance than
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linear PCA in process monitoring. Adaptive PCA was used in Baggiani and Marsili-Libelli [12] to
compare the current plant operation with an exact performance based on a reference data set and
sensor outputs. In Sanchez-Fernández et al. [13], a distributed PCA was applied to detect faults by
minimizing the communication cost between the blocks in WWTPs. The classical principal component
analysis was presented using Benchmark Simulation Model No. 1 (BSM1) in Garcia-Alvarez et al. [14],
Chen et al. [15], and Carlsson and Zambrano [16]. The combined use of PCA in data preprocessing
and artificial neural networks has been presented in Gontarski et al. [17] to improve network
performance. Besides that, fault detection in WWT has been discussed using an observer-based
method in Fragkoulis et al. [18], where multiple actuators and sensors faults were detected.

In an aerobic WWT system, respiration rate is used as an indicator of biological activity for
monitoring and control [19,20]. The respiration rate is affected by the initial condition of biomass,
substrate concentration in the inflow, and extrinsic growth behavior of the biomass on inhibitory
substrates. In Wimberger and Verde [19], a fault detection and isolation was performed by evaluating
the detectability and isolability of analytical- and signal-based methodologies using information from
applying the sensitivity theory. However, respiration rate depends on intermittent aeration patterns,
and the calculation can only be evaluated during air-off periods [21–23]. In this work, we propose fault
detection in the WWT system by detecting and monitoring the kinetic parameters of extrinsic growth
behavior using multiparametric programming. The main idea is to detect faults by estimating model
parameters and monitoring the residual of model parameters. In parameter estimation-based fault
detection, faults can be associated with the specific parameters of the model. With this assumption,
parameters of a system are estimated on-line repeatedly using well known parameter estimation
methods. The presence of faults is indicated if there is a discrepancy between the values of estimated
parameters and the ‘true’ parameters. An overview for fault detection using parameter estimation can
be found in [24–31].

In our earlier work [32], the fault detection method based on parameter estimation by using
multiparametric programming [33–39] was presented. In that work, nonlinear ordinary differential
equations model was converted into algebraic equations using Euler’s method. Then, a square
system of parametric nonlinear algebraic equations was obtained by formulating Karush-Kuhn-Tucker
(KKT) optimality conditions. The model parameters were then obtained as an explicit function of the
measurements by symbolically solving the equations representing KKT conditions. The estimated
model parameters were compared with the normal operation for fault detection. If the residual of
model parameters exceeds a certain threshold value, a fault is detected.

In this work, the concentration of substrate in the inflow, inhibition coefficient, and specific growth
rate were treated as model parameters and obtained as an explicit function of the measurements using
multiparametric programming, and monitored for fault detection and diagnosis.

The rest of this paper is organized as follows: Section 2 presents the parameter estimation
algorithm using multiparametric programming, and in Section 3, the wastewater treatment process
reaction phase model is introduced. This section also includes detailed formulation for obtaining
model parameters as an explicit function of measurements to detect faults. Section 4 evaluates
the feasibility of parameter estimation using multiparametric programming in fault-free and faulty
scenarios. Concluding remarks are presented in Section 5.

2. Problem Statement and Solution Approach

Problem Definition

Consider the following parameter estimation problem [40]:
Problem 1.

εFD = min
θ,x(t)

∑
j∈J

∑
i∈I

{
x̂j(ti)− xj(ti)

}2 (1)
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subject to:
dxj(t)

dt
= f j(x(t), u(t),θ, t), j ∈ J (2)

xj(t = 0) = x0
j , j ∈ J (3)

t ∈ [0, t f ] (4)

where x(t) represents the J-dimensional vector of state variables in the given ordinary differential
equations (ODEs) system, x̂j(ti) represents the measurements of the state variables at the time points
ti, u(t) represents the vector of control variables, and θ is the vector of parameters. An occurrence of
fault can be attributed to changes in model parameters, θ, from the nominal values. A key difficulty
with this approach for fault detection is that it requires an online solution of problem 1 at regular
time intervals, which is computationally demanding and prone to failure of the numerical solver for
Problem 1. These limitations can be overcome using multiparametric programming (MPP) to estimate
the model parameters, θ, as an explicit function of measurements, x̂j(ti), by treating θ as optimization
variables and x̂j(ti) as the parameters. The algorithm for parameter estimation using MPP to obtain a
symbolic solution for model parameters is summarized as follows [32]:

(i) The nonlinear ODEs model in Equation (2) was discretized using Euler’s method to algebraic
equations on the interval, t ∈ [0, t f ]. The Euler’s method provides

xj(i + 1) = xj(i) + ∆t f j(x(i), u(i),θ), i ∈ I, j ∈ J (5)

where the step size is given by ∆t.
(ii) Fault detection problem was formulated as a nonlinear programming (NLP) problem as follows:

Problem 2.
εMPP = min

θ,x(i)
∑
j∈J

∑
i∈I

{
x̂j(i + 1)− xj(i + 1)

}2 (6)

subject to:
hj = xj(i + 1)− xj(i)− ∆t f j(x(i), u(i),θ) = 0, i ∈ I, j ∈ J (7)

xj(0) = x0
j , j ∈ J (8)

where hj is the set of nonlinear algebraic equations obtained by discretizing the ODEs given by
Equation (5), and I = {0, 1} is considered in this work.

(iii) For Problem 2, the Lagrangian function is given by

L = g + ∑
j∈J

λjhj (9)

where
g = ∑

j∈J
∑
i∈I

{
x̂j(i + 1)− xj(i + 1)

}2 (10)

hj = xj(i + 1)− xj(i)− ∆t f j(x(i), u(i),θ) = 0, i ∈ I, j ∈ J (11)

and λj represents the Lagrange multipliers. The first-order Karush-Kuhn-Tucker (KKT) conditions
are given by the equality constrains as follows

∇θL = ∇θg +∇θ∑ λjhj = 0, j ∈ J (12)

hj = 0 (13)



Processes 2018, 6, 231 4 of 15

(iv) The equality constraints corresponding to the KKT conditions given by Equations (12) and (13)
were solved symbolically to obtain Lagrange multipliers and model parameters, θ(x̂), as an
explicit function of measurements, x̂.

(v) The solutions obtained in the previous step were examined and solutions with imaginary parts
were ignored.

(vi) The estimated model parameters, θ, were calculated using the measurements, x̂, by simple
evaluation of θ(x̂).

(vii) Faults were diagnosed by monitoring residual changes in model parameters. Any significant
difference between estimated and observed model parameters may be attributed to occurrence of
a fault.

3. Wastewater Treatment System

In this work, an aerobic sequencing batch reactor (SBR) model for fed-batch reactor operation
mode was considered. The bioprocesses involved in the treatment used activated sludge and provided
treatment for wastewater in five stages: Fill, react, settle, decant, and idle as shown in Figure 1 [41].
During the fill stage, the wastewater was directed into the tank and mixed with the sludge from
previous cycles. At the reacting stage, air was provided as function of the aeration process that
consumes the waste as nutrition and produces carbon dioxide, nitrates, and nitrites. After sufficient
time of reaction, the aeration process was stopped and the sludge was allowed to settle. At the decant
stage, the treated wastewater was removed from the reactor and the sludge that remained was reused
for the next cycle. The reactor then entered the idle stage which was used to prepare the SBR for the
next cycle.
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The aerobic system involves aerobic growth and endogenous respiration reactions given by:

Growth : Sc + So → X (14)

Endogenous respiration : Sc + X → X (15)

where Sc represents the concentrations of organic matter, So is the concentration of dissolved oxygen,
and X represents the concentration of biomass. The mathematical model of the process is given by the
following equations [42]:

dX
dt

= µX− qin
V

X (16)
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dSc

dt
= −k1µX +

qin
V

(Scin − Sc) (17)

dSo

dt
= −k2µX− bX +

qin
V

(Soin − So) + kLa(Sos − So) (18)

dV
dt

= qin (19)

µ =
µoSc

Ks + Sc +
Sc

2

Ki

(20)

where µ is specific growth rate, qin is inlet flow rate, V is volume, k1 and k2 are yield coefficients,
b is endogenous respiration kinetic constant, Scin is inlet organic matter, Soin is dissolved oxygen
concentrations, kLa is transfer coefficient, and Sos is oxygen saturation concentration. The specific
growth rate, µ, is represented by the Haldane model and is given by Equation (20). The parameter
values for the wastewater treatment process reaction are shown in Table 1 [19,42].

Table 1. Model parameters for the wastewater treatment process.

Parameter Value Description

Scin 168 mg/L the concentration of substrate in the inflow
Soin 0 mg/L the concentration of dissolved oxygen in the inflow
qin 14.8 mg/L the inflow rate
Sos 6 mg/L the dissolved oxygen mass at saturation
k1 3.7 the conversion coefficient of the substrate to biomass
k2 1.0363 the conversion coefficient of oxygen to biomass
b 0.0059 1/h the endogenous respiration coefficient

kLa 16.8 1/h the oxygen mass transfer coefficient
Ki 3.753 mg/L the inhibition coefficient
Ks 60 mg/L the half saturation coefficient
µo 0.1916 1/h the specific growth rate

Fault Detection Problem for the Wastewater Treatment Process

In this work, a method to estimate and detect faults in wastewater treatment is presented.
The concentration of substrate in the inflow, Scin , inhibition coefficient, Ki, and specific growth rate,
µo, were treated as model parameters and obtained as an explicit function of measurements using
multiparametric programming and monitored for fault detection and diagnosis. By monitoring the
estimated model parameters, process faults can be detected and diagnosed. We took this approach
because the respiration rate indicates the biological activity, which is used for monitoring and control,
and the respiration rate is affected by Scin , Ki, and µo.

Thus, the objective of this fault detection problem is to estimate the model parameters, Scin , Ki,
and µo by minimizing the error of parameter estimate, εFD, between the measurement of state variables
and model predicted value of state variables as shown in problem 3.

Problem 3.

εFD = min
Scin ,Ki ,µo

∑
i∈I
{(X̂(ti)− X(ti))

2
+ (Ŝc(ti)− Sc(ti))

2
+ (Ŝo(ti)− So(ti))

2
+ (V̂(ti)−V(ti))

2} (21)

subject to: Equations (16)–(20).
The formulation and solution of the parameter estimation problem using MPP for WWTP are

presented as follow:

(i) The nonlinear ODE model in Equations (16)–(19) is discretized using explicit Euler’s method and
reformulated as the following algebraic equations:
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X(i + 1) = ∆t(X(i)
∆t + Sc(i)µoX(i)

Ks+Sc(i)+
Sc(i)2

Ki

− qin
V(i) ) (22)

Sc(i + 1) = ∆t( Sc(i)
∆t +

qin(−Sc(i)+Scin )

V(i) − k1Sc(i)µoX(i)

Ks+Sc(k)+
Sc(i)2

Ki

) (23)

So(i + 1) = ∆t( So(i)
∆t + kla(−So(i) + Sos) +

qin(−So(i)+Soin )

V(i) − bX(i)−
k2Sc(i)µoX(i)

Ks+Sc(i)+
Sc(i)2

Ki

)
(24)

V(i + 1) = ∆tqin + V(i) (25)

(ii) The discrete-time fault detection problem is formulated as the following NLP:

Problem 4.

εMPP = min
Scin ,Ki ,µo

∑
i∈I
{(X̂(i + 1)− X(i + 1))2

+ (Ŝc(i + 1)− Sc(i + 1))2
+

(Ŝo(i + 1)− So(i + 1))2
+ (V̂(i + 1)−V(i + 1))2}

(26)

subject to:
h1 = X(i + 1)− X(i)− (∆tSc(i)µoX(i))/(Ks + Sc(i) + (Sc(i)

2)/Ki)+

(∆tqin)/V(i)
= 0

(27)

h2 = Sc(i + 1)− ∆t(Sc(i)− (∆tqin(−Sc(i) + Scin))/V(i)) + (∆tk1Sc(i)µoX(i))/
(Ks + Sc(i) + Sc(i)

2/Ki)

= 0
(28)

h3 = So(i + 1)− So(i)− ∆tkla(−So(i) + Sos)− (∆tqin(−So(i) + Soin))/V(i) + ∆tbX(i)+
(∆tk2Sc(i)µoX(i))/(Ks + Sc(i) + Sc(i)

2/Ki)

= 0
(29)

h4 = V(i + 1)− ∆tqin −V(i) = 0 (30)

X(i) = X0 (31)

Sc(i) = Sc
0 (32)

So(i) = So
0 (33)

V(i) = V0 (34)

(iii) Equations (27)–(30) are substituted into Equation (26) to obtain:

g = (X̂(i + 1)− (X(i) + (∆tSc(i)µoX(i))/(Ks + Sc(i) + (Sc(i)
2)/Ki)−

(∆tqin)/V(i)))2 + (Ŝc(i + 1)− (∆t(Sc(i) + (∆tqin(−Sc(i) + Scin))/V(i))−
(∆tk1Sc(i)µoX(i))/(Ks + Sc(i) + Sc(i)

2/Ki)))
2 + (Ŝo(i + 1)− (So(i)+

∆tkla(−So(i) + Sos) + (∆tqin(−So(i) + Soin))/V(i)− ∆tbX(i)−
(∆tk2Sc(i)µoX(i))/(Ks + Sc(i) + Sc(i)

2/Ki)))
2 + (V̂(i + 1)− (∆tqin + V(i)))2

(35)

The derivative of g with respect to model parameters θ is then obtained and equated to zero.
The resulting equality constraints are then solved analytically. Hence, the gradient of g with respect to
model parameters, Scin , Ki, and µo, is given by

∂g
∂Scin

= −((2∆tqin(Ŝc(i + 1)− ∆t(Sc(i)/∆t + (qin(−Sc(i) + Scin))/V(i)−
(k1Sc(i)uoX(i))/(Ks + Sc(i) + Sc(i)

2/Ki))))/V)

= 0

(36)
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∂g
∂Ki

= (2∆tk1Sc(i)
3uoX(i)(Ŝc(i + 1)− ∆t(Sc(i)/∆t + (qin(−Sc(i) + Scin))/V(i)−

(k1Sc(i)uoX(i))/(Ks + Sc(i) + Sc(i)
2/Ki))))/(Ki

2(Ks + Sc(i) + Sc(i)
2/Ki)

2
)+

(2∆tk2Sc(i)
3uoX(i)(Ŝo(i + 1)− ∆t(So(i)/∆t + kla(−So(i) + Sos)+

(qin(−So(i) + Soin))/V(i)− bX(i)− (k2Sc(i)uoX(i))/(Ks + Sc(i) + Sc(i)
2/Ki))))/

(Ki
2(Ks + Sc(i) + Sc(i)

2/Ki)
2
)− (2∆tSc(i)

3uoX(i)(−∆t(X(i)/∆t+
(Sc(i)uoX(i))/(Ks + Sc(i) + Sc(i)

2/Ki)− (qinX(i))/V(i)) + X̂(i + 1)))/

(Ki
2(Ks + Sc(i) + Sc(i)

2/Ki)
2
)

= 0

(37)

∂g
∂µo

= (2∆tk1Sc(i)X(i)(Ŝc(i + 1)− ∆t(Sc(i)/∆t + (qin(−Sc(i) + Scin))/V(i)−
(k1Sc(i)uoX(i))/(Ks + Sc(i) + Sc(i)

2/Ki))))/(Ks + Sc(i) + Sc(i)
2/Ki)+

(2∆tk2Sc(i)X(i)(Ŝo(i + 1)− ∆t(So(i)/∆t + kla(−So(i) + Sos)+

(qin(−So(i) + Soin))/V(i)− bX(i)− (k2Sc(i)uoX(i))/
(Ks + Sc(i) + Sc(i)

2/Ki))))/(Ks + Sc(i) + Sc(i)
2/Ki)−

(2∆tSc(i)X(i)(−∆t(X(i)/∆t + (Sc(i)uoX(i))/(Ks + Sc(i) + Sc(i)
2/Ki)−

(qinX(i))/V(i)) + X̂(i + 1)))/(Ks + Sc(i) + Sc(i)
2/Ki)

= 0

(38)

(iv) The equality constraints in Equations (36)–(38) are solved analytically in Mathematica, and the
symbolic solution for model parameters is given by

Scin = (∆t2KiKsqin
2Sc(i) + ∆t2Kiqin

2Sc(i)
2 + ∆t2qin

2Sc(i)
3 − ∆tKiKsqinSc(i)V(i)−

∆tKiqinSc(i)
2V(i)− ∆tqinSc(i)

3V(i) + ∆tKiKsqinŜc(i + 1)V(i)+
∆tKiqinSc(i)Ŝc(i + 1)V(i) + ∆t(i)qinSc(i)

2Ŝc(i + 1)V(i)+
∆t2k1KiqinSc(i)uoV(i)X(i))/(∆t2qin

2(KiKs + KiSc(i) + Sc(i)
2))

(39)

Ki = −(Sc(i)
2(∆tk1qinSc(i)− ∆tk1qinScin + ∆tk2qinSo(i)− ∆tk2qinSoin − k1Sc(i)V(i)+

k1Ŝc(i + 1)V(i)− k2So(i)V(i) + ∆tk2klaSo(i)V(i) + k2Ŝo(i + 1)V(i)−
∆tk2klaSos V(i)− ∆tqinX(i) + V(i)X(i) + b∆tk2V(i)X(i)−V(i)X̂(i + 1)))/
(∆tk1KsqinSc(i) + ∆tk1qinSc(i)

2 − ∆tk1KsqinScin − ∆tk1qinSc(i)Scin + ∆tk2KsqinSo(i)+
∆tk2qinSc(i)So(i)− ∆tk2KsqinSoin − ∆tk2qinSc(i)Soin − k1KsSc(i)V(i)− k1Sc(i)

2V(i)+
k1KsŜc(i + 1)V(i) + k1Sc(i)Ŝc(i + 1)V(i)− k2KsSo(i)V(i) + ∆tk2klaKsSo(i)V(i)−
k2Sc(i)So(i)V(i) + ∆tk2klaSc(i)So(i)V(i) + k2KsŜo(i + 1)V(i) + k2Sc(i)Ŝo(i + 1)V(i)−
∆tk2klaKsSos V(i)− ∆tk2klaSc(i)Sos V(i)− ∆tKsqinX(i)− ∆tqinSc(i)X(i) + KsV(i)X(i)+
b∆tk2KsV(i)X(i) + Sc(i)V(i)X(i) + b∆tk2Sc(i)V(i)X(i) + ∆tSc(i)uoV(i)+
∆tk1

2Sc(i)uoV(i)X(i) + ∆tk2
2Sc(i)uoV(i)X(i)− KsV(i)X̂(i + 1)− Sc(i)V(i)X̂(i + 1))

(40)

µo = ((2∆tk1Sc(i)
2X(i))/(Ks + Sc(i) + Sc(i)

2/Ki)−
(2∆tk1Sc(i)Ŝc(i + 1)X(i))/(Ks + Sc(i) + Sc(i)

2/Ki)+

(2∆tk2Sc(i)So(i)X(i))/(Ks + Sc(i) + Sc(i)
2/Ki)−

(2∆tk2Sc(i)Ŝo(i + 1)X(i))/(Ks + Sc(i) + Sc(i)
2/Ki)+

(2∆t2k2klaSc(i)(−So(i) + Sos)X(i))/(Ks + Sc(i) + Sc(i)
2/Ki)+

(2∆t2k1qinSc(i)(−Sc(i) + Scin)X(i))/((Ks + Sc(i) + Sc(i)
2/Ki)V(i))+

(2∆t2k2qinSc(i)(−So(i) + Soin)X(i))/((Ks + Sc(i) + Sc(i)
2/Ki)V(i))−

(2∆tSc(i)X(i)2)/(Ks + Sc(i) + Sc(i)
2/Ki)− (2b∆t2k2Sc(i)X(i)2)/

(Ks + Sc(i) + Sc(i)
2/Ki) + (2∆t2qinSc(i)X2)/

((Ks + Sc(i) + Sc(i)
2/Ki)V(i)) + (2∆tSc(i)X(i)X̂(i + 1))/

(Ks + Sc(i) + Sc(i)
2/Ki))/((2∆t2Sc(i)

2X(i)2)/(Ks + Sc(i) + Sc(i)
2/Ki)

2
+

(2∆t2k1
2Sc(i)

2X(i)2)/(Ks + Sc(i) + Sc(i)
2/Ki)

2
+ (2∆t2k2

2Sc(i)
2X(i)2)/

(Ks + Sc(i) + Sc(i)
2/Ki)

2
)

(41)



Processes 2018, 6, 231 8 of 15

(v) Equations (39)–(41) represent the symbolic solution for model parameters, Scin , Ki, and µo,
obtained as explicit functions of the state variables, X, Sc, So, and V. In this case study, single
fault was assumed to occur at any time. Hence, as an example in Equation (39), the solution
of Scin was obtained in terms of model parameters, Ki and µo, and state variables, X, Sc, and V.
In Equation (40), the solution of Ki was obtained in terms of model parameters, Scin and µo,
and state variables, X, Sc, So, and V. The solution of µo was obtained in terms of model parameters
Scin and Ki, and state variables, X, Sc, So, and V, as shown in Equation (41). Simple function
evaluation was performed to evaluate the model parameters without the need for solving the
online optimization problem. Then, the fault detection was performed by monitoring the residuals
of model parameters. Any substantial discrepancy between estimated and observed model
parameters indicates changes in the process and may be attributed to a fault.

4. Results

4.1. Fault-Free Scenario

In the fault-free scenario, the simulated measured values and model predicted values for
concentrations were obtained using the model parameters listed in Table 1 with initial values,
X(0) = 4734 mg/L, Sc(0) = 0 mg/L, So(0) = 6 mg/L, and V(0) = 3 L; the state profiles thus obtained
are shown in Figure 2. In this system, noise was added as random data to evaluate the effectiveness
of the proposed method. The estimated model parameters, Scin , Ki, and µo, were calculated using
Equations (39)–(41) with step size, ∆t = 0.001 h and are shown in Figure 3. The result shows that the
estimated model parameter is close to true model parameters. The diagnosis of fault was carried out
by monitoring value of the residual value of model parameters and is shown in Figure 4. For each
parameter no fault was detected as the residual was less than the threshold. The threshold was chosen
as 10% from the nominal value. These results indicate that the technique proposed in this work can
accurately estimate the model parameters, and this was achieved by carrying out simple function
evaluations that alleviate the computational burden required for online implementation.
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Investigation for the faulty scenarios was implemented where three faulty scenarios have been
considered, where the percentage of change kinetic parameters is given in Table 2. In this case study,
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single fault was assumed to occur at any time. The step size was given as ∆t = 0.001 h. For faulty
scenario 1, the estimated concentration of substrate in the inflow is shown in Figure 5. We can see
that the estimated parameter Scin decreased from 168 mg/L to 118 mg/L after 3 h. The residual of
Scin was monitored for fault detection, and is shown in Figure 6. This figure shows that the fault
was declared at 3 h as the residual was more than a threshold value of 10%. For faulty scenario
2, the estimated half saturation coefficient, Ki, is shown in Figure 7. We can see that the estimated
parameter Ki increased from 3.753 mg/L to 4.878 mg/L after 3 h and the residual of Ki was monitored
for fault detection. Figure 8 shows that after 3 h, the residual of Ki was more than 10% of threshold
and therefore, the fault was declared at 3 h. Figure 9 shows the estimated parameter for µo where the
estimated model parameter was decreased from 0.1916 1/h to 0.1341 1/h. The fault detection was
monitored using residual, and the result is shown in Figure 10. The residual of µo increased to 30% and
indicates that faulty scenario 3 occurred at 3 h. These results indicate that there were faults at specified
scenarios, and provided quick and accurate fault detection using explicit parametric functions.

Table 2. Faulty scenario for the wastewater treatment system.

Fault Kinetic Model Parameter Fault 1 Fault 2 Fault 3

The concentration of substrate in the inflow, Scin −30% - -
The half saturation coefficient, Ki - +30% -

Specific growth rate, µo - - −30%
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5. Concluding Remarks

We have proposed a fault detection methodology for the wastewater treatment system using
multiparametric programming where the model parameters were efficiently calculated by performing
simple function evaluations without solving the online optimization problem. In this work, the related
kinetic parameters for the faulty process that were investigated were Scin , Ki, and µo, which affected the
respiration rate; these kinetic parameters were obtained as an explicit function of measurements.
The estimation of kinetic model parameters in faulty and fault-free scenarios has shown good
performance in the accuracy of parameter estimation-based fault detection. This demonstrates the
advantages of multiparametric programming-based parameter estimation for detecting faults in
wastewater treatment plants quickly and accurately, and reducing the online computational burden.
Future work will focus on investigating the case when more than one fault simultaneously occurs.
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