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Abstract 

 

The polygenic risk score (PRS) is derived from SNPs including both those which are 

genome-wide significant and also a large number of others more weakly associated with 

schizophrenia. Such variants are widely dispersed, though concentrated near genes 

expressed in the brain, and it has been proposed that these SNP associations result from 

impacts on cell regulatory networks which ultimately affect the expression or function of a 

modest number of "core" genes. A previous study demonstrated association of some 

GWAS-significant variants with expression of a number of genes, by examining pair-wise 

correlations of gene expression with SNP genotypes. The present study used data 

downloaded from the CommonMind Consortium site, consisting of SNP genotypes and 

RNAseq expression data from the dorsolateral prefrontal cortex, to examine whether the 

expression of individual genes or sets of genes correlated with PRS in 207 controls and 209 

schizophrenia cases. Although the PRS was significantly associated with phenotype, the 

correlations with genes and genes sets followed distributions expected by chance. Thus, this 

analysis failed to demonstrate that the PRS captures a cumulative effect of multiple variants 

impacting the expression of a small number of genes and it failed to focus attention on a 

small number of genes of biological relevance. The multiple SNP associations observed in 

schizophrenia may result from other mechanisms, including effects mediated indirectly 

through environmental risk factors. 

 

Introduction 

There is a substantial genetic contribution to the aetiology of schizophrenia which in part 

manifests as association with common variants, with over 100 loci meeting conventional 

standards for significance in a genome-wide association study (Schizophrenia Working 

Group of the Psychiatric Genomics Consortium, 2014). The same study showed that a 

polygenic risk score (PRS) was more strongly predictive of schizophrenia if it included not 
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only the variants which were statistically significant but also many other variants with only 

weak evidence for association. This clearly demonstrated that there are a very large number 

of common variants whose frequency differs between cases and non-cases. In a recent 

review of this field, the authors noted the prior evidence for the involvement of large numbers 

of variants which were very widely distributed across the genome and proposed that the 

term "omnigenic" could appropriately be used (Boyle et al., 2017). However in their own 

analyses they demonstrated that only variants near genes expressed in the brain contribute 

substantially to heritability of schizophrenia and that variants near genes expressed 

specifically in the brain made a larger contribution per variant than those near more widely 

expressed genes. They also noted that common variants show only a modest enrichment for 

genes by functional category and contrasted this with the findings from studies of rare 

variants and CNVs which implicate synaptic and neuronal genes (Fromer et al., 2014; 

Marshall et al., 2016; Purcell et al., 2014). Although they did not refer to it, an additional 

study of ultra-rare, gene disruptive variants also demonstrated enrichment in these 

categories (Genovese et al., 2016). To make sense of these observations, they proposed 

that a given phenotype might be directly affected by a modest number of "core" genes but 

that, because cell regulatory networks are highly interconnected, any expressed gene is 

likely to have some effect on the regulation or function of these core genes. 

A previous study sought to investigate the relationship between common variants and gene 

expression by examining SNP genotypes and RNAseq results from the dorsolateral 

prefrontal cortex (DLPFC) (Fromer et al., 2016). This reported that about 20% of 

schizophrenia-associated loci contained variants which could contribute to altered gene 

expression or liability. Considering SNP-gene pairs within 1Mb of each other, there were 

2,154,331 significant cis-eQTLs, and these were enriched for enhancer sequences in brain 

tissues, most strongly in DLFPC enhancers. There were also 45,453 significant trans-

eQTLs, in which the SNP was more than 1Mb from the gene whose expression it correlated 

with. Only pair-wise comparisons of SNPs and genes were carried out and there was no 
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report of whether the expression of any genes correlated with the PRS, although it was 

reported that the PRS was higher in cases than controls. 

If multiple common variants exert their effect indirectly through regulatory networks, it is 

plausible that the PRS might reflect a cumulative effect on the expression of one or more 

"core" genes. This cumulative effect on gene expression might be greater than any pairwise 

effect on expression due to a single SNP. Also, it might be more pronounced for the 

expression of the core genes themselves than for the genes which only exerted their effect 

indirectly and so could serve to focus attention on core genes. Hence, it seems logical to 

explore whether the schizophrenia PRS is associated with gene expression. 

Materials and methods 

The dataset used in the previous gene expression study was downloaded from the 

CommonMind Consortium (CMC) Knowledge Portal 

(https://www.synapse.org/#!Synapse:syn2759792/wiki/69613) consisting of SNP genotypes 

and RNAseq results from DLPFC samples originating from tissue collections at Mount Sinai 

NIH Brain Bank and Tissue Repository (MSSM), University of Pennsylvania Brain Bank of 

Psychiatric illnesses and Alzheimer’s Disease Core Center (Penn) and The University of 

Pittsburgh NIH NeuroBioBank Brain and Tissue Repository (Pitt), collectively referred to as 

the CMC MSSM-Pitt-Penn dataset (Fromer et al., 2016).  

Genotypes and expression levels were available for 258 subjects with schizophrenia and 

279 controls. The distributions of ethnicities were reported to be similar between subjects 

with schizophrenia and controls (Caucasian 80.7%, African-American 14.7%, Hispanic 7.7%, 

East Asian 0.6%). The methods for obtaining the genotypes and expression data have been 

described by the authors of the original study (Fromer et al., 2016). Genotyping was 

performed on the Illumina Infinium HumanOmniExpressExome 8 v 1.1b chip (Catalog #: 

WG-351-2301) using the manufacturer’s protocol. QC was performed using PLINK to 

remove markers with: zero alternate alleles, genotyping call rate < 0.98, Hardy-Weinberg p-
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value < 5 x 10-5, and individuals with genotyping call rate < 0.90. Marker alleles were phased 

to the forward strand, and ambiguously stranded markers have been removed. The gene 

expression data had been obtained by RNA sequencing of tissue from the DLPFC followed 

by adjustment for ancestry and other appropriate covariates.  

In order to obtain a polygenic risk score (PRS) for schizophrenia, the file called 

scz2.prs.txt.gz, containing ORs and p values for 102,636 SNPs, was downloaded from the 

Psychiatric Genetics Consortium (PGC) website (www.med.unc.edu/pgc/results-and-

downloads). This training set was produced as part of the previously reported PGC2 

schizophrenia GWAS (Schizophrenia Working Group of the Psychiatric Genomics 

Consortium, 2014). SNPs with p value < 0.05 were selected and their log(OR) summed over 

sample genotypes using the --score function of plink 1.09beta in order to produce a PRS for 

each subject (www.cog-genomics.org/plink/1.9/) (Chang et al., 2015; Purcell et al., 2007, 

2009). The first 20 principal components for all genotyped SNPs were produced using the --

pca and --make-rel functions of plink. 

Statistical tests and data manipulation were carried out using R version 3.3.2 (R Core Team, 

2014). 

Initial analyses showed that the PRS was higher in cases than controls (t = 3.5, p = 0.00059) 

but it was noticed that the association became much more highly significant when the SNP 

principal components were included as covariates (p = 2.5*10-17). This seemed to be due the 

fact that the first principal component was very strongly negatively correlated with the PRS (r 

= -0.81, p = 1.2*10-126). This correlation was present in both the controls (r = -0.85, p = 

1.8*10-78) and the cases (r = -0.80, p = 2.5*10-59). The plots of controls and cases of the first 

and second principal components are shown in Figures 1A and 1B. It can be seen that the 

distribution is similar in both groups. Most subjects have a very high value for the first 

principal component and a very low value for the second one but several subjects are clearly 

outliers from this main grouping and have low scores for the first principal component or, in a 

http://www.cog-genomics.org/plink/1.9/
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few cases, high scores for the second. In order to filter out these outliers, the dataset was 

narrowed to include subjects with the first principal component value greater than 0.01 and 

second principal component value less than 0.04. Doing this excluded 51 controls and 72 

cases, leaving 207 controls and 209 cases, and produced a more homogeneous sample in 

which the PRS was not significantly correlated with the first principal component but was 

very significantly higher in cases than controls (t = 8.3, p = 1.3*10-15). 

Regression of the expression level of each of 16,423 genes was performed on the PRS 

including the 20 principal components as covariates. The minus log base 10 of the p value 

(MLP) was recorded for each gene, as was the signed log p value (SLP), which is the same 

as the MLP but given a positive sign if the regression coefficient is positive and a negative 

sign if the coefficient is negative. 

As well as the analyses based on individual genes, gene set analyses were performed to 

see if it was possible to identify a set of genes whose expression tended to correlate with the 

PRS. Two lists of gene sets were used. The first consisted of the 32 gene sets reported to 

be enriched for ultra-rare, gene disruptive variants in a sample of exome-sequenced 

schizophrenia cases (Genovese et al., 2016). These included categories such as genes 

expressed in neurons, genes near GWAS hits and genes which are loss of function 

intolerant. The second group consisted of 1454 "all GO gene sets, gene symbols" pathways 

downloaded from the Molecular Signatures Database at 

http://www.broadinstitute.org/gsea/msigdb/collections.jsp (Subramanian et al., 2005). 

It is challenging to detect whether the expression pattern of a set of genes correlates with 

the PRS. One cannot simply test whether genes in the set are more strongly correlated with 

PRS than those not in the set because it is expected that the expression patterns of genes 

within a set will correlate with each other so that their correlations with PRS are not expected 

to be independent. Nor can one test whether the mean or total expression of members of the 

set correlates with PRS because it is expected that if a biological effect is present then 
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expression of some genes will be increased and others decreased. Instead, the MLPs for 

each gene in the set were summed and the total compared with that which would be 

expected by chance by carrying out permutations of the PRS across subjects and then 

recalculating and totalling the gene-wise MLPs for each permuted dataset. The proportion of 

times the totalled MLPs for permuted datasets exceeded the total for the real dataset was 

used to obtain an empirical p value, and minus log base 10 of this empirical p value was 

used to obtain an MLP for the gene set. 

Results 

The Q:Q plot for the SLPs for the correlation of PRS with the expression of each of 16,423 

genes are shown in Figure 2. It can be seen that the results almost exactly follow what would 

be expected under the null hypothesis if the expression patterns of the genes were 

independent. The most highly significant correlation was for SULF1 with p=0.000005 

(MLP=5.3) but this would not reach conventional standards of significance if a Bonferroni 

correction were applied. SULF1 codes for an extracellular heparan sulfate endosulfatase 

and does not seem to be a likely candidate for involvement in the aetiology of schizophrenia. 

It could be argued that expression patterns of genes are likely to be correlated with each 

other and hence that a Bonferroni correction might be overly conservative. Table 1 lists the 

genes achieving MLP>3. 

Table 2 shows the permutation-derived MLPs for each of the gene sets previously used to 

test for enrichment for damaging ultra-rare variants. It can be seen that none of the sets 

produces highly significant evidence for correlation with PRS. For only two of the sets, alid 

and mir137, does the MLP exceed 2 and again these results would not be significant if a 

Bonferroni correction were applied. Again, it could be argued that this might be conservative 

because the sets overlap each other and hence the MLPs, although individually valid, are 

not independent. 
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Of the 1454 GO gene sets, none produced a result which would be significant after 

Bonferroni correction. However 11 did produce MLPs exceeding 3 and these are listed in 

Table 3. Again, these are not independent but include overlapping sets of genes. In 

particular, the sets relating to histone modification contain RBM14, which has a gene-wise 

MLP of 3.42, whereas the regulation of cell differentiation sets all include MAFB, which has a 

gene-wise MLP of 3.19. Table 4 lists all the genes which occur in at least one of these sets 

and which have a gene-wise MLP>1.3, equivalent to p<0.05. 

Discussion 

This approach has failed to yield any genes or gene sets whose expression is strongly 

associated with the schizophrenia PRS. It would be possible to argue that the Bonferroni 

correction is overly conservative and that there may be some association but the main aim of 

the analysis, to provide a strong focus on a small set of "core" genes, has not been 

successful. The PRS represents a cumulation of genetic risk factors from multiple locations 

but it is not the case that the variants involved exert their effect on risk primarily by 

combining to effect the expression of a small number of genes. It is of course possible that 

there is some association between the PRS and the expression of some genes which would 

be possible to detect if a larger sample were available. In terms of effects on gene 

expression, the analyses described here do not add anything to the results previously 

reported for pair-wise analyses (Fromer et al., 2016). 

As an aside, it is worth noting the very strong correlation of the schizophrenia PRS with the 

first principal component of the ethnically heterogeneous sample. It has recently been noted 

that the PRS for schizophrenia stratifies by ancestry (Weiner et al., 2017). Likewise, the PRS 

for type 2 diabetes and coronary heart disease vary between populations and this must be 

taken account of if attempting to estimate an individual's risk (Reisberg et al., 2017). 

Although it may be expected that the mean PRS will vary somewhat according to ethnicity, it 

is perhaps a little surprising that the observed correlation with the first principal component is 
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quite so strong and this will be the subject of further investigation. However this 

phenomenon does not seem to be relevant to the findings reported here, which were 

obtained from the more homogeneous sub-sample. 

This study does not support the proposal that multiple common variants exert a joint effect 

on schizophrenia risk through a cumulative effect on the expression of a small number of 

genes. It is not hard to conceive of different mechanisms whereby the "polygenic risk" might 

be observed. One kind of mechanism is that a variant has some effect on gene function or 

expression which has a small but direct effect on the pathophysiological processes which 

can lead to schizophrenia. However, one can also conceive of indirect effects which could be 

very distant from the "core biology". There are number of environmental factors which 

appear to influence risk of schizophrenia, including obstetric complications, cannabis use, 

maternal viral infection, maternal malnutrition and childhood adversity (Cannon et al., 2002; 

Gage et al., 2017; Khandaker et al., 2013; Stilo et al., 2013; Xu et al., 2009). Any genetic 

variant which affects exposure to such risk factors will be expected to be associated with 

schizophrenia and these mechanisms may work either within the proband or within their 

parents. To give one example, as pointed out previously, smoking during pregnancy is a risk 

factor for the subsequent development of schizophrenia and the observed genetic 

association between smoking behaviour and schizophrenia might be mediated via this 

mechanism, so that a genetic predisposition to smoke in the mother is associated with 

increased risk of schizophrenia in her offspring (Curtis, 2017; Hartz et al., 2017; Niemel et 

al., 2016). Likewise, genetic variants which influence pelvis size, foetal head size, 

susceptibility to viral infection, cannabis preference and susceptibility to be either a victim or 

perpetrator of childhood abuse will all be expected to be associated with schizophrenia risk. 

Of course, such indirect effects may be very small but GWAS sample sizes are such that 

very small effects can be detected. If this view is valid then a number of common variants 

may contribute to the "omnigenic" signal through indirect environmental mechanisms as well 
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as through the interactive effects in intra- and inter- cellular networks which have been 

proposed (Boyle et al., 2017). 
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Table 1. List of genes for which the correlation of PRS with expression is significant at 

p<0.001 (MLP>3). 

Gene Beta MLP 

SULF1 -0.037 5.30 

JAM2 -0.025 4.95 

PMEPA1 0.026 4.64 

CHRD -0.020 4.52 

TPTE2P1 -0.050 4.38 

FIGN -0.021 4.08 

HDAC9 0.016 4.03 

PARP16 0.022 3.99 

EPHB1 -0.026 3.88 

CALB1 0.035 3.85 

SLC38A11 -0.041 3.65 

CNTNAP1 -0.015 3.62 

RRP12 -0.019 3.61 

GTF2A2 -0.022 3.53 

LONP2 0.008 3.52 

MSRB3 -0.014 3.52 

ZNF436 -0.017 3.51 

GLRA3 0.020 3.44 

SLC6A5 -0.048 3.44 

RBM14 0.018 3.42 

DNAJC24 0.012 3.41 

BCAT1 -0.016 3.34 

TBC1D3F -0.059 3.32 
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GPR135 0.016 3.27 

ECH1 0.018 3.26 

BOLA3 -0.020 3.25 

ANKRD6 0.021 3.25 

CYP26B1 -0.031 3.24 

MAFB -0.028 3.19 

SLC6A11 -0.025 3.17 

ENO4 -0.025 3.16 

FLJ20021 -0.026 3.15 

GADD45A -0.037 3.12 

AC107021.2 -0.037 3.11 

SERTM1 0.029 3.11 

RAB11FIP1 0.018 3.10 

DOC2B 0.033 3.10 

RNF123 -0.011 3.08 

HTR2A 0.017 3.08 

CCDC126 -0.012 3.05 

KCNG1 0.041 3.05 

FAM13B -0.017 3.04 

ZNF98 -0.046 3.03 

AC084033.3 -0.015 3.03 

MR1 0.022 3.02 

RASGRF2 0.016 3.01 

UTP14A -0.020 3.00 
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Table 2 Permutation-derived MLPs for each of the 32 gene sets previously used to test for 

enrichment for damaging ultra-rare variants in schizophrenia. The definition of each set is 

provided in the online methods section of the original publication (Genovese et al., 2016).   

Gene set Symbol MLP 

OMIM intellectual disability (Hamosh et al., 2005) alid 2.22 

Expression specific  to brain (Fagerberg et al., 2014) brain 0.00 

Bound by CELF4 (Wagnon et al., 2012) celf4 0.18 

Missense‑constrained (Samocha et al., 2014) constrained 0.34 

Involved in developmental disorder (Deciphering Developmental 

Disorders Study, 2017) 

dd 0.34 

De novo variants in autism (Fromer et al., 2014) denovo.aut 1.05 

De novo variants in coronary heart disease (Fromer et al., 2014) denovo.chd 0.08 

De novo variants in epilepsy (Fromer et al., 2014) denovo.epi 0.34 

De novo duplications in ASD (Kirov et al., 2012) denovo.gain.asd 0.38 

De novo duplications in bipolar disorder (Kirov et al., 2012) denovo.gain.bd 0.11 

De novo duplications in schizophrenia (Kirov et al., 2012) denovo.gain.scz 0.65 

De novo variants in intellectual disability (Fromer et al., 2014) denovo.id 0.18 

De novo deletions in ASD (Kirov et al., 2012) denovo.loss.asd 1.04 

De novo deletions in bipolar disorder (Kirov et al., 2012) denovo.loss.bd 0.86 

De novo deletions in schizophrenia (Kirov et al., 2012) denovo.loss.scz 0.04 

De novo variants in schizophrenia  (Fromer et al., 2014) denovo.scz 0.87 

Bound by FMRP (Darnell et al., 2011) fmrp 0.20 

Implicated by GWAS (Schizophrenia Working Group of the 

Psychiatric Genomics Consortium, 2014) 

gwas 0.92 

Targets of microRNA‑137 (Robinson et al., 2015) mir137 2.17 
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Expression specific to neurons (Cahoy et al., 2008) neurons 0.71 

NMDAR and ARC complexes (Kirov et al., 2012) nmdarc 0.04 

Loss‑of‑function intolerant (Lek et al., 2016) pLI09 0.41 

PSD‑95 (Bayés et al., 2011) psd95 0.18 

Bound by RBFOX 1 or 3 (Weyn-Vanhentenryck et al., 2014) rbfox13 0.04 

Bound by RBFOX 2 (Weyn-Vanhentenryck et al., 2014) rbfox2 0.26 

Synaptic (Pirooznia et al., 2012) synaptome 0.15 

Escape X‑inactivation (Cotton et al., 2013) x.escape 0.04 

X‑linked intellectual disability, Genetic Services Laboratories of 

the University of Chicago (Gécz et al., 2009; Moeschler, 2008; 

Moeschler et al., 2006; Rauch et al., 2006) 

xlid.chicago 0.32 

X‑linked intellectual disability, Greenwood Genetic Centre 

(Moeschler et al., 2006) 

xlid.gcc 0.36 

X‑linked intellectual disability, OMIM (Hamosh et al., 2005) xlid.omim 0.32 

X‑linked intellectual disability (combined) xlid 0.04 
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Table 3 GO gene sets achieving MLP>3 (out of 1454 sets in total). 

Gene set MLP 

CHROMOSOME_ORGANIZATION_AND_BIOGENESIS 3.49 

ESTABLISHMENT_AND_OR_MAINTENANCE_OF_CHROMATIN_ARCHITECTURE 3.48 

HISTONE_MODIFICATION 3.44 

NEGATIVE_REGULATION_OF_CELL_DIFFERENTIATION 3.42 

REGULATION_OF_MYELOID_CELL_DIFFERENTIATION 3.41 

TRANSCRIPTION_FACTOR_COMPLEX 3.36 

COVALENT_CHROMATIN_MODIFICATION 3.35 

CHROMATIN_MODIFICATION 3.31 

SENSORY_ORGAN_DEVELOPMENT 3.18 

TRANSCRIPTION_COACTIVATOR_ACTIVITY 3.12 

NEGATIVE_REGULATION_OF_MYELOID_CELL_DIFFERENTIATION 3.07 
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Table 4. Genes from the GO sets with MLP>3 where the gene-wise MLP exceeds 1.3 

(equivalent to p<0.05). 

Gene beta MLP 

HDAC9 0.016 4.03 

RBM14 0.018 3.42 

MAFB -0.028 3.19 

ZMIZ2 -0.015 2.83 

CHMP1A 0.011 2.64 

JAG2 -0.014 2.35 

FOXO3 -0.008 2.22 

TAF11 -0.011 2.14 

SNAPC4 -0.014 2.05 

MAML2 -0.013 1.89 

TGFB2 -0.015 1.81 

SUPT4H1 -0.008 1.76 

SMARCD3 0.010 1.70 

NSD1 -0.005 1.67 

DKC1 -0.009 1.65 

HDAC6 0.006 1.59 

HCFC1 -0.008 1.55 

HUWE1 -0.006 1.53 

SUPT16H -0.007 1.51 

ERCC4 -0.008 1.51 

CARTPT 0.044 1.50 

HDAC3 0.008 1.48 
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TERF2IP -0.007 1.47 

ACIN1 0.006 1.41 

CENPE 0.017 1.40 

GTF3C4 -0.006 1.37 

PDS5B -0.006 1.35 

SIRT5 -0.007 1.32 

RNF14 -0.006 1.32 
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Figure 1. Controls (a) and subjects with schizophrenia (b) plotted against first two principal 

components from SNP genotypes. 
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Figure 2. Q:Q plot of observed versus expected values for gene-wise SLPs assessing 

correlation between PRS and gene expression. 

 


